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Two-Particle Azimuthal Correlations in High-Energy Collisions
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The angular correlations between the transverse momenta of particles produced in high-
energy collisions are studied. An explicit expression is derived for the so-called minimal
azimuthal correlations, in terms of the total cross section and the single-particle distribu-
tion function. A simple model is also considered for illustration. Experimental distribu-
tions for several n+P reactions at 8.5 GeV/c and at 20 GeV/c are presented and compared
with the minimal correlations.

I. INTRODUCTION

Recently the study of two-particle distributions
has received considerable attention, on both theo-
retical and experimental grounds. Such a distribu-
tion can be invariantly defined by

(2) 4(v& (d2 da'

g dqdq &

where (&u&, q, ), i =1,2, arethe four-momenta of the
observed particles. Since it is seen experimentally
that transverse momenta of the coQision particles
are bounded to relatively low values in any frame
collinear with the collision axis, a natural choice
of the independent variables in p

' is the following:
the magnitudes q„, q„of the transverse momenta,
the azimuthal angle P between them, and the lon-
gitudinal momenta q», q» in the c.m. frame, .

In this paper we concentrate on the azimuthal
distributions, i.e.,

dg(n ) dg(n )

where (t);~, as discussed before, is the angle be-
tween the transverse momenta q„,q„of the two
final-state particles. If there should be no cor-
relation, then this distribution will be isotropic
in P. The theoretical significance of this distri-
bution to discriminate between different models of
particle production has been discussed by several
groups. '

An important question in analyzing this and the
related distributions is the separation of kinemat-
ical and dynamical effects. By kinematic correla-
tions we mean those arising simply from energy-
momentum conservation and the observed damping
of the transverse momenta. For example, mo-
mentum conservation requires the azimuthal dis-
tribution to be nonisotropic and to peak near 180',
the peak becoming less pronounced as the number

of particles increases. A convenient way to effect
the separation of so-called dynamics may be to
study the Fourier analysis of the distribution, i.e.,
expand the distribution in its partial waves'.

da&" '
=g C, coslg,

, 0

C, being the coefficient of the lth partial wave.
Energy-momentum conservation constrains these
coefficients to obey certain sum rules. We find
that these sum rules constrain the coefficients of
only s and p (i.e., I = 0 and I =1) waves to be non-
zero. From lack of further information on the
other partial waves, we assume that the higher
partial waves simply do not contribute to the expan-
sion. This is what we call "minimal correlation, "
i.e., that just required by kinematics alone.

In Sec. II we develop the above approach and ob-
tain an explicit expression for the so-called min-
imal azimuthal distribution function. In Sec. III,
we compare our results with the experimental
distributions. The following fitted reactions were
used: w+p- (5w)'p at 20 GeV/c, ' and w'p- (Sw)'p,
(5w)'P, (7w)'P at 8.5 GeV/c 'The m. inimal correla-
tions compare rather well with the data, the agree-
ment becoming better as the number of particles
in the final state increases. For the reaction
w'p- (5w)'p (for which we have data at two ener-
gies), we find that (1/o(" )) (do'" )/dp) is very nearly
the same at 8.5 and 20 GeV/c. It seems, therefore,
that the over-all azimuthal distribution (summed
over all pairs of particles) does not display sig-
nificant dynamics. We then turn to the distribu-
tions dg(")/dP, ~, where i and j are the leading
pion and the proton, respectively. These deviate
significantly from minimal correlations and may
provide interesting and sensitive tests for various
theor etical models. '

In Sec. IV, we solve the so-called random-walk
model. This may be considered as a generaliza-
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tion of the protostatistical model. ' In this model, the
coefficient of the /th partial wave decreases rap-
idly with /. As the number of particles in the final
state becomes large, this coefficient behaves es-
sentially as

(
1 1 1

~27 ( 2)l+1

Therefore, keeping only s and p waves in the ex-
pansion should be a good approximation. Thus
this model illustrates to some extent the validity
of the assumption of neglecting higher partial-wave
contributions to the expansion.

II. PARTIAL-WAVE ANALYSIS

Let us consider the reaction

A+A- C +C + ~ ~ ~ +C„

Let R„..., k„be the transverse momenta of
C„..., C„, respectively. We are interested in
describing the azimuthal. correlations between
two outgoing particles, i.e., the distribution

y~(n ) ~(n )

where Q~& is the angle between %; and k, .
Let

We have two sum rules which the distribution
function X(k, k') must satisfy .The first sum rule
just gives the over-all normalization of the dis-
tr ibut ion

A(k, k') d'k d'k' = n(n —1)&„,

where 0„ is the total cross section for the reaction
under consider ation.

The second sum rule expresses transverse-mo-
mentum conservation

~(k, k')k d k =-ki.(k) . (2)

From E(I. (1), we get

2g a k k' k k' cosm kk'd dkdk''

(2z)' a,(k, k') (k k') dk dk' =- n(n —1)o„.
Similarly from the sum rule (2) we get the follow-
ing relation for the p-wave coefficient:

w k"a, (k, k') dk'=- —A.(k) . (4)

= n(n —1)a„,
which gives the following relation for the s-wave
coeff icient:

and

Go'

( '"') =d'kd'k'

der~" )
X(k) =- „,

To make further progress with the above formal-
ism, we assume that the P-wave coefficient a,
factorizes in k and k':

a, (k, k') = a.y(k) y(k') .

be the two-particle and single-particle transverse-
momentum distribution functions, respectively.
By definition, the following relation holds:

42k'A. k, k' = n —1 A. k

Now assuming that A(k, k') is an analytic function
of k k'= jk( (k'( cosP, it is natural to expand it in
the following form:

X(k, k') —= A(k, k', cosP) =g a (k, k')(k k') cosmic.
m 0

Here Q is the angle between % and k' and k, k' are
their magnitudes.

The coefficient of the mth partial wave is givenby

It follows then that &5(k) is simply proportional to
Qk), the single-particle distribution function.
Helation (4) then gives a, in terms of single-par-
ticle distribution function A(k):

a, (k, k') = =—,„=,— X(k) R(k') .
w dk'k "$. k'

There is no further information on the other par-
tial waves. Let us assume then that the coeffi-
cients a (k, k') =-0 for m&2, i.e., there is minimal
correlation, just that ar sing from kinematic con-
straints. The azimuthal distribution is then given
by

X(k, k') kdkk'dk'
dy n(n —1)

1a (k, k') =—
( „,) A.(k, R') cosmic dp, m& 0

2m
k k'a, k, k' dk dk'n(n-1)

a(k k')=—1
2n

2r
X(k, k') dP .

I

+ (k (('(' s(k, (.")dk dk ' cosy) .

Using Eqs. (3) and (5), we finally get
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do(" )
= C, + C, cos&P,

where

g(n )
Co= 2~

2
C, =-

n(n-I) fy, '3i.(n')db'-
k" A(k') dk'

Equation (6) gives the minimal correlation function
in terms of the single-particle distribution A(k)

and the cross section 0" .
By minimal correlation we mean that in the Fou-

rier expansion of the two-particle distribution we
have retained only those coefficients which are
required to be nonzero in order to satisfy momen-
tum conservation. The terms with m ~ 2 may not
add constructively and thus Eq. (6) does not give
the theoretically minimum correlation function.

A few remarks about the input in deriving Eq.
(6) are in order:

(a) Over-alt normalization of the two-particle
distribution function.

(b) Momentum conservation. It is to be noted
that Eq. (6) does not contain all the kinematical
information. Only momentum conservation has
been used in deriving this, while energy conser-
vation has been left out. But this hopefully has
very little effect on the azimuthal distributions
because the large transverse momenta (which are
most affected by this constraint) are strongly
damped exper imentally.

(c) I'acto~ization assumption. We have assumed
that the P-wave coefficient of the Fourier expan-
sion of X(k, %') factorizes in k and k'.

since

ma 1 0( )

4 b n(n —I) 4(n —I)

}(b)d'b= —".
n nb

dg(~ ) g(ff ) O(~ )

2 4( —I)

According to Eq. (7), the azimuthal distribution
should peak near 180, the peak becoming less
pronounced as the number of particles in the final
state increases.

III. EXPERIMENTAL DISTRIBUTIONS

In Fig. 1 we present the azimuthal angular dis-
tributions for several m'P reactions. The follow-
ing fitted reactions were used: m'P- (3I)'P, (5n)'P,

a, (k, k') = o.y(k) y(k') .

Clearly this assumption has no theoretical basis
and has been made for calculational convenience
only. It turns out, however, that the ratio C, /C,
is not very sensitive to the assumption made above.
We shall see in Sec. IV, for example, that the
random-walk model (which does not satisfy factor-
ization) gives essentially the same result for this
ratio, provided n is large.

We now make an estimate for the coefficient C, .
Let us assume that the single-particle distribution
is given by

X(u)=ae '" .

C

a

l

&+P~3&+P
8.5 GeV/c

QP'

/
/'

/
/

/
/I~

/

m+ p-5'+ p
8.5 GeV/c

I K+P~7& P
8.5 GeV/c

w+p-5m+ p
20 GeY/c

0 0
I

m/2 vr 0
(Radians}

FIG. 1. Normalized do ")/dQ distributions for several ~+P fitted reactions. The dashed curves show the minimal
~orrelation function described in the text.
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(7n)'P at 8.5 GeV/c and n'P- (5n)'P at 20 GeV/c.
We have normalized the distribution in each case
so that

TABLE I. The asymmetry parameter B for various
m+p fitted reactions. Errors quoted are statistical.

Minimal
value

8 ofR

In the figure the dashed lines show the minimal
correlations described in Sec. II. The P-wave
contribution has been calculated using the experi-
mental single-particle distributions in each case.
It is found that the agreement between the calcu-
lated and the experimental curves becomes better
as n increases.

Figure 2 shows the azimuthal correlations be-
tween the leading particles, i.e., between the pro-
ton and the fastest forward-going pion in the c.m.
system. One may show that the energy-momentum
conservation does not require this distribution to
be nonisotropic. 4 We note that the correlations
between the leading particles are larger than the
correlation in the over-all distribution. This ob-
servation is quite interesting and may play an
important part in our understanding of multipar-
ticle production.

In Table I we give experimental values of the
backward-forward asymmetry parameter P, de-
fined by

d — —d =d

7I'+p ~ (37{') p All pairs 0.317*0,020 0.33

Leading particles 0.41 + 0.05

7l+p ~ (77l')+p

~'P —(57')'P

All pairs 0.093 + 0.025 0.14

All pairs 0.182 *0,015 0.20
Leading particles 0.25 ~ 0.04

dP) for this reaction is very nearly the same at
the two energies considered.

IV. RANDOM-WALK MODEL

The random-walk model is defined by

(8)

ItI(k;) is obviously related to the single-particle
spectrum. Again energy conservation has been
left out from this model.

From (8)

7{. p (57{.)+p (8.5 GeV/c) All pairs 0.193+ 0.015 0.20
Leading particles 0.28 + 0.04

In particular, for the reaction v'P- (5w)+P (for
whichwe have the distributions at two energies), we
find the asymmetry parameter to be = 19.3% at
8.5 GeV/c and = 18.2% at 20 GeV/c lab momenta.
(See Table I.) Also the distribution (1/cr~" i) (do~" i/

8 2

Q %, +k+k') .

Using a Fourier representation of the 5 ' function,
we get

w+ p 5w+p J
8.5 GeV/c ~I ~

m+p 5m+p

8.5 GeV/c

7T+p~5&+p
20 GeV/c

~ ~

~~
~ ~

m'/20 0 vr/2 7r

{Radians}

FIG. 2. Normalized do "/dQ;, distributions, where i and j are, respectively, the proton and the fastest formard-
going pion in the c.m. system. The distribution for 7t+p —(7n)+p has been left out for reasons of inadequate statistics
for this reaction.
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where

), dt)(k) y(k') d'xe'~ '

x [y(x}]" ',

2 —I. ' 00

e, =',' f kdk k dk d(k)d(k)S ! 0 0

xCx x " 'J, kx J, k'x
0

g(x} = d'l e' '"P(I)

so that

2.(k, k)=(—,
' ',

, d(k)d(k)

00 2 7l'

xdx[g (x)]" ' d 6e'i '

2-1'
xdx[g(x)]" '[ o, ( x)]', l &0

0

OQ 00

k dk k'dk' y(k) y(k')fl! 0 0

xdx[g(x)] " ' J,(kx) Jo(k'x),

where

, y(k) y(k')

xdx[g(x)]" '
2

J', (~k+k'~x) .

Now the Bessel function Z, (~ 2+k'~ x) can be ex-
panded in the following form:

Z,(i 4+k'ix) =Z.(kx) Z, (k'x)

+ 2 Q (- 1)' J, (kx) J, (k'x) cosl y,

where P is the angle between k and k'. Accord-
ingly we can write

a, (x) = J kdkd, (kx) d(k) .
0

Let us first examine P(x):

d(x)=kerf kdkk(k)d(kx) .
0

Its first derivative is given by

g'(x) = —2v k' dk (t)(k) +kx) .

Since P(k) represents essentially the single-par-
ticle momentum distribution function, it is a pos-
itive definite function of k with maximum near
k - 0. Therefore

X(R, k') =f,(k, k')+g f, (k, k') cosl p,
/=1

where

and

g'(x) & 0, x~0

1C)'(0) = 0.

x — xdx x " J0 kx J0 k'x
0

f, (k, k') =
—, y(k) y(k')

~j 00

&&
— xdx[(CI(x}]" ' J, (kx) J, (k'x) .

Therefore

k dk k'dk'A. k, k'
dy n(n -1),

=C, +g C, coslp .
l=y

Further, the secondderivative of g(x} at x=0 is

d "(0)=—rrf k'dkd(k)& 0,
0

so that g(x) is a monotonic function of x with max-
imum at x= 0. Therefore

[())(x)]" ' = exp[(n-2) lny(x)]

=exp((n —2) in[/(0) + —',g "(0)x'+ ~ ~ ~ ])
=[&(0)]" 'exp — — — x'

Let us next see how u, (x) behaves near x —0.
Using

l

J (ax) - — —1 — —+O(x'), x 0
2 l! l+1 2

we obtain

We next investigate the asymptotic behavior of C,
as the number of particles produced gets large.
We do this by the method of steepest descent:

o. , (x) —x' —,— k"'dk y(k) .-0 2' l!
Substituting these in Eq. (9), we find that
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—1' 1 1 2

C —( ) 2 k""dk Q(k) [!!)(0)]"'n( ~22 (f ()'
(„) 1 1 [((')(0)]" !!(0)

2m (n —1)! n 1- ((!)"(0)

!!"(o) „,
2 g(0)

(-1)' 1 1 1 [!!(0)]"'
n! 2" l! (n -2)"' 1!!)"(0) '+'

2 !1)(0)

k"' dk k
0

From (10) it is clear that if n is large, C, de-
creases rapidly with /. C, behaves essentially as
(1/2") (1/f!) [1/(n —2)"']. We remark that the
assumption of "minimal correlation" described in
Sec. II, i.e., s- and P-wave domination of the dis-
tribution, is clearly illustrated by this model.

%Ye have

da&n &

= C() + C2 cosf + ' ' '
~

The first two terms in this model are given by

[())(0)]" '
Co - —,

2 ~ 1 „(0)- k dk (!)(k)

2 ())(0)

Keeping the first two terms,

ctx&" ~ 2p 'n-2 1
(n -2)' k A.(k) dk

[J, k'~(k) dk]'

mj k' i.(k) dk

[f k' 2'((k) dk]'
n-2 2p (rc-2)' j"ks j(k) dk

0

We note that the ratio

[fk'~(k) dk]'

fk' ~(k) dk

V. CONCLUSIONS

in this model is essentially the same as obtained
in Sec. II. This ratio is thus not very sensitive
to the assumptions involved.

—1 1 1 [!C)(0)]" '
n! 2' (n-2)' [--'!!"(0)/!!(0)]'i.

n-l n-l(k)=, k(k)fI[ dk k(k;)!2 Qk;+k)
i=1

1 1
=2

( -1). &( ) x[y(x)]" ' J,(kx) dx

y(k) xdx[y(0)]" '1 1

0

xezp
2 0

x' J,(kx)
n-1 !I)"(0)

!!,0 0

[g(0)]"
2m (n —1)!!!)"(0)

k'
2(~ —()2"(())/ (())

k
[4(0)]"

2w (n —!)!2 "(2) 2 a —2) '

The cross section is then given by

Clearly C0 is related to the total cross section for
this reaction.

Also C, ckan be expressed in terms of the single-
particle distribution:

We have studied the angular correlations be-
tween the transverse momenta of particles pro-
duced in high-energy collisions. An attempt is
made to identify the correlations which arise
simply from momentum conservation and the ex-
perimentally observed damping of the transverse
momenta. An explicit expression is derived for
the so-called minimal azimuthal corre&ations in
terms of the total cross section and the single-
particle transverse-momentum distribution func-
tion. We find that the shape and multiplicity depen-
dence of the over-all azimuthal distribution func-
tion do!"~/dp for several m'p reactions considered
here compares rather well with the minimal cor-
relations, the agreement becoming better as the
number of particles in the final state increases.
We conclude therefore that do!")/d(()) does not dis-
play significant dynamical effects.

The azimuthal distributions do!")/dp,
~ of specific

pairs of particles, however, show significant
deviations from the minimal correlations. In par-
ticular, if i and j are in the opposite hemisphere
in the c.m. system, kinematics does not restrict
this distribution. We have presented the experi-
mental distributions for the leading particles for
some n'P reactions. It is observed that the cor-
relations between the leading particles are larger
than the correlation in the over-all distribution.
(See Table l.)
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Finally we note that for the reaction m+p- (5w)+p,
for which we have the distributions at two energies,
the distribution (1/a' "

) dv " /dP is roughly inde-
pendent of the energy.
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The assumption is made that there are many heavy vector mesons with density given by the statistical
bootstrap. Using statistical methods and generalized vector dominance we are then able to calculate
angle-integrated cross sections for the reactions e+e 7r+m. , yp (paar)p, and

y nucleus 7r+7r nucleus. We also calculate mp (pm@)h which does not involve vector dominance. The
results compare well with experimentand, along with results previously obtained for other reactions,
demonstrate a method for calculating spectral shapes for many processes.

I, INTRODUCTION

The experimental search for vector mesons
more massive than the p, v, and P has produced
a variety of results.

(1) There are no discrete bumps in the reaction
e'e -w' p that could be interpreted as high-mass
vector mesons. ' Rather, the cross section falls
smoothly and rapidly with increasing energy.

(2) The reaction e'e -m'm m'w shows a broad
enhancement at 1.6 GeV on the order of 400 MeV
wide' predominantly in the pm' channel. '

(3) The p.
'

p. spectrum from the reaction pp-p.
'

p, + anything shows no pronounced structure
for the JLi,

'
p, invariant mass varying from 1 to 6

GeV. The spectrum is rather smooth' with a
slight shoulder and can be parameterized by the
approximate proportionality do/dm„+„-
~ 1/m, +„-'.

(4) A study of the reaction yp-2m' 2w p using
9.3-GeV/c linearly polarized photons gives evi-

dence for a broad, peripherally produced four-
pion enhancement with mass -1.5 QeV. '

(5) Contrasting with the y p study, an experiment
on the reaction n+P-p m'm ~" at 5 GeV shows no
evidence for an enhancement in the p g'7i spec-
trum from 1 to 2 GeV. '

(6) The reactions yBe-m'w Be (Ref. 7) and yC
—n'v C (Ref. 8) show broad enhancements around
1.5 QeV in the z'r invariant mass.

We describe the results of these experiments
here making use of the following.

(a) The density of hadron levels or resonances
rises exponentially times some power with mass.
Such an exponential rise was first proposed by
Hagedorn' and has been realized in the statistical
bootstrap model of Frautschi" as well as in other
models.

(b) The coupling of a resonance to a given channel
(real or virtual) is inversely proportional to the
density of levels at that mass, and coupling con-
stants have more or less random or rapidly oscil-


