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Integral equations for the off-mass-shell S-wave pion-nucleon scattering axnplitudes are
developed from the Low equation. The seagull terms, present in this formulation, are cal-
culated using partially conserved axial-vector current and current algebra, with the assump-
tion that the pion current is independent of second- and higher-order derivatives of the pion
field. These terms provide the potential for the S-wave equations, as expected, but also
modify the rescattering integral. With a cutoff assumption, we obtain numerical solutions
valid for low energy. Agreement with experiment is surprisingly good.

I. INTRODUCTION

In the mid 1950's Chew and Low" developed a
nonrelativistic formalism which successfully de-
scribed the low-energy pion-nucleon P-wave in-
teraction. Their integral equations, which ne-
glected recoil, antinucleons, the 7t-m interaction,
and inelastic effects, were based on the nonrela-
tivistic reduction of the pseudoscalar coupling
model, i.e.,

3

H, +Q d'xp(x-')(o —
)|y(x), "

j=l

where p(x) is the source density.
Drell, Friedman, and Zachariasen' attempted a

description of S-wave scattering along similar
lines by introducing an S-wave meson-nucleon in-
teraction

Hl — d'xd'x' p x p x'

xt X',Q(x) Q(x')+f T Q(x) xw(x')'],

with v(x) the canonical momentum of the pion
field. Although they were able to obtain a reason-
able fit to the existing data by adjusting A~ and
A.', it is desirable to obtain a more model-inde-
pendent approach to the S-wave problem.

The more recent successes of current commu-
tation relations and the hypothesis of partial con-
servation of the axial-vector current (PCAC) in
the prediction of threshold pion-nucleon scatter-
ing results are well known. ' " The purpose of the
present work is to demonstrate the role of the
PCAC-current-algebra amplitude in the Chew-
Low formalism and to predict the low-energy S-
wave phase shifts.

In Sec. II, we develop a relationship between the
seagull terms and the PCAC-current-algebra
amplitude (we neglect Schwinger terms), based on
the conjecture that the pion current is independent

of second- and higher-order derivatives of the
pion field. Completeness is used to develop inte-
gral equations for the scattering amplitude in the
manner of Low.

In Sec. III, the low-energy S-wave scattering
equations are examined in more detail. The sea-
gull terms not only determine the S-wave potential,
but also provide for an approximate subtraction.
The resulting equations are solved numerically
with a cutoff procedure and compared with experi-
ment. Agreement with the experimental I= 2 phase
shift is quite good. The I = —, fit is not as impres-
sive, but is not at significant variance with the
data. A discussion of our results is contained in
Sec. IV.

In Appendix A, we examine the validity of the
assumption which leads to a subtracted form for
our integral equations. Appendix 8 and Appendix
C are used to evaluate various potential contribu-
tions.

II. THE SEAGULL TERMS AND THE
SOFT-PION AMPLITUDE

We wish to consider low-energy, pion-nucleon
scattering. Before beginning, it will be convenient
to make the following definitions:

&=2(P, — P.), 9=2(n+e. ),

&=P. -P =q, -q. ,

s =(P+q)', t=~', u=(a- q)',
where P, and P, are the initial and final nucleon
momenta, and q, and q, are the initial and final
pion momenta. The Greek letters P and n shall be
used to denote the initial and final pion isospin,
respectively. For the most part, we will suppress
the nucleon spin and isospin indices.

The S-matrix element" is
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.„,&P.; q. ,

~IPSE;

qi, P&. =(q., ~l n, 0& &PslP, &+(2s)'i~"'(P. +q. -Pi- n) .„,&P.; q. , ~l js(o)IP,&,

where js(y) = (Cl+m„')Qs(y) is the pion current. Applying the reduction formula to the outgoing pion and re-
taining all equal-time commutators, which arise from time derivatives of the retarded commutator, we
obtain

a, ~)liq(o'))lp & =&i lr(s)lp&+ fd e''+'*&i l&(x)lj(x) is(0&) lp&, (2)

where

&il~(a)l i, & f=d «''~ (~('*~)&i.l(& (~) i,.(0)ili'&+,„.,(&(*')&P,II&.(~)i, (0)lli, &))

are the so-called "seagull" terms. In the follow-
ing, we delete the specification (out) from the
bra (P„qs, ~l .

The equal-time commutators in Eq. (3) describe
contributions from diagrams in which the two
pions interact at the same space-time point. Thus,
in some sense, they contain information about in-
teractions which are quadratic in the pion field
and thereby assume an important role in the S-
wave problem. Two distinct categories of such
contributions can be given: (I) pion-pion inter-
action effects, and (2) direct couplings to the nu-
cleon field which are quadratic in the pion field.

There are ample reasons for believing that the
role of the pion-pion interaction in low-energy
pion-nucleon scattering is the t-channel exchange
of a scalar and vector meson. " The simplest
couplings (to the pion field) consistent with in-
variance principles are

L (x) - G Q„(x)P (x)c(x)

+iG~e„s,p„(x)"[gs(x)S„P (x)] .

With this expression, we find

28
ns s t g(s y ) as' Ypy

(where 5j/5a denotes the functional derivative of
j with respect to a), and more significantly, that
5js/5(B„B,Q ) and functional derivatives with re-
spect to higher-order derivatives of the pion field
vanish. Phenomenological analysis does not indi-
cate a need for interactions in the second cate-
gory

The forms of 5j/5&I& and of 5j/5(9„$) depend upon
the particular Lagrangian we choose, but the van-
ishing of higher-order terms is nearly universally
true for model Lagrangians used for the descrip-
tion of the pion interaction. " We shall thus as-
sume that when describing the analytic structure
of the scattering amplitude in the low-energy re-
gion, it is sufficient to consider j, =j,(Q, B„p).
It follows that

&js(o) s ~(4)P2 g(s y ) s )i ( ) P

P+ ~4 0 I' —~A
&4a

+((Q ——', a)„(P+-',a (0) P ——,'a)
& s) 4'n

(4)
and we conclude that the "seagull" terms are
smoothly extrapolating functions of Q, and in fact
are no more than linear in Q. It should be noted
that Eq. (4) applies only at low energy and that we
are making no assumptions as to the high-energy
behavior of our amplitude and the need for sub-
tractions. This expression provides the essential
clue we shall use for our treatment of the soft-
pion amplitude.

We next define the off-mass-shell scattering
amplitude

Tns(Psi q. iP» qi)

=—,(m „'—q, ')(m, ' —q, ')

x d'xe'~" P, g x, e A" —,'x, B,A~ --,'x P, ,

in which we have used

y„(x) = , „A".(x)
&i 2 s

f, sx"

as the definition of the interpolating pion field, and
where f, is the pion-decay constant. The use of
the commutation relations

[A.„'(x),At(y)]5(x, -y, ) =2iG~s s V "(x)

[A„'(x), a„As(y)]5(x, —y, ) =iG,v„s(x)&&4'(x-y),

leads to the result
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& g(P q 'P q )= (~„'—q')(~, ' —q, ') -iG, (p, ~
(&'„]](0}~p,) +2G & 8 q, „(p, ~

V"(0)~p,)
fw

+q„q,„d'xe' '" P, 0 x A" —,'x, AB ——,'x p, (5)

where V" (x) is the isovector current density and v 8(x) a scalar operator.
Normally, one investigates the above expression in the limit of vanishing pion four-momenta to obtain a

result for zero-mass pions and is then faced with the problem of an extrapolation in the mass variable.
We propose, instead, to use the conjectured analyticity properties of the seagull terms to determine the
role of the PCAC-current-algebra amplitude in physical scattering. Combining E(Is. (I), (2), (3), and (5},
we obtain

(r e*olr e(q —.o)le' —*o) =I((m.' —'o' —q')' —(q o)']

&&
—-iG~(P+ 2A

~
v 8(0)) P —2(d() +2G~e„s Q„(P+26 (

V" (0)~ P —~ah, )

+(q+-', o).(q —-', o)„fd xe o '(r e']'*d]d(x)[de(-', x), r)e(--', x)]]r --',d)
r

-(J d xe'e'*(P+ —', o]e(x )(j( x)je,(—-', -,'x, )]l & ——',d)I (to order q). (d)

The curly brackets in this equation indicate that we are to expand the result in a power series in Q and re-
tain only the first two terms in the expansion.

Inserting this expression into E(I. (2} and using completeness to do the x integrations, we obtain

(P.; e„ol&e(O)ld, ) =I, ((re.'- ld' —q')' —(q d)']

x +G, I'+-', g o 8 0 I'--,'g +2io„e„~ „ I'+-,'g V" 0 I'--', S

d'& P+ -I—(dx)'gz d . ( '!rel( o+!q)do(o)le&(e„l( -q! )ode(o&lr --,'o&)„P~+ q-E„+i@

e(de)'P& ". (r e-,'O] j(D)]e)(e]je(0)]1 ——,'O)I (tO Order ql
5(3](P+Q —P„)

—(27&)'g ". (p, ~ j (0)~n)(n~ j8(0)~p,) +cross terms,
~"'( P+ Q —P„)

where the sum is over a complete set of physical intermediate states.
We truncate the completeness sum, retaining only the single-nucleon and pion-nucleon intermediate-

state contributions. As has been emphasized elsewhere, "there are no compelling reasons for believing
that this is an especially good approximation. It is hoped that the larger energy denominator of the in-
elastic contributions make these terms insignificant at low energies.

The resulting expression constitutes the basis for our discussion of S -wave scattering.

III. THE S-WAVE EQUATIONS P' =P+Q,

Consider the matrix element (p„'q„n~ j&(0)~p, )
with P„P„and q, on the mass shell, but with all
other restrictions removed. This object is a func-
tion of the three four-vectors, P„p„and q, only;
and there is no reference to the "missing" pion
momentum q, . We are interested in low-energy
phenomena and shall develop our theory from a
nonrelativistic viewpoint. To that end, we make
the change of variables

m +mr

mq —m p,2 ft

2 m +m~

where we have defined the "missing" pion three-
momentum with q, =—p, +q, —p, . With this defini-
tion, 1, and 1, can both be expressed as relative
velocities and, hence, are Galilean invariants.
Clearly then, (P„q„n~ja(0)~P, ) cannot depend
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upon P if it is to be a Galilean-invariant object
and we lose no generality by restricting ourselves
to the P+Q=0 subspace of the P, Q plane. This
justifies the change of notation

&P.; qm, ul ja(0)IPt) =(1.' T2S2, nl js(0)lit; TtSt),
(9)

where S, and w, (S, and r, ) are the final (initial)
spin and isospin quantum numbers of the nucleon.

We define the partial-wave decomposition of
Eq. (9) by

(1„T,S„&lj,(0)
I i„~,s, )

i„r,d„o PS, ( „l,)t), i„r,o„d),
g, b

where the Q~) are projection operators corresponding
to a given combination of isospin, orbital, and
total angular momentum. The states

~
j„~,S„P)

are normalized according to

so that the phase shifts are given by

2 j6)
h, (l „1,) = (4v)

Consider Eq. (V) in the one-meson approxima-
tion. We define the "potential"

(12,' T2S2( W„B( 1„' T, S,)

= —,(m„','~')'t lG, -&P+ ,'~ ]c-.,(0)] P--,'~) +2G ..„q„&P+-'.~ [ V, (0)( P--,'Z ) j

-(»)'p ". —
~ (~.'--'&')'&P+4& l(q-2~) A.(0)IN)&NI(0+2&) AB(0)IP--'&)-Po+ 0 E +~f e f,'

+(t'rid(j (O)(tt')(Sr(js(O)(t' —lo)I+cross term

—(2w) Q " '. ——,(m, ' ——,')t ')'&P+ 2lt )(Q ——,'b, ) A (0)) 7)N)-&mN((Q+ ,'a) As-(0)) P ——,'b, )-Po+ @0 En ~~+i~ fw

+(t'+ —,'o(j(D)~ sti) (set~ jr(0)~ p —-', o)+cross term I(to order t))

(10)

(12' &2S21 W 8I 1» 'tSt) =(l.' T2S2)o'I ZW)'(12 1 t)@)'lit' TtSt li) .
r,6

With this definition, the one-meson approximation to Eq. (9) becomes

(12d w2S2tn~ j8(0)(1» TtSt) (12t T2S2( W~B(1» T S )tt
.(1.; T.S., yl j (0)(1„7,S,)~~(1„;7'„S„,y)j~(0, ) l„T,S,)

7p g y

d l„m ~ (1„;T„S„,y~ j (0)~y2iT S )*(1„;7„S„,y~ j„(0)~y„TS,)

—(2m)'Q ". &P, ) j (0)~ N) &N(j((0))(P,) +cross term
'~"'(P Q-p. )

N
-Po+ 0-z~+f&

where the subscript on &P+-,'b,
~ j (0)~ vN)~ indicates we have explicitly separated the P-wave contribution

to the intermediate-state sum. The 8-wave contribution will be treated in conjunction with the rescatter-
ing term. Higher partial waves are ignored. The partial-wave decomposition of this expression is given
by

(to order Q)

d'l„m p (1.; ~.S.s yl j~(0)11~;7',S2)*(1„;~ S,»Ija(0)I 1 i~, S,)

(1„;», yl jg(0)l y2,
' ~.S,)*(1.; T.S., yl j.(0)l y» tSt)

(11)
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The presubscript S on the matrix elements within
the bracket denotes that we are to consider only
the 8-wave intermediate-state contribution.

In the above expression, T„, 8„, and y are the
spin and isospin of the intermediate state, mQ-m„P

1, = " -+ —,6,
7R +&'~

mQ —m P
1

m+'nm

1d„= (m, 2+q„2)'/2, (d„, = (u„(-Q),

and the re1ative momenta

PPlq„ fF P„
ng+nlK

E„=(m'+ p„2)'",

q„=1 + ' (P+Q),
Vl +Pl

@,=E( Q)

m Q+m, P, mQ+m„PF
m+nz, ' ' m+m„

p„=1„+ ( P+Q),
%Pl +Sl~

are defined in accordance with Eq. (8).
Consider the integral

,(T„;T„s,r I j.(o)IT» T2 s2)* ~ (1„1 „s„,r I ja(o) I Tl; Tlsl)

As we shaii impose the static limit, we neglect the Q dependence of E„and W„. In addition, we sha11 as-
sume that the S-wave projection of

,(T„;~„s„,rl i.(o)l T.; );s,)*,(T„;T„s„,rI q, (o)IT„,s, )
off 2 S ff 2 f

is a slowly varying function of Q (see Appendix A).
This allows us to express the fixed-source S-wave projections of Eq. (11) as

(1) "/, dl h (/, /„)*ho(l, ll) ~ hj(/, l )*h~(/„ / )

(m 2+1 2)1/2 ld (m 2+1 2)1/2

and where A~ is the l =0 crossing matrix.
If we define the isospin-symmetric and isospin-antisymmetric amplitudes in the customary manner,

etc., we obtain

h(, ) (I I ) ~(„)( I )
(1)2' "/„'d/„h~o) (l„/„)*h~,') (l„,l, ) +2h~o) (/„/„)*h~, ) (/„, l, )

ld2' "/„'d/„h~', ) (l„l „)*h~'„) (l„,l, ) + 2h~„) (l„l„)*h~,) (l„,l, )

( ) ( ) ( )( )
(o2'

" l„'dl h~2) (l„/~)*h~,') (l„,l,)+h~,') (l„/„)*h~, ) (l„,l, )+hi, ) (l,„/„)*h~,) (l„,l, )

l1)2' "/„'d/„h~~) (l„/„)*h~2') (/„, /~) +h~,') (l„/„)*h~, ) (l„,l, ) +h~„) (/„/„)*h~, ) (l„,l, ) (12 )

An advantage of the twice-subtracted form of Eqs. (13) over the normal static-limit S-wave equations
of the Chew-Low type is that it minimizes the importance of the high-energy behavior of the potential. At
threshold these equations become exact, within the limits of the static approximation and the neglect of
inelastic effects, and are similar in form to the mass variable dispersion relations of Fubini and Furlan:"

2 f 2 251 t2
r& )(q'=m„')=r~ )(~ =O)+ ", '-, ~ ', 1m'& )d~,

(2m)2 ~(&u' —m, ')

z'-) (q2 =m, ') = r&-) (q2=o)+
(2w)2

(~2 m 2)l/2' —rmr& ~ d&4( )11)m2 )
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where T ' are the scattering amplitudes.
The potential forms W~o') (t„t, ) are evaluated in Appendix 8 and Appendix C. The results are indicated

below:

(~) =—,' G.(-t,'-t, ') [m„'+-.'(t, '+t, ')]'T&'), (14a)

E2 ~» 2 l2+l2
(Q — 1( 1 21

[ 2+1(t 2+t 2)]2 q + 1 gq 1 2 P-)
m m

(14b)

(AA-gg)„= —2(g„„„[-—'(l, '+l, ')]) . ..", „.. . , ; „),1,-1)8 '
+g( y

+ 2 J [m +y( g
+ g J

+4A[ ( 1 2 )]1
[m 2+1 (t 2+I 2)]2 QO (J1 +[m2+1 (t 2+t 2)]1/2 2m] 1 2 P-)

n

+ 2 [m + (tl +t2)] 2m 1—,1 t, t »f2 T
(gA[- —,

' (t, '+t, ')]]' . . . , , m M+)

2 m+2t, +t, (14c)

In this expression, (c) refers to the c contribu-
tion, (g to the isovector-current contribution, and
QA —jj) to the nucleon intermediate-state con-
tribution. 7

' and T represent the isospin-sym-
metric and isospin-antisymmetric projection op-
erator, respectively.

Corrections to the static limit have been included
in 8'0 as they play an important role, both at
threshold and at higher energies. The a and iso-
vector contributions [Eqs. (14a) and (14b), respec-
tively] and the first term in Eq. (14c) dominate at
threshold. The remaining two terms in Eq. (14c)
are small at low energy but serve to "smooth" the
potential in the intermediate energy range.

Little is known of the functional dependence of
G,(x) and g», (x). We shall assume they are slow-
ly varying functions over the region of interest
and take

2

g„12,(x) = 1t 2 ':g„(0)

W~2) (t„t,) for W~o) (t2, t,);0,
W (t„t,) =

0 for W", (t„t,);0.
(15)

This occurs at a pion kinetic energy of about 300
MeV for the physical potential. It is hoped that
our ignorance of the detailed behavior of W,' at
higher energies will have little effect on low-en-
ergy results due to the twice-subtracted nature of
Eqs. (13).

Equations (13), with the potential as given by
Eqs. (14) and (15), have been solved numerically
with a simple iterative procedure. As a first
estimate for t1~,') (t„t,), we use the potential
W~;)(t„ t, ), with good convergence after four or
five interactions. The phase shifts we obtain are
compared with the experimental data in Figs. 1
and 2. The predicted scattering lengths are a

and

' '( ) = - 0 489
m

-20'—

For the electromagnetic form factors, we choose
the dipole fit of Hofstadter et al. ,"

Z, (x) = —.
' (1-x/37. 5m„') -',

Z, (x) = gZ, (x),
with g=1.85. For g„(x), Gleeson et at."give

gA(x) =gA(0) (1 —x/MA )

-l0
I

ll
5l

with 3I& - 7.86m '.'
In view of the approximations used in obtaining

W,', we do not expect a great deal of accuracy at
higher energies. Ne therefore cut off the poten-
tials at the point where the 0' and isovector con-
tributions are exactly canceled by Eq. (14c), i.e.,

50

c.~. ENERGY (MeV)

IOO

FIG. 1. Comparison of the I =2, S-wave phase shift
with experiment.
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Ioo

c.m. E~RG~ (MeV)

lOO

neglect of the I'-wave structure of these terms.
Our techniques, of course, can be applied to

other interactions involving pions. As an example,
we note that for photomeson production, the as-
sumption of minimal electromagnetic interaction
should establish the conjectured analytic properties
of the seagull terms [with j,=j,((p, s„(p)].
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FIG. 2. Comparison of the I =2, S-wave phase shift
with experiment. I.et

APPENMX A

=0.086yn„' and a~'~ = —0.023m ', or, equiva-
lently p~ ~ 2 = P.I49py„~ and g3~ 2= 0.I09~,- . F„
comparison, Roper et al."obtain a' '=0.157m, '
and a' ' = —0.097m„' from their 0-100-Me& fit.

g(Q) = g, (1„;T„S„,y Ij.(0) I 1,; T,S,)*
«n ~n

x ~(l; 7 s, y Ij ()(0)$,; r,s, )

=g+b ~ Q+ ~ ~ . (Al)
IV. CONCI. USION

We have developed a prescription for extracting
the informational content of the off-mass-shell
scattering amplitude, based on the conjecture that
the pion current is independent of second- and
higher-order derivatives of the pion field. This
led to the development of integral equations for
the "half" off-mass-shell amplitude in the manner
of the Chew-Low approach. The seagull terms in
this formulation provide the potential for the
8-wave equations as expected, but also provide for
subtractions.

We examined the 0, isovector, and nucleon-pole
contributions in considerable detail, isolating
what we believe to be the dominant terms. Our
treatment of the pion-nucleon intermediate-state
contribution to these terms is more simplistic,
but the excellence of the I= —,

' phase-shift fit to
experiment is a strong argument in favor of our

Then, E(l. (12) amounts to the neglect of the static-
limit 8-wave projections of

d'l„- +Qo-
m 'g(Q) -a-6 Q' g(Q) -g

" E„(d„P,—&u„-E„(P,—()„(E„)'-
+cross term . (A2)

Consider the form of E(ls. (13). Experimentally,
it is found that

so that the "dispersive" corrections are dominated
by jg~ ~. If as a first approximation for the anti-
symmetric isospin amplitude

(l.' ~.S. . y Ij ()(o) I &i; T. Si)= (l. ' ~.S. I
& 8 I i~; TzS, )

it is found that the error introduced by the neglect
of E(l. (A2) is easily within the error inherent in
the static approximation at low energies.

APPENDIX B

We present in this appendix the details of the calculation of S-wave contributions of the o and isovector
matrix elements. The relevant form factors are defined by

(p, I o„,(o) Ip, ) = v(p, )[g.(~')~„,] v(p, ),

(p, l v,"(o)l( )=))((',)(y~)",4,')+(—"~~")",(~')) —,'~., ))((,).

U(p, ) and U(p, ) are the relativistic four-component nucleon spinors, and E,(z') and F,(A') are the electro-
magnetic form factors. We shall assume

P, (&') = (p, —g„)P,(&'),

where p. &
and p.„are the proton and neutron magnetic moments.
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.((m. '- le'- qp)* -(Q tt)'& I-(d& pe!o le. ,(d) Ip - lo& stde„„&)„&p r lo(q, (d)(p —
ld&&I (to order q)

=V(P+'2r ) ",' 2G, (",(a')v" -8Q„F,(s')~' '+4g [P,(a')+2+, (LP)] QT' ' U(P —2s) t

(81)
with

In the nonrelativistic limit, E(I. (81) becomes

„;& t,c.(o') "+dqP (o') —t -+(t+tq)(P, +Q, — ))2m m

+4g P,(g') 2 g+(1+2g) (Po+Q, +m) y„(82)P Q
m

where g = p.~
—p.„and where X,

' and X, are nonrela-
tivistic two-dimensional Pauli spinors.

The partial-wave projections of

(I,;T,S, iW„, g, ;~,S,)=q, (W, +o i, ~ i, W, )q,

(83)

As a general rule, the contribution of Vv, to
Wo~(f„ I,) is of the order

O(E,I,) .
(z, +m)(z, +m)

Since
are given by

1

w„=-', [w, p, (z)+w, p„,(z)]dz,
-1

where

(84)

l, l, s0 04
(z, +m)(z, +m)

&or l, ,s 3m„, we neglect this contribution.
Expanding 5', in powers of cos]9 and projecting

out the 9-wave contributions, we find that

2+ 2

( tqt,(= )'(m+!( ,' te)( &,* q( 'dt-t, *) -",'r. ," P(- ,'(- '() m, s -'q' ' ' - —ts, r'-'
I

(ttd)

In arriving at this expression, we have neglected terms involving (cos8) for n - 2, for simplicity. The
most important of these terms is

xa (I if 2)'(

where the curly brackets are the same as in E&l. (85). This is completely negligible at small energies and

its neglect introduces no more than a 10/~ error at I»- Sm, . Further, we have not imposed the strict
static limit, but have kept those contributions which can become important at higher energies.

APPENDIX C

In this appendix, we calculate the contribution of

-(te)'rt pd d „"., (&p.(l).(d) ltq&&tql)s(d)(lp )

(m ' —q, ')(m„' —q ')&P Iq 'A (0)l)q&&tq(q, ds(d)(P, )) +cross term

+ -p--(tr)' Q p „q d ",",, (&P, ld„(d) Ietq&„&stql&s(d) IP,&

9

, (m, ' —q, )(m —q, ')(p, lq rt (d)(rN)(rtt(q, As(0)(p, ))+cross term I(to order t)l,
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to W, (l„ l, ).
We first determine the nucleon intermediate-state contribution

6(2) ~+ p)o(t„ t,)„,=(ox)' Z ~- '
2 ". (&)tlt'„(o)ltt)&toltt(o)lo, )

2(m„'-q, ')(m, '-q2')(P2~q2 Z.(O)IN&

x&tt(o, A (O)(tp, )) +cross term (C2)

keeping only those terms which are independent of or linear in Q. The intermediate-state sum is given by

g l»&&l=

The form factors

&P'I&."(o)Ip& = l &(P')[g (q')r" +k (q')q" ]r'~. &(P)

&P'li. (o)lp& =l '&(P')[z .(q'&r'. ]II(p)

where q=p'-p, are related by

2

2mgA(q')+q'hA(q') = Wf„

(C4b)

(C5)

Inserting E&ls. (C3) and (C4) into E&I. (C2), and utilizing E&I. (C5), we find that

1 1
W(l I0 2) 1 N.P. 4 E (~ +q E +2~)

I (P) 2gNN (kl )gNN (k2 )
(m 2 k 2)(m 2 k 2) ( ~N™( .' —q, ')( .' —q ')

, (m, '-q, ')(m„'-q, ')(q, -k, ) k, (q, -k, ) k,k„(k,')k„(k,')(-p'„+m)

2 ( q1 )( q2 )
( 2 k 2 A(k~8 NN(k)

(
2 2) kA(kl )gNN(k2 ) (+N+m)(q, —k, ) k, ~

(m „

.(m.'- q, ')(m. '- q, ')g„(k,')~„(k, )

x [(-p„+m)(d, +2m)+(4. +2m)(-p'„+ m) —(4{,+2m)(-p'„+m)(g, +2m)]

+, (q, k, )(m„' —q, ')(m, ' —q22)hA(k22)gA(k, 2)(-p'„+m)(4t, +2m)

1+, (q, ' k, )(m, ' —q, ')(m„' —q2')kA(k, ')gA(k2')(q2+ 2m)(-p„+ m) 7 7.8U(p)

where
+ cross term, (C6)

k1=PN-P1, k. =p, -p„, p„= ([m+ (0+@)']'~', 5+@) . (C7)

An explicit calculation indicates that E&I. (C6) is a well-defined function of q. ~e shall assume that, for
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low energies,

(C6)

i.e., that h„ is dominated by its nearest singularity.
The evaluation of this expansion is relatively straightforward, but tedious. The method is identical to

that of Appendix B. The result is

rq(( (l„sr ,=-q[q„„„(--,'((,'s(,'))]', „(', „,, „(', „]„,—)) r' '

[gA( 4( 1 2 )]
[m 2 ~ 1(I 2+ I 2)]2

—
q

'(p +(m+ ', ((,'+), ')-]' ' —2m} r ~+qm ( —„.. . ,]o,)
r(c

2m 2m [m+4( ~+ 2)

(c9)
where the N. P. subscript on 8', indicates that this is the nucleon-pole contribution to the potential. To
simplify the calculation of Eq. (CQ), we have expanded in powers of cos8 and neglected terms of order
cos'8 and higher. These terms are even less important than comparable terms discussed in Appendix B.

The leading term in Eq. (C9) is unimportant at intermediate energies but makes a large contribution to
the isospin-antisymmetric effective range. The remaining two terms are unimportant at threshold but
moderate the behavior of W, '} at higher energies. All other contributions from Eq. (C6) are dominated by
these terms.

Consider now the pion-nucleon intermediate-state contribution to Eq. (Cl),

——,(m„—q, ')(m, -q, ')(p, ]q, r(„(O)lsor&(ror]q, r(s(O)]q&) +cross (srm

(C10)

We shall assume these terms are well approxi-
mated by the I= —,', J =-,"N*, resonance in the
generalized Born approximation. The relevant
form factors are defined by'

p'=(p'+p) —(p'+p) (p' —p) —, ,

In the generalized Born approximation, Eq. (C10)
becomes

=&,(p') e„(q')g"'+ s„(q')~"q' , (m, ' —q, ')(m, ' —q, ')

+X„(q')P '"q~

qPqP
+& (q ) . -g"' &(P),

x P(p, )([g„(q,')q,"]A„,[g„(q,')q,"])U(P) )

-i U(p, )([-ig„*„(q,')q2]A„,[ig„*](((q,')q,'] ] tr(p),

(&*(p')~i(0)IN(p)) = &,(p')[g * .(q')q'] «P»
with

~=P P ~

where A„„ is the N*, propagator. This vanishes
as a consequence of the PCAC relation

6 ( 2) f. gN*N. (q')
W (m„' —q')
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We present a parton statistical model in which the pairing interaction has been explicitly taken into
account. Using a generalized equidistant model for the density of states we calculate the 90' differential

elastic two-body cross section in terms of an incoherent sum of direct-channel resonances. Encouraging
agreement with the data for n-p and pP elastic reaction is obtained. Two main results are deduced from
our analysis: (a) an approximate exponential decrease of do'/dA~, s; (b) a break structure in do/dQ~sp" The
position of the break is fixed at the energy where the temperature of the system reaches its critical value,

i.e., a phase transition occurs.

I. INTRODUCTION

The description of interacting hadrons a.s a,

many-body system has been advanced recently in
two different directions: (l) the statistical boot-
strap model (SBM) of Hagedorn and Frautschi";
(2) the parton picture suggested by Feynman. '

The main assumptions of.the statistical bootstrap
model are as follows.

(a) Resonances rise indefinitely with mass.
(b) The bootstrap hypothesis: Resonances are

built from each other, i.e. , the constituents a.re
the hadrons themselves.

(c) The mutual interaction of hadrons can be
completely represented by resonance formation.

(d) The only other effect of interactions is to
confine the constituents within a characteristic
volume.

In the framework of this model the density of had-
ron states with mass m is predicted to be' '

a
p(m) =-, e /rc,

where a is a constant and To is the so-called crit-
ical temperature and is given approximately by
the mass of the pion. Since p(m) is connected to


