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We present a parton statistical model in which the pairing interaction has been explicitly taken into
account. Using a generalized equidistant model for the density of states we calculate the 90' differential

elastic two-body cross section in terms of an incoherent sum of direct-channel resonances. Encouraging
agreement with the data for n-p and pP elastic reaction is obtained. Two main results are deduced from
our analysis: (a) an approximate exponential decrease of do'/dA~, s; (b) a break structure in do/dQ~sp" The
position of the break is fixed at the energy where the temperature of the system reaches its critical value,

i.e., a phase transition occurs.

I. INTRODUCTION

The description of interacting hadrons a.s a,

many-body system has been advanced recently in
two different directions: (l) the statistical boot-
strap model (SBM) of Hagedorn and Frautschi";
(2) the parton picture suggested by Feynman. '

The main assumptions of.the statistical bootstrap
model are as follows.

(a) Resonances rise indefinitely with mass.
(b) The bootstrap hypothesis: Resonances are

built from each other, i.e. , the constituents a.re
the hadrons themselves.

(c) The mutual interaction of hadrons can be
completely represented by resonance formation.

(d) The only other effect of interactions is to
confine the constituents within a characteristic
volume.

In the framework of this model the density of had-
ron states with mass m is predicted to be' '

a
p(m) =-, e /rc,

where a is a constant and To is the so-called crit-
ical temperature and is given approximately by
the mass of the pion. Since p(m) is connected to
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various measurable quantities, relation (1) can be
tested. Predictions based on the above level den-
sity have been given recently, ' ' indicating the
usefulness of a statistical approach. The physical
picture, as stated in assumptions (a}-(d), is not
a simple one and a more satisfactory description
of the interactions is needed.

The parton model, where one assumes that a
hadron is built from fundamental constituents,
may be easier to grasp intuitively and ha.s given
many gratifying results in various branches of
high-energy physics. ' Since the full understanding
of intera, cting systems in this model amounts to
the solution of a many-body problem, one is only
able to apply approximation schemes in testing
the model.

A natural approach to try when dealing with a
many-body problem is to use statistical methods
for the description of the various properties of
the relevant system. Although one cannot expect
to describe the fine details of the data in the
framework of a statistical model, one may hope
to gain some understanding of the gross features
of the interacting system. The fruitfulness of such
an approach was clearly demonstrated by statisti-
cal models of solid state and nuclear physics, which
are generally accepted as the best available ex-
planation of la,rge bodies of data. Encouraged by
the results of nuclear statistical models, and the
statistical bootstrap model, but aware of the dif-
ferences between a nucleus and a hadron, we at-
tempt to formulate in this paper a statistical mod-
el of the parton picture.

In the parton model the hadron is visualized as
a composite system built up of pointlike constitu-
ents possibly tightly bound together in the hadron
rest frame. Since it is plausible that the current-
carrying partons have spin —,', we are dealing here
with a many-fermion system resembling, in some
a.spects, the nucleus. Hence we can try to utilize
successful nuclear models to help our intuition
regarding hadron-hadron interactions.

In describing the interaction of heavy nuclei one
usually distinguishes between two type of reactions:
(a) direct reaction, and (b) compound nucleus re-
actions. The former is what is known a,s an ex-
change reaction in hadron physics; the latter is
a two-stage reaction where the decay stage is
independent of the formation and is described by
statistical methods. From another point of view,
we may characterize the reactions by the way the
resonances add to contribute to the scattering
cross section; for type-(a} reactions many direct-
channel resonances add coherently, whereas they
add incoherently in type-(b) reactions.

In analogy with nuclear physics we propose a
two-component interaction picture of the parton

model. We would like to distinguish between (a)
exchange reactions which are parametrized in
terms of meson, nucleon, photon, etc. exchanges
and (b) fireball creation and decay interactions
which are best described by statistical methods.
As in nuclear physics, we expect to find for some
reactions quantities which are best described by
one of the above-mentioned components, for others
quantities best described by the other, and for
some reactions quantities best described by a
mixture of the two. We are interested here mainly
in the nonexchange component; thus we are looking
for measurable quantities for which exchanges
are not the dominating contribution. As was em-
phasized by Gunion et al. ' one might have just such
a quantity in the differential cross section at 90,
since due to the large momentum transfer and
small distances involved the coherent Regge-like
states' contribution is expected to be relatively
small.

A convenient way of translating the parton fire-
ball hypothesis to testable predictions is to use
the density-of-states formalism of statistical me-
chanics. This formalism was used quite extensive-
ly in nuclear physics, and also recently in hadron
physics in the framework of the statistical boot-
strap model. An analytical expression for the
differential cross section in terms of the density-
of-states function was recently derived, ' and will
be discussed along with the general density for-
malism in Sec. II.

As is emphasized in Sec. II as well as in all
the following sections, we believe that, similar to
other many-fermion systems, the pairing inter-
action plays an important role in the parton pic-
ture of hadrons. The properties and effects of
this pairing force in the case of electrons in met-
als and alloys, and of nucleons in nuclei, have
been extensively studied" and tested, and they
seem to be quite weB understood.

In those systems it was found that as a result of
the large overlap in the matrix elements of the
interaction between fermions with opposite mo-
menta and spin, the ground-state energy is lowered
from the lowest possible energy without pairing.
Moreover, it was found that the pairing interaction
implies a large energy gap between the supercon-
ducting ground state and the first excited state.
In a previous publication" we considered the pos-
sibility that pairing between partons causes a
large gap in the meson spectrum through a pair-
breaking mechanism in which the first excited
state is due to breaking a pair for which a minimal
energy (denoted 2b.) is required. Identifying the
pion a,s the supereonducting ground state of the
meson system, we suggested that the pair-break-
ing excitation of the pi.on leads to its corresponding
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member in the next SU(3) multiplet, the p meson.
From the BCS theory of superconductivity, a uni-
versal relation emerges between the zero-temper-
ature gap parameter b, (0) and the critical temper-
ature T, (see Refs. 10 and 12):

2S(0) = 3.52T, . (2)

At T, all the pairs are broken, and a phase transi-
tion occurs. From Eq. (2) we concluded that a
critical temperature of T, = 177 MeV is expected
to be of considerable significance in hadron phys-
ics. Estimates of this quantity given in the frame-
work of other models"" "agree quite well with
our estimate. Whether at To there is a one-side
phase transition, the other side being forever in-
accessible (i.e., T, is a limiting temperature as
was suggested by Hagedorn'), or whether T& T,
is possible as was claimed by other authors, "was
not resolved by our considerations. %'e will com-
ment about this point here.

It is only reasonable to assume that if a phase
transition in hadronic matter does exist it should
lead to an experimentally detectable phenomenon.
In Sec. III we discuss the possibility that the man-
ifestation of such a phase transition may be a
break in the 90' differential cross section and
show experimental evidence for such a break at
center-of-mass energies corresponding to the
critical temperature evaluated in our previous
publication. " It was also noticed in Ref. 11 that
due to the presence of an odd number of relevant
partons in the baryon spectrum ground state (the
nucleon), one does not expect to see a large gap
between the ground state and first excited state
[b,(1236)] of the baryon spectrum, a phenomenon
similar to the even-odd effect of nuclear physics. "
Now, since more states are accessible for an odd
system than for an even system, due to the pos-
sibility of more single-particle excitation levels
one expects also to find an even-odd effect in the
density of states; this effect is mell known in nu-
clear physics, where experimentally it was found
that"

is given by

dg r.,(v s)r„(v s)p(Ws) X(s, m, ', m, ')
( )dn sr(v s) X(s, m.', m, *)

where the masses of particle a, b, c, d are m„vs~,
m„m„respectively, s is the center-of-mass
energy squared, Q represents center-of-mass
scattering angle for particle c,

x(s, m, ', , m, ') = (s'+m, +m, ' —2m, 's —2m()'a

—2m. 'm, ')'",
r(Ws) is the total width of the resonance, r,~(v s)
and r„(Ws) are the decay widths of the relevant
resonances to channel ab and cd, respectively,
and

Q (2 I + I)'P, '(cos(())
](s, 8) = '='

~ (2&+ 1)

(6)

where g is the hadronic radius and 8 is the c.m.
scattering angle.

Following nuclear statistical models" and the
statistical bootstrap model" we assume that the
decay width into different final states is given in
terms of the density of states in the form

(7)

where A is a constant and

direct-channel resonances, and the differential
cross section at 90 is given in terms of an inco-
herent superposition of a large number of reso-
nances. (The interference terms are assumed to
vanish near 90 because of the large number of
resonances of many angular momenta. ) Using
this assumption one finds (for details see Ref. 7)
that to a good approximation the differential cross
section for the general reaction

a+5 c+4

1
~ ~«"~~& ~evened& ~evenwven (3)

m' —m.' —m, ')'F(m, m. , m, ) = (8)

A similar effect may exist in hadron physics where
there are more baryonic than mesonic states. '8

If. DENSITY GF STATES AND STATISTICAL
CROSS SECTIONS

As was explained in the Introduction we consider
a fireball-creating interaction, where the reso-
nance levels are due to parton excitations of the
interacting system. The scattering amplitude
mill then be written a,s a sum over uncorrelated

is the ratio of noninvariant two-body phase space
to invariant phase space evaluated in the rest
frame of the massive state. The fa,ctor F(m, m„
m~) was introduced in relation (7) in order to com-
pensate for the Lorentz-invariant phase-space
element in the expression for the resonance decay
width,

s'(d-a() f d (fss„p() I (rt-st) I's, (())

where dfL,.„,(s„,p„p,) is the I.orentz-invariant
phase-space element and T(d- ab) is the decay
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amplitude (see, for example, Ref. 21}. Using (7)
and (8) we then find

sity of single-particle states BC used the quasi-
particle method to obtain

( ] )n-1
f, =—,(e"("+e "«")(phn)K, (pd, n) . (15)p„n

X
s* —(m, '-m ')

C

S
$(s, 8)

- r(Ws)p(v s)s' (10)

where S denotes the entropy:

(12)

Let us now calculate the density of states for a
fireball composed of tmo systems of fermions in
thermal equilibrium with each other. As stated
above we assume that pairing forces exist between
fermions of each system. Each system may have
either an odd or an even number of fermions lead-
ing to even-even, even-odd, or odd-odd fireballs.
Note that the effect of pairing should be most sig-
nificant in an even-even fireball due to the non-
existence of quasiparticles in the ground states
(i.e. , all the relevant fermions are paired).

Using the well-known saddle-point method the
density of states is given by"

e'
(2 )3/2(d ~)1/2 I

g is the single-particle level density (assumed to
be equal for both systems, which is self evident
if one system is composed of antiparticles of the
other), 6 is the energy gap (again assumed to be
equal for both systems}, and K ((x) will represent
a modified Bessel function of order /.

In order to calculate the entropy one uses the
well-known relations

S( ~f(+PU( —a(N(,

where the energy is given by

and the number of quasiparticles in the ground
state is

Explicitly

g e(x)tt + 8 Ex]tt

p' „, n'

(S„ i =1,2, are the entropies of the two systems),
and the excitation energy U' is given in an obvious
notation by and

x [(pn, n)K, (p&n) +(p&n)2K, (p&n)] (19)

Ut ~ Uf +Ut1 2'

Furthermore,

( 1)n-1
(e ("-e- ("}(gn)K, (pn, n).p„, n

(20)

detA =

B'(f"f)
BP'

B f1
8a1&p

B'f2

Ba,BP

B2f B2f

BPBa, BPBa,

B'f2

BQ&

(14)

For an even system there are no quasiparticles in
the ground state; thus

N, =0, a, =0 (even);

while for the odd system there is one quasiparticle
in the ground state;

N, =1, a, ((0 (odd).

where the logarithm of the partition function for
each system is f„p=1/T (T denotes temperature),
and a, =PE+ (E~ denotes the Fermi level)F) E]

Following Brovetto and Canuto (BC)22 we proceed
to calculate U,

' = U,. (even), (23)

Furthermore, the excitation energy U,' above the
normal ground state (which is above the supercon-
ducting ground state; see below) satisfies

f=f1 +f2.

which is the crucial quantity from which p is de-
rived. In BC p was calculated for an assembly of
particles of one type, and me generalize here to an
assembly of two types of particles in thermal equi-
librium by using Eqs. (11)-(14). Using the pairing
Hamiltonian and an equidistant model for the den-

U', = U, —U, (0) (odd),

where U, (0) =b, (see the Appendix) is the energy at
T =0, i.e. , the energy of the quasiparticle which
belongs to the ground state. For completeness
let us write also the other derivatives of f, which
appear in detA [see Eq. (14)j:
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', = —g (-1)" '(e"&"+e ~")(pan)K, (pbn),
s+g p n=l

gQ Oo

—,*' =ga' Q n(-1)" '(e" "+e '")
n=a

2 1
x ), + X,(p~ n)+ IC-,(p~ n),

&'f; g ~(-I)" '
Bo.,sp p' „~ n

(25)

x [(g n)'Z, (p~n) +(~n)Z, (pan)].

p[UP(T T )] g(2gUt) 5/4 2e(w gU I3) (26)

Thus, using the previous equations, p can be
calculated for all possible assemblies of two types
of particles. For T-T, our result becomes the
level density for an assembly of two systems with-
out pairing. Indeed, since 5- 0 (for T - T,), we
may use a similar proof to the one used by BC for
an assembly of one type of particle and find after
a straightforward calculation that

E,.=U +-,'g~'(0)+m,

which for T = T, becomes"

E, (T ) = ', m gT —+-'-g6 (0)+m —U(0),

where m stands for a ground-state mass, and

(27)

(28)

in agreement with the mell-known result in nuclear
physics. '4

Let us make a few remarks concerning the nu-
merical calculations leading to p. We start by
choosing T, then b, =b, (T) is found by solving nu-
merically the gap equation for each 0 & T & T,."
For an odd system E~ is calculated solving the
implicit Eq. (20) (note that N, = 1), where the limits
on E~ are given in the Appendix; for an even sys-
tern Z~ =0. Then U' is calculated using Eqs. (19),
(23), and (24), and the other quantities needed for
p are calculated in a similar way, using their re-
spective expressions.

In order to calculate the c.m. energy E, cor-
responding to a particular temperature we note
that there exists condensation energy (i.e. , the
energy difference between the normal ground state,
which is the ground state in the absence of pairing,
and the superconducting ground state" ") and thus

26, (even-even),
U(0) = 0 (odd-odd),

(even-odd) . (29)

III. DATA ANALYSIS

e

E (6cV)

FIG. 1. 7I p elastic scattering data as compiled in
Ref. 7. The full line is a prediction of our model; the
dotted line corresponds to values predicted by our model
assuming T &To, see text. g= 0.0143 MeV

We will apply formula (10) to fit w'p and pp elas-
tic scattering data at 90, assuming that the total
width I' is constant and that p(Ws) is given by Eq.
(11), where quantities appearing in Eq. (11) are
calculated as explained in Sec. II. Since we are
unable in the framework of this model to predict
the single-particle level density g, common to all
three reactions, we leave it as a free parameter to
be fitted to the data. It should be noted that ex-
cluding the arbitrary scale factors which are used
to normalize each set of data, this is the only free
parameter in the model. When g is fixed, one is
in position to calculate the center-of-mass energy
at which the temperature of the system will reach
its critical value Tp where all the parton pairs are
broken and the hadronic matter is passing a phase
transition from its superconducting phase to its
normal phase.

As to the mechanism governing beyond the crit-
ical energy (the energy for which the system
reaches its critical temperature), things are not
clear; however, we will discuss an interesting
possibility later on.

In Figs. 1-3 we give the results of our model
(setting g=0.0143 MeV ') together with the 90' dif-
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ferential cross-section data compiled in Ref. 7.
On the same figure we also show (dotted lines) the
predictions of the equidistant model assuming that
T & T, is possible. In calculating do/dA ~». we
assume that the mN fireball, being a nonstrange
baryon system, is an "odd-odd" assembly like the
nucleon, "and has a ground-state mass equal to
m, +m„. The pp fireball as a nonstrange meson
system is a "even-even" system like the pion and
has a ground-state mass equal to 2m„. Using
Eqs. (27)-(29) it is then clear that if one starts to
calculate do/dQ ~». for ~N- vN at a certain E,
= Ms, then our formulas apply to pp- pp from a
higher E, . Indeed, the formulas are applicable
to mN for E, & 2 GeV, while for pp they are ap-
plicable for E, &2.6 GeV.

The main conclusions to be deduced are the fol-
lowing:

(a) The equidistant model predicts an approxi-
mate exponential decrease of the differential cross
section at 90 down to the critical energy.

(b) The model predicts a break in do/dQ ~». at
E, =2.7 GeV for the 7Tp system and at E, =4.1
GeV for the pp system, a prediction which seems
to be compatible with the data.

It is quite su~prising to see that if T & T, is possi-
ble, this model gives a good fit to the data beyond
the critical energy. Since we are unable to decide
in the framework of our model whether T & T, is
possible or not, we give this result here only as
an interesting possibility.

Although we do not analyze inelastic reactions
here we would like to point out that in the few-GeV
region near 90' they behave in a manner very sim-
ilar to elastic scattering both in energy dependence
and in absolute value. ""Especially, we would
like to draw attention to the data of Ref. 27, which
may also exhibit a break pattern structure in dv/
dQ ~».. It should be emphasized that we expect to
see a do/dO ~». break structure whenever hadronic
matter passes a phase transition, including exotic
systems for which our formalism does not apply.
It is maybe worthwhile to note that applying our
formalism to the pp system does not predict der/
dA ~». compatible with the data; however, it does
predict correctly the position of the break at E,

4 y ge

IV. CONCLUSIONS

We have presented a parton statistical model in
which the pairing forces have been explicitly taken

10
p~fl p

0

10
cj g

E rh

0
0
Q)

bC" 1

—2
10

E v)

10
0
CD

b Q1O
U V

—5
1 10

—6
1

10 I

4
E (Gcv)

c.m.

-7
1 I

2
I ' I

E (G~v)
C. m.

FIG. 2. n+P elastic scattering data as compiled in
Ref. 7. Curves as in Fig. 1.

FIG. 3. pp elastic scattering data as compiled in Ref.
7. Curves as in Fig. 1.
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into account. Generalizing Brovetto and Canuto's"
equidistant model for the density of states we cal-
culate the 90 differential elastic two-body cross
section for the m'P and PP reactions. Although the
comparison of our results with the data is quite
gratifying, one can expect deviations to some ex-
tent from the statistical cross-section formula
used here, since at relatively low energies where
there are not too many resonances coherent effects
may be important even at 90'. The gross features
of the model, however, are clear and seem to be
compatible with the present data. They can be
summarized as follows:

do/dn
~ „.- se (So)

T„however, in this model is not only a critical
temperature but also a limiting one (i.e., T & T,
is not possible), while in our model the limiting
nature of Tp is not settled. The possibility of 7.

'

Pp is examined in our model and a surprisingly
good agreement with the data has been found. To
this end let us conclude that even though the agree-
ment with the available data is quite good, much
more accurate data are needed, especially for the

PP system, before the model can be seriously
tested.

Finally we would like to comment about the lim-
itations of our model: A complete theory of the
BCS type includes parameters such as the strength
of the interaction G, the Fermi energy e~, etc. ,
besides the single-particle level density g, which
is phenomenologically determined by our analysis.
These other parameters are not determined by
our analysis; consequently the "weak coupling"
approximation gG«1 which leads to Eq. (2) re-
mains an assumption" [note that for real super-
conductors 0.2 s gG s 0.4 (see Ref 10)]. Further-
more, let us note that since e~ is not determined
here it is impossible to estimate, using our value
for g, the number of partons inside a hadron.

(a) The model predicts an approximate exponen-
tial decrease of the differential two-body elastic
cross section at 90 down to the critical energy.

(b) A break is predicted in do/dQ ~», at the crit-
ical energy of the system, where the system pass-
es a phase transition.

A conclusion similar to (a) was also arrived at in

the framework of the statistical bootstrap model
which predicts'

APPENDIX' THE FERMI LEVEL AND THE

ENERGY FOR T~O

K, (x)- (-,'x)'" —(x- ~),x

we have from (A1) that for large p

(A2)

(AS)

where Z = -exp[p(Er —b.)] (~ Z
~

& 1). F(z, S) is the
Jonqui0re function which satisfies the relation"

F(Z s) +ei))sF s ei))s/2 1
1 2x' . 1nz
Z ' r'(s) g

' 2'

where

(A4)

is the generalized g function. Equation (A4) pro-
vides the needed analytical continuation of (AS),
so that for ~Z~&1 one obtains, after neglecting
E(1/Z, —,') —1/Z (for Z- ~),

F[ e-8(sr-6) )] ~ (E g)i)2 ~p2 a~ ~ iP

x [1+0(1/p)], (A6)

In the first part of this appendix we calculate
Er(0), the Fermi level for the quasiparticles for
T-O, and in the second part U(0) is calculated
(U denotes the energy) S. ince for T- T„where
T, is the critical temperature, Er-1/g, where

g is the single-particle level density, and Er(T)
is bounded between E~(T,) and E2.(0).

Let us consider an odd system [for an even sys-
tem EgT) =0] of one type of pa.rticles. Since the
number of quasiparticles in the ground state is
given by

1=N

(-1)" '
(e "—e "")(Pbn)(K,(Phn), (A1)p„, n

where P =1/T, n =PEr, 6 is the energy gap, and

K, is a modified Bessel function, the above sum
diverges for P- ~. Using
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where we have used the asymptotic expansion of g,

&(r,fy) = [y' "1"(r—1)+2'I'(r)y "+—. ], (A7)
1

r(r)
valid for large ~y ~

and ~argy~&7). Therefore,
using (AS) and (A6), the final result is
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(A8) U —g can +. e-an
p „, n

~ [(pan)Z;(pan) +(p~n)'Z, (pan)], (A9)
Let us now find U(0), again for an odd system

[for an even system U(0) =0] of one type of parti-
cles. Since

we obtain using (Al) and (A2) that

U(0) =~. (A&0)
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