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We present a straightforward method for calculating the amplitudes of the various JMLS
states in the final 3n system of the reaction mN mmxV, assuming a Deck-model form for the
production process. This calculation allows us to study relative phases of different partial
waves, and the nucleon spin structure of the production amplitudes, in an unambiguous fash-
ion. We find that the magnitudes and phases of 3z partial waves obtained by this method agree
reasonably well with those obtained by applying an experimental fitting program to Monte
Carlo events generated using the Deck formula; this may be interpreted as a check on the
assumptions of the fitting program. Likewise, the magnitudes and phases agree reasonably
well with those obtained from the data, confirming the belief that the A& and A3 effects are
probably produced by the Deck mechanism, In the rest system of the three pions, only one
nucleon helicity-amplitude combination is dominant. The method of analysis can be applied to
similar models for other production reactions.

I. INTRODUCTION

Considerable interest in the A, "resonance" has
been generated by partial-wave fits to the data for
the reaction' '

These have demonstrated that the A, effect occurs
in the J~ = 1', I.=O pw system, but that the phase
of the amplitude changes very slowly as m~„ in-
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creases through the A, mass. This is to be con-
trasted with the rapid variation of phase expected
for a true resonant state described by a Breit-
Wigner formula. In an associated article, here-
after referred to as II,4 we show that Monte Carlo
events generated by a computer according to a
generalized Deck model resemble the data in many
particulars. When partial-wave amplitudes are
extracted by fitting the Monte Carlo events with
the same program used to fit the experimental
data, the magnitudes and phases in the 1' system
(and in several other partial waves) are quite sim-
ilar to the data. This leads us to conclude (in II)
that the effects embodied in the Reggeized Deck
model provide the basic framework for nonreso-
nant dynamics of the 3m system.

In II we depend on the program FIT developed by
Ascoli et al. ' ' to perform the partial-wave anal-
ysis. This program operates on data, i.e., actual
or Monte Carlo generated events distributed ac-
cording to bilinear combinations of amplitudes.
The data are fitted, using the maximum-likelihood
method, to certain formulas assumed to describe
the reaction n P- m m m P. These formulas are
not completely general, so it is necessary to
understand and keep in mind the assumptions made
by F&~. This is particularly so for events gener-
ated according to the Deck model, since the mech-
anism assumed in that model is somewhat contrary
to the mechanism assumed in the formulas used
by FIT. Furthermore, in dealing with a theoretical
model such as the Deck model the amplitude itself
is directly available, so that it is clearly awkward
and unnecessary to extract the partial-wave am-
plitudes from the bilinear combinations of them
which describe the distributions of events.

In the present paper we therefore carry through
a direct partial-wave analysis of the Deck ampli-
tude, independently of the FIT program. The par-
tial-wave analysis is achieved by multiplying the
Deck amplitude by a suitable angular momentum
function and integrating over appropriate angular
variables. The theoretical formulas for this direct
angular momentum analysis are developed in Sec.
II. The results of numerical evaluation of the for-
mulas are given in Sec. III. From these results
we can obtain some understanding of the physical
content of the Deck model as represented by its
angular momentum decomposition, independent
of any assumptions of the FIT program. In Sec.
IV of the paper the direct partial-wave analysis
of Secs. II and III is compared with an angular
momentum analysis by FIT of Monte Carlo events
generated according to the same Deck model. This
comparison enables us to make some assessment
of the limitations of FIT, at least as applied to
Deck-like models.
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FIG. 1. The two amplitudes considered in this paper.
Each has a g+7t scattering amplitude and a m p elastic
amplitude connected by a Heggeized pion propagator.

In Sec. V of the paper we present a detailed dis-
cussion of symmetry properties with particular
reference to the helicity structure of our results.
Some comments in summary are given in Sec. VI.

The Deck model employed in this paper is simi-
lar in all regards save one to the Deck model em-
ployed in II. Here we discuss the two-diagram
model illustrated in Fig. 1. The two contributions
to the amplitude correspond to interchange of the
two m mesons and thus ensure Bose symmetry.
The partial-wave analysis is performed on one of
the diagrams [Fig. 1(a)], using angular momentum
states referring to the spin S of the m, 7t', dipion
and the orbital angular momentum L, of this dipion
relative to the other pion w, . Before computing
probability distributions the partial-wave series
must be summed and the contributions of the sec-
ond diagram [Fig. 1(b)] obtained by interchanging
the two w mesons must be added. (This is dis-
cussed at some length in Sec. II 8.)

The Deck model amplitude corresponding to each
of the diagrams of Fig. 1 is the product of three
factors: (a) ww scattering amplitude, (b) Reggeized
pion propagator, and (c) wK scattering amplitude.
We summarize here the salient features of each:

(a) For the ww scattering, we use below 1.48 GeV
the results from rec~='nt phase-shift analyses. ' '
Since the maximum three-pion energy 9 considered
is only 1.9 QeV and since the mm partial-wave in-
variant scattering amplitudes change very slowly
in the neighborhood of 1.48 QeV, we set these
amplitudes equal to their value at 1.48 QeV for
energies greater than this value.

For the diagrams in Fig. 1 one of the initial
pions for the wm scattering is off-shell. In our cal-
culation on-shell mw amplitudes are used, eval-
uated at the energy and scattering angle determined
by the off-shell kinematics. Note also that the mm
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amplitudes are on-shell with respect to the spin
of the exchanged pion although we use a Reggeized
pion propagator.

(b) The Reggeized pion propagator employed is

—ui e (t~)1 8,710', (t~) j 2 s
m, '- t~ 2so

o(ts) = t~ —m, ', so= 1 GeV2.
(1.2)

For cy =0 this reduces to the standard Feynman
propagator for a spinless particle. The quantities
s' and u' in this formula are calculated for the
two-body kinematics indicated in Fig. 2: The
dipion m, w,

' [corresponding to Fig. 1(a)] is treated
as a particle, as is the object (Pomeranchon
plus ) exchanged at the PP vertex. Thus we use

2(s' —u') = W' —m, '+ 2(t~ —t —s,), (1.3)

S)

where s,= (P, +P,)'= (dipion mass)' and W'
= (P, +P, +P, )'= (3-pion mass)'. Some reasons for
this choice are discussed in II.

By and large we must admit that (1.2) and (1.3)
are quite arbitrary, especially since we use these
Regge formulas for small s' =~ a 1.0 QeV'.
note, however, that the Regge phase factor in (1.2)
is crucial. The relative success of this model in
explaining phases obtained in the analysis of ex-
perimental data is due to this Regge phase factor;
the other phase factor coming from mN scattering
provides only small corrections to what one would
obtain with a purely real pion propagator and a
pure Pomeranchon exchange for the nN scattering. .

Finally we note that although the Reggeized ex-
changed pion has spin o.(t), the couplings at both
ends are those of a spin-zero pion, i.e., only
helicity zero is coupled.

(c) For the vN scattering amplitude we again
use on-shell amplitudes calculated at the energy
and scattering angle determined by the off-shell
kinematics. For E,~ ~2.0 QeV these amplitudes
are calculated from the CERN Theoretical (1967)'
phase shifts. For E„„~2.2 QeV we use the Barger-
Phillips' Regge fit to high-energy wN scattering.
In order to achieve continuity in the intermediate
region 2.0 QeV &E„~ + 2.2 QeV we linearly inter-
polate between the amplitudes calculated from the
phase shifts at F.',~ = 2.0 QeV and those calculated

from the Barger-Phillips formulas at E,„=2.2
QeV. In this connection it is worth noting two
things: First, high-energy mN scattering satisfies
approximate s-channel helicity conservation. '
Second, although there is a noticeable discontinu-
ity in the mN 8 and S amplitudes as one compares
the amplitudes calculated from phase shifts to
those calculated from the Barger-Phillips formulas
in the intermediate energy region, the discontinu-
ity is much smaller for the dominant s-channel
helicity-conserving amplitude.

A more complicated three-diagram model is
discussed in paper II. In addition to the two dia-
grams of Fig. 1 a third diagram involving m n

scattering and n'P scattering is included. This
diagram could be partial-wave-analyzed using the
methods of this paper, but it would involve an
additional recoupling calculation in which SI. states
referring to the pairing (w, w, )w,

' are reexpressed
in terms of SI, states for the pairing (v, v', )m, .
This is possible but probably difficult for the Deck
model, since it would necessitate calculating in
detail a small but non-negligible tail of high-L
states. In any event we have left out the third dia-
gram in this paper. Since the contribution from
m m scattering is relatively small, this omission
should not seriously detract from the utility of our
results. Some measure of the influence of the
w m scattering events may be obtained by compar-
ing the results presented in Secs. III and IV of
this paper with those of paper II.

The calculations presented in this paper are
similar in spirit to those of Froggatt and Ranft"
and Ranft. " We have tried to be as realistic as
possible with regard to the mw and nN scattering,
whereas Ranft and Froggatt introduce p and e

mesons treated as particles and use a simplified
estimate for the mN scattering. These improve-
ments enable us to calculate the complete Bose-
symmetrized amplitudes and distributions in all
possible kinematic variables (many of these dis-
tributions are given in II). Because we treat all
partial waves in mm scattering on the same footing
we are able to calculate the relative phases of
amplitudes with different S and to examine the A,
region as well as the A, region.

II. THEORETICAL FORMULAS

A. Partial-Vfave Amplitudes

FIG. 2. Kinematics leading to the 3' final state.

We wish to write down a partial-wave decomposi-
tion of the matrix element T for the reaction (1.1).
This will be a summation 7=g«p T«~ over the
contributions in which the three-pion system on
the right side of (1.1) has quantum numbers J
= total angular momentum, M = z projection of
angular momentum, /=parity. In order to write
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down an explicit formula for TJ» we work in the
center-of-mass system of coordinates for the
three pions with the z axis along the direction of
motion of the incoming pion as viewed in this sys-
tem.

The three-pion states can be described in the
Dalitz terminology of a pion 1 plus a dipion 23
[Fig. 1(a)]. We take particle 3 to be the II', par-
ticles 1 and 2 to be the m 's. The Bose symmetry
will be taken account of by symmetrizing 1 2

[Fig. 1(b)]. We can use as variables the mass of
the dipion m» ——Ws, and two sets of polar and azi-
muthal angles. The four angles necessary are
illustrated in Fig. 3; Q, = (8„y,) are the polar and
azimuthal angles locating the dipion 23 in the
three-pion center-of-mass system, Q=(81, y, ) are
the polar and azimuthal angles locating pion 3, the
m', in the dipion center-of-mass system relative
to the same set of axes. An appropriate complete
set of angular momentum states for the three-pion
system is the set of functions

ZI",(n„n, ) = Q (zM~WM, M, )y', ~(n, )r,"s(n,).

Here S is the angular momentum of the dipion 23
and I is the orbital angular momentum of the
dipion relative to the other pion 1. The spherical
harmonics are coupled with a Clebsch-Gordan
coefficient (JM~ISM~Ms) to obtain a state of total
angular momentum J, z-projection M. If instead
of 23 as the dipion we take 13 as the dipion, we
will have a different set of angles Q, =(8„y,),

I» Q +I S ( 1)ZI S (Ql& 1)
LS

This is meant to apply to the process of Fig. 1(a);
8 is the spin of the dipion w, m', . The Bose sym-
metrization to include the term corresponding to
Fig. 1(b) will be done later when probability dis-
tributions are calculated.

It is also convenient to introduce helicity ampli-
tudes fI1"P. In terms of these the matrix element
TI» given by (2.2) can be expressed as

(2.2)

JNP
X/2

=gf (s„s.) 8, D (,P, y).

(2.3)

Here s„s, are Dalitz plot variables, D ~& is a
Wigner rotation function, and a., P, y are the Euler
angles describing the rotation which carries the
three pion system with fixed s„s, from a standard
reference configuration to the actual configuration.
The reference configuration is arbitrary; we take
it to be that configuration in which particle w, is
moving in the -z direction and particle m~ is mov-
ing in the xz plane with a positive x component of
its momentum. The z axis is always chosen to be
in the direction of motion of the incoming pion in
the three -pion center-of -mass frame. In this
frame the reaction takes p'ace in the xz plane and
the initial and final nucleons have negative x com-
ponents of momentum. The conventions defining
the x and z axes are recorded in Figs. 4(a) and
4(b). The standard reference configuration for the
three pions is given in Fig. 4(c).

We also need the relation between the I.S ampli-
tudes and the helicity amplitudes. To establish
this, equate the right-hand sides of (2.2) and (2.3)
and notice that applying the raising or lowering
operators (J„+iJ,)" leads to a more general rela-
tion:

Q, = (8„y,), and a different complete set of angu-
lar momentum states Z~Is(n„n, ). Under inter-
change of the two identical 11 's 1 and 2, ZI. s(Q„Q,)—Zf~~(Q„Q,). Using these angular momentum
states we can express the amplitudes TJ» in the
form

= P F'„z,'",'(n„n, ), (2.4)

FIG. 3. Angles representing decay of 37t. system into
a dipion and a single m: (0&, y&); and those representing
the subsequent decay of the dipion in its rest frame:
(~g, Pg).

in which M and I' are independent. We now evalu-
ate (2.4) in the limit when the rotation (a, P, y )
= (0, 0, 0) is no rota, tion at all. In this limit
D1I 1(Ix, p, y) =5„q. Comparing Figs. 3 and 4(c) we
see that L9y 0 (py 0, I9, =X,. The angle X, is indi-
cated in Fig. 4(c); it is measured in the dipion
II, w,

' center-of-mass frame. Using I'~1(8„y,)
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= [(2/+ I)/4w]~~25 y+$(8 q) )= [(2@+.I)/4w]~~ 2

x d~~, ,()t,), and (2.1) we find that (2.4) reduces to

21+S "'
LS

~2 ~3
D

7T] P

28+ 1 d xo(Xi) . (2.5)

In order finally to obtain the angular momentum
decomposition in the form desired, we substitute
(2.5) in (2.3), identify P and u with the polar and
azimuthal angles By spy of the dipion, and combine
the factor e' & from D~~(n, P, y) with the function
d~&,(y,). If we also sum over all states JMP, and
include indices po to describe the helicity states
of the nucleons, we obtain the general angular mo-
mentum decompositon of the matrix element for
the process ~ p-m'm 7t p:

2J+C "'
D„",(q „8„0)

2S+ I "'
D'.*(y, X„0).

(2.5)

Note that E~~~~ ~,(s, t, W, s,) is a function of the an-
gular momentum indices indicated and also the
invariants s=(p„+ps)', t=(pe —pD)', W'
= (p, + p, +p, )', and s, = (p, + p, )' [the names of the
particles are indicated in Fig. 4(a)].

It is clear that it would be quite complicated to
extract the partial-wave amplitudes I'~~~

~ from
an arbitrary formula for T. For the generalized
Deck model there are some substantial simplifica-
tions compared to the general case. The invariant
matrix element for production of a dipion state
m, m3 with spin S is

FIG. 4. (a) and (b): definition of momentum vectors
and the xs plane in 37t rest frame; (e) standard refer-
ence frame for the three pions.

P~(8~, ) = D~~~*(0, 8~„0)

= (-I)'g&.'x(4)Dx.*(y X„0). (2.8)

The factor (-1)' enters because 8,„ is the angle
between the two m mesons, whereas with our
conventions y, X, give the orientation of the v' me-

T, p, = ' [g~(s, )e"—~~.'~' 1](2S+1)P-,(8„,)
2$

&& (pion propagator)

x (wK scattering amplitude)~ . (2.7)

p ]n 5-pion rest frame
A

pA in ~~773 rest «arne
Here 8„, is the scattering angle between the inci-
dent pion A and the outgoing pion w, in the w, w,

'
rest frame. To extract the partial-wave ampli-
tudes, we must reexpress P~(8,„) in terms of the
angles y, y, used in Eg. (2.6).

If we define a new angle g, the angle between the
direction of the dipion in the 37T rest frame and
the direction of the z axis (direction of incoming
pion momentum) in the dipion rest frame, then
clearly composition of rotations gives

FIG. 5. Definition of angles between incident m and
outgoing dipion in two frames.
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son. We may reexpress g in terms of angles al-
ready defined by examining the Lorentz transfor-
mation from the three-pion rest frame to the
dipion n, m,

' rest frame, represented in Fig. 5. The
angle 8„which gives the orientation of the dipion

momentum relative to the incoming pion direction
in the three-pion rest frame, transforms to III

= 6)i+5.
Substituting (2.8) in (2.7) and comparing with

(2.6) we then find

QF ", (2~ i) (JX~LSOX)( 4 ) B„i(p„e„o)( )

' —[ (s )e"ss'i' —1](2S+I)(-1)sds~(p)
1

x (pion propagator)(mN scattering amplitude) ~, . (2.9)

Multiplying both sides of (2.9) by D~vq(y„8„0) and integrating yields

[(2L+1)(2S+1)]' '(
i )

8mWs, 1
[ ( )

„.s (,, )
LS,po 2J+1 g 22 ~s x

L

x (2S+ 1)(-l)s
~

dy, icos 8,D ~~q(y„8„0)dos„(p)
"o "-1

x (pion propagator)(sN scattering amplitude)~ .
We can now use the orthogonality property

2g+1 ~/2
(JviLSOv) (JviL'SOv) = Did

U

to undo the sum over L in (2.10) and finally obtain

(2.10)

(2.11)

' [(2L~ 1)(2S+1)]'i' [qs(s,)—e'@s&'&I 1]( 1)s g(JA iLSOX)
1

os 8id s~(8,)d,'x(g)

x (pion propagator)
«27I

"0 dy, e '"~i(sN scattering amplitude) p, . (2.12)

This formula can be written in a different but equivalent form by using /= 5+ 8, (see Fig. 5), dos„(g)
=+~dos„(5)dpi(8, ), and the Clebsch-Gordan series for the product d~v„(8,)d~s~(8, ). One finds that

Ilies = ' [(2L+ 1)(2S+1)]'i'—.[gs(s,)e" sI'& —1](-1) Q(JMIILS M —g P)
8sWs, x/2 1

22

«+1 «27I

x i dcos8, dos„(5)de»(8, )(pion propagator) ' dy, e '"~i(sN scattering amplitude)~, . (2.13)
kp

We see that the simple behavior of the Deck-model amplitude, in particular the way in which the mm

scattering factors off, has reduced the number of integrals which must be performed to two. Further-
more, the assumptions we have made about using on-shell mn and mN scattering amplitudes with only he-
licity-zero couplings for the exchanged Reggeized pion have resulted in the dependence on y, being entirely
in the wN scattering amplitude. These simplifications make the numerical calculation of (2.12) or (2.13)
quite feasible.

The first part of our calculation consists of numerical evaluation of the formula (2.12) and construction
of a large table of answers.

B. Cross Sections

In order to calculate cross sections from the partial-wave amplitudes we must reassemble the partial-
wave series and perform the Bose symmetrization (w, s, ). It seems easiest to work with the helicity
amplitudes given by (2.3), (2.5). We thus find for the complete Bose-symmetrized matrix element

2m+1 &/&

T,.= p 8, D'„*,(n, p, y) ff,"„(s„s,)+g (-1)"d'„(8»)f,'"~,(s„s,)
J'NP X

(2.14)



3900 ASCOI I, JONES, W'E INSTEIN, AND Vf YI 0, JB.

where the helicity amplitudes are given in terms
of the L,S amplitudes by

2L+ 1 x/2
fp„(s„s,)=QE,'", „(s,)( (Jx~l.sox)

L$

(2.15)

21.+ 1 ~/2
f,,'"„(s„s)=gE'", „(s)(2 I (zv~lsov)

LS

2S+1 "x d,',(y,). (2.16)

(Here we suppress the other arguments of E~~~

for convenience. )
The geometrical quantities are indicated in the

"velocity diagram" of Fig. 6. The angle 8» is
measured in the three-pion center-of-mass frame,
y, is measured in the dipion w, n3 cqnter-of-mass
frame, and X, is measured in the dipion m, n3 cen-
ter-of-mass frame. It is easy to understand the
factors (-I)"d~~,(e») in (2.14) which arise when

one interchanges the two particles w, and m, .
Suppose for example that &=P =y =0. Then the
particles described by the first term in the square
bracket of (2.14) are in the standard reference
configuration, as described after Eq. (2.3), with
particle ~, moving in the -z direction. After the
interchange, particle n, is moving in the -z direc-
tion. This latter configuration is obtained from
the standard configuration by a rotation through
180' about the z axis followed by a rotation through.
a positive angle Oy2 about the p axis.

We can now proceed to the calculation of the
cross section for n P- m n'w p using the relation
between the invariant matrix element T and the

FIG. 6. Mnemonic for the, angles &i ~2 012 ~

angle between p2-p3 and p& in the rest frame of p2+ p3,
gz. is the angle between p3 —p~ and p2 in the rest frame
of pf + p3 0~2 is the angle between p& and p2 in the three-
pion rest frame.

8 matrix:

6=i(»)'5'(P +P -P -P, -P. -P.)
T

(2'z„z,z,z,z,z,)"' ' (2.1'I)

and the expression for four-body phase space:

(p +p p p p p ) z z zD l 2 3

2m
— da dcosP dy ds, ds, dt . (2.18)

dW

8p„b mp

Using the orthogonality properties of the

D„q(n, P, y) it is trivial to integrate over the exter-
nal angles z, P, y. %'e find that

(
~8

/ M M 1 l 2 f& P&( 1& 2)+g( ) dx~(ex )fu2, pa( 2P 1) ~

lab P ' gyp' pg V

(2.19)

Here the 2! is the usual factor which arises when we have two identical particles. In (2.19) the noninter-
ference of states with different JMA. follows from the orthogonality of the W'igner D~~& functions. The non-
interference of states with different parity follows, after summation over +X, from the parity identity

f ~ p,(s„s,) =P(-I)' " 'ffp, (s„s,), (2.20)

which can be derived, for example, from (2.15).
To proceed further with the integration over the Dalitz plot in (2.19) we substitute the series (2.15) and

(2.16) expressing the helicity amplitudes in terms of IS amplitudes. The integration over s, can then be
transformed to an angular integration over y„, using the kinematic relation

82 = 2(W + 37PI ~ —s~) + 2pgqg ~ cos)(~,
VSi

where P, is the relative momentum in the pion 1+dipion 23 system:

p, = ([(w-m„)'- s, ][(w+ m, )' —s, ]P~',1

(2.21)

(2.22)

and q, is the relative momentum in the dipion 23 system:
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q, = —,'(s, —4m„')'~'. (2.23)

There are two kinds of terms in (2.19), the direct and the cross terms. Using the orthogonality proper-
ties of the d „,(cosx, ) and the orthogonality relation (2.11) the direct terms are easily reduced to single
integ rais:

~(w-m„)2

I.S (2mvf) 2

In a similar way the cross term can be reduced to

g ', ds, ds, I f«P~~, (s» s,)I'=g ds, ds, g(-1)"d«,(8») f~«"~~,(s» s,)
V

2P~ei@' mI- I &z, s,po(sz) I ~

yS~
(2.24)

2Reg ', ds, ds, f~"v~ (s„s,}g(-l)'d ~«„( 8»)f«"P*(s„s,)

~(w-~„)~ 2P q ~ ~+~

LaSa LbSb ~ (2m )2
'

1 - -1

(2.25}

where

Z.,(1, 2) = g C(J, L., S„v.)C(J, L&, S&, v&)

51=u(p~)[8 —zy a(q+pz)$]u(ps)

=u(p, )[+-zr pp]u(p ) (2.28)
Vg Vb

&&(-1)"'d':.(X )d'. ..(&z.)d",0(X.)

(2.26)

C(J, L, S, v) =
1

(JvILSOv).(2L+1)(2S+1) '~2

(2.27}
%'e note the presence of nonvanishing interference
terms between states with different I.S but the
same JMP in the cross terms (2.25).

The results for individual angular momentum
states given in Sec. III were calculated numerically
using the above formulas. It is not feasible to
calculate in this way the total cross section as the
sum over all angular momentum components.
This is so because the Deck model yields a small
but non-negligible tail of states with large I.. Con-
sequently such total cross sections were calculated
with a Monte Carlo method —the same method as
used in paper II, except here with the two-diagram
model.

C. Nuclear Helicity Amplitudes

There are a number of interesting matters to
discuss under this heading. Most of these have
been left to Sec. V of the paper. Here we merely
list the somewhat inelegant formulas actually used
in the numerical computation. As discussed in the
Introduction, the mN 5 and amplitudes are calcu-
lated from either the phase shifts or the Barger-
Phillips formulas, depending on the energy. In
terms of these the invariant mN scattering ampli-
tude is given by

2(X, -5l, ) = -(XS+ 1'L,e)sin-,'(e —&)

(2.29}

—VpzS [sin 2(6 + $)cos &z

-cos-, (e+ ()sin8, cosy, ],

. (5l+~ —5l ) = UPz(B sing(t —$)sin &zslny~ ~2s

—.(5l, +51,) = Vp,(B cos-,'(e —&)sin &,siny„
2i

X= [(Z, + m, )(E,+m,)]"+ [(Z, -m, )(Z, -m,)]",
1'= [(Za+ m, )(Z~ m+, )]'~' —[(Zs —mz, )(Z~ —m, )]'~',

U=[(Zzz+m, )(ZD-m, )]'~'+[(Ss -m, )(Zs+m, )1'~',

v = [(z + m, )(z —m )]'~'- [(z —m )(z + m ) I'~'.

The angles e and ( give the orientation of pD and

p~ with respect to the negative z axis as shown in

when the 4-momentum Q of the virtual exchanged
pion is eliminated in favor of the 4-momentum p,
of the final pion, using momentum conservation
and the properties of the Dirac equation. The he-
licity amplitudes are evaluated from (2.28}.

We work in the same center-of-mass system for
the final three pions as used in the discussion
leading to (2.12). The following combinations of
helicity amplitudes are even or odd in y,:

2(X„+% ) = (1'6+XE,(S)cosg(e —&)

—Up,S [cos-,(e+ $)cos 8,

+ sin-,'(e + $)sin&, cosy, ],
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Fig. 4(b).
The kinematic formulas are a little strange in

the three-pion rest frame. We list here those for-
mulas needed for the computation. In terms of the
invariants s=(P„+PR)', t=(PR —PD)', W'
= (p, + p, + p, )', and s, = (p, + p, )' we find that

W'+m, '- t
2W

some information on the relative size of the ampli-
tudes corresponding to different nucleon helicity
states at large s. For large s the pion nucleon
scattering will be dominated by Pomeranchon ex-
change, and the asymptotic energy dependence of
the 8 and amplitudes at t=0 is Q-s,~, S-const.
Expanding (2.29), (2.30) for large s we then find
at t=0 that

s —W -mt,2 2

F.D

X„+X - s, X„-K - const „

X, -X,-S, X, +K,-l/R. (2.31)

EB =ED+ W -EA,

cos6 =PB PD PA

2PD PA

Actually mN scattering satisfies approximate s-
channel helicity conservation, ' which implies Q
-const instead of s„~. This leads to the revised
estimate for t = 0:

cos pgcose+ pA

PB

R" +m„- s,2 2

(2.30) X„+K - s, X„-X - const,

-X,-const, X, +K,—1/s.
(2.32)

s„~=rn +m~ + 2jEDE~

—2pD p, (case cos 8, + sine sin 8,cosy, ),
tR = m 22+ s, —2E„(W —E,) + 2P„P,cos 8, ,

v&, pAsin8,tan
(W —E,)PAcos 8, —P,E„

The center-of-mass frame scattering angle for the
mN scattering is

t —t„-m, '+ 2ZRZ,cos 8c.m. =

where QR, ER and Qv, E» are the center-of-mass
momentum and energy for, respectively, the final
real mN and the initial virtual mÃ:

+m 2-m2
»R ™w™P

q (
2 2)1/2

)1/2 ~ R
—

R ™2
1IN R ™0

q (E 2 t )1/2
v 2(s )1, 2 t v v R

7l'Pf

From all these formulas we see that, aside from
the explicit siny, and cosy, in (2.29), y, enters
only via cosy, in s,R. Therefore, from (2.29)
g„+% and X, -X,, are even in y„while X„
-K and %, +X, are odd in y, . It then follows
from (2.12) that the partial-wave amplitudes with
M = 0 corresponding to the helicity combinations
X„-X and X, +X, will vanish identically. For
the other helicity combinations corresponding to
X„+K and 5,+ -X, the M =0 partial-wave
amplitudes vanish when P=(-1)~. This follows
from (2.12) and the identities d, z(8) = (-1) d, q(8, ),
(2 —/ ~IS0 —z) =(—1)' '-'(JX(ISO/). We return
to a more meaningful discussion of these symme-
try relations in Sec. V.

We can also obtain from these explicit formulas

Substituting these results in (2.12) leads to the
same estimates for the relative size of the corre-
sponding partial-wave amplitudes.

III. NUMERICAL RESULTS

at'zs,„e
CC

m -tR (3.1)

to substitute in (2.12) or (2.13). Substituting from
(2.30) for s „and tR one obtains a complicated
formula which, because it has a pole just outside
the physical region, looks as though it contains
many angular momentum components. However,
it wa, s shown yea. rs ago by Stodolsky' that the
complications in (3.1) cancel each other. Because
of the rapid decrease with t of diffraction scatter-
ing it is reasonable to evaluate (3.1) in the forward
direction. Stodolsky applied the well-known for-
mula for t„;,to the production of the three-pion
system and also to the virtual pion-nucleon scat-
tering to obtain

)
m~(W —m „)

s

m, (m, ' —t„)
(3 2)

Thus, in the forward direction (3.1) reduces to

zsT- —2W'-m„' ' (3.3)

We first look at a simplified version of the Deck
model which is easier to understand than the gen-
eral case. If the mN scattering amplitude is ap-
proximated by a flat Pomeranchon with an expo-
nential residue function, and we use a non-Regge-
ized pion propagator, we find an amplitude

T = (pion propagator)(wN scattering amplitude)
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FIG. 8. Solid lines show cross-section contributions calculated with the formulas in the text. Points with error bars
are the corresponding outputs obtained with the program FIT, using Monte Carlo events as input.

t dependence in Fig. 9. This plot was obtained
from the Monte Carlo calculation and so contains
a summation over all angular momentum compo-
nents. Shown is do/dt as a function of t' = t dmin

for three separate mass bins in W. The normal-
ization was arbitrarily changed so that the curves
start from the same value at t' =0. We see that
the slope decreases and the shape changes some-
what as 5 increases. Similar effects are observed
in the individual angular momentum components
as calculated by the methods of Sec. II. In general
it is found that the slope decreases with increas-
ing W for each angular momentum component, but
not as much as indicated in Fig. 9 for the total.
(We speak here of the dominant M =0 partial-wave
amplitudes. The smaller M = 1 amplitudes vanish
at t' =0.) At the same time the slope for the large
magnitude low-L, components is greater than for
the large magnitude high-I. components. The
greater rate of decrease of the slope with W for

1 [g (s ) 2ihg (sg) 1 ]( 1)s
gg 2$

has been omitted. )

(3.4)

the total is then due to the gradual shift from lower
to higher L, with increasing g.

The cross sections discussed above are integrals
over the Dplitz plot of sums over helicity states of
bilinear combinations of amplitudes, as discussed
in Sec. II. To proceed further, in particular to
discuss the question of phases, we must examine
the individual amplitudes. These complex ampli-
tudes E~~~~ ~, as given by the formula (2.12) are
functions of s, t, W, and s, as well as the angular
momentum quantum numbers. As mentioned in
Sec. II the calculation proceeds by making a large
table of these amplitudes and then combining them
to obtain cross sections. Part of one "page" from
this large table is shown in Table I. (Actually in
the table the multiplicative factor
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In Table I we have s =30.9 GeV' corresponding .

to P»=16GeV, atypical t'=-0.05 GeV, 8'=1.1
GeV near the A, peak, and ~s, =0.820 GeV near
the p mass. The dependence on the angular mo-
mentum quantum numbers and nucleon helicity
indices is shown. As discussed at the end of Sec.
II the M=O amplitudes for J~=1,2', . . . are iden-
tically zero and these have been left out of the
table. The M=0 amplitudes for the nucleon helic-
ity combinations F„—F and F, + F, vanish
identically for all J~ and are so given in the table.

We see confirmation of the predictions made for
the relative sizes of the nucleon helicity combina-
tions at large s [Eq. (2.32)]. The helicity com-
bination F„+F is sufficiently dominant so tha
only it is kept in the cross-section calculations
described above. As predicted at the beginning
of this section, L=O and M =0 (when allowed)
dominate and amplitudes decrease with increasing
I. and M. Especially for the dominant amplitudes,
the M =0 component is usually much larger than
the M = 1 component. Further checking has shown
that amplitudes with M ~ 2 are negligible, and they
have been omitted from the cross-section calcula-
tions.

IO

IO

C
lO

L-
O
le

L-
O

10
b

I

.2
I I

.3
(Gev~)

.5 .6 .7

PIG. 9. Distribution of events in momentum transfer
to the nucleon, as a function of 3m mass. All curves have
been normalized to go through the same point at t' = 0.

TABLE I. Partial-wave amplitudes at P&b = 16GeV/c (s=30.9 GeV ), tzz= -0.05(GeV/c), 8'=1.1GeV, s& ——0.820 GeV.

Quantum numbers of
partial waves 2+--&, )

1—.(F+„+E +)2g

JPML S Magnitude' Phase Magnitude Phase Magnitude Phase Magnitude Phase

0 — 0 0 0
1 + 0 1 0
1 + 1 1 0
2 — 0 2 0
2 — 1 2 0
1 + 0 0 1
1 + 1 0 1
0 — 0 1 1
1 — 1 1 1
2 — 0 1 1

2 — 1 1 1
1 + 0 2 1
1 + 1 2 1
2 + 1 2 1

0 3 1
2 — 1 3 1
2 — 0 0 2
2 — 1 0 2
1 + 0 1 2
1 + 1 1 2

2 + 1 1 2
0 — 0 2 2
1 — 1 2 2
2 — 0 2 2
2 — 1 2 2

20.12
4.70
2.46
0.82
0.99

34.07
0.65
7.18
3.10
8.11

2.76
0.40
0.35
0.94
0.59
0.45

42.01
1.42

13.39
1.75

3.89
1.83
0.25
0.66
0.27

129'
46'

129'
76'

123'
129'

510
170'
129'

76'

129'
14'
630

126'
—130'

14'
129'
51'

158'
129'

129'
165'
63'

106'
143'

1.36
0.32
0.11
0.45
0.19
2.30
0.03
0.09
0.14
0.70

0.12
0.48
0.21
0.16
0.47
0.34
2.85
0.06
0.33
0.09

0.18
0.48
0.32
0.47
0.10

66'
740
6'

101'
69'
67'

178'
50

8'
69'

18'
76'
99
71
89'
81'
67'

177'
43'
33

90

100'
93'
72
92'

0
0
0.09
0
0.05
0
0.02
0
0.11
0

0.10
0
0.03
0.04
0
0.03
0
0.05
0
0.07

0.14
0
0.03
0
0.01

—163'

—174'

16'

—164'

—163'

2
—172

17

16'

—165'

—164

—101'

0
.0
0.01
0
0.01
0
0.00
0
0.02
0

0.02
0
0.00
0.01
0
0.00
0
0.01
0
0.01

0.02
0
0.00
0
0

170

0

—164'

18o

178'
80

—163

—164'

150

16'

175'

79'

Magnitudes are expressed in arbitrary units. Also, the 7r7L. scattering-amplitude factor has been removed from each
partial wave.
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In Figs. 10, 11, 12, and 13 we attempt to present
some of the information contained in our large
table on the variation with 8' and s, of certain par-
tial-wave amplitudes at fixed s and t'. These are
Argand plots of the real vs the imaginary parts of
the dominant nuclear helicity amplitude I„++
The solid curves show. the variation of the complex

amplitude with 5 at fixed s, . The dashed curves
in Figs. 10 and 11 show the variation of the ampli-
tude with s, at fixed g. In Figs. 10 and 11 the
values chosen for s, correspond to the p mass and
50 MeV on either side of it and the f mass and 50
MeV on either side of it. In examining these
curves, we must keep in mind that the variation

I/2
=.TI5GeV

I/2

I/2 =.8 I 5
I

—44

—40
—38

52

50

28

26

—24
I

22 LL

+
—2O

— 16

— 14

—12

—IO

I I I I I I I I I I I I I

-26 -24 -22 -20 -IB -16 -l4 -12 -10 -8 -6 -4 -2

Re (F+++F ) (arbitrary units)

FIG. 10. Argand diagram for the 1+s partial wave, as a function of s&. Phb= 16 GeV, t'= -0.05 GeV, M= 0.
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due to the dipion resonances, contained in the
factors (3.4), has been omitted.

In certain cases, Figs. 11 and 12, the Argand
plot vs TV is reminiscent of the corresponding
plot for a two-body resonance. This type of vari-
ation seems to occur only for L, &0; a barrier
penetration factor (-p ) which vanishes for P-0
seems necessary in order to pull the curve
around into a circle. For a case with L, =O, such
as Fig. 10, the curve in flattened out and the phase
variation is much less. In Fig. 13 we have the
opposite extreme —the circle is distorted into a
spike. The origin of these (sometime) circles in
the Argand plot is the same as the origin of the
famous Schmid circles" for Reggeized two-body
amplitudes, namely, the variation of the Regge
phase factor exp[-i-,'ma(t~) j incorporated in the
Reggeized Deck model studied here [see Eq. (1.2)].
For the A, state 1's(p7r) shown in Fig. 10 there is
not very much phase variation, i.e., the A, does
not behave like an ordinary resonant state, in
agreement4th the conclusions reached in fitting

I
'd ( p 7r), M = O

I/2
= .765 Gev

1.6l:

l.7

Re (F+++ F—)

(orbitrory units)

Im(F, +F )

(orbitr ory units)

W= I.4IGeV
3i 22

I I I

-IO -6 -2
—-2

,Ol

I,9i

Irn (F+++F }

(arb itrary units)

p(e7r'}, M= 0 FIG. 12. Argand diagram for the 1+d partial wave, at
sg =0.765 GeV. Phb ——16 GeV, t'= -0.05 GeV, M= 0.

l.2l

—l2
N'= l.bi QeV

I.4l —IO

Vl

8 =
C

7 U

JD

6—
I

LL

5 +

.9I

I

-2 0 I 2
Re(F+++ F }(arbitrary units)

I I

-9 -8
I I I I I I I

-7 -6 -5 -4 -3 -2 -I

Re (F„+F )(orbitrary units)

FIG. 11. Argand diagram for the 1+p partial wave, as
a function of s~. P~,b= 16 GeV, t' = -0.05 GeV, M= 0.

FIG. 13. Argand diagram for the 2+0 partial wave, at
s~ = 0.765 GeV. P&,b= 16 GeV, t' = -0.05 GeV, M = 1.
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the experimental data. The I'p(ew) and I'd(pv)
states plotted in Figs. 11 and 12 have the type
of behavior usually associated with a very broad
resonance but the magnitudes of these amplitudes
are very tiny compared to the big amplitudes such
as 1's(pw). (See Fig. 8.)

This phase information is presented differently
in Figs. 14 and 15. In Fig. 14 we show the absolute
phases of various partiaL-wave amplitudes (sans
the mm scattering amplitude) as a function of W
for P„b=16 QeV, t'=-0.05 QeV, and s,'~'=-1.269
GeV=the f mass for the state 2 s(fv), and s, ' '
=0.765 QeV = the p mass for the other cases.
There would seem to be no evidence for resonant
phase variation in Fig. 14.

In Fig. 15 the solid curves are differences be-
tween the absolute phases of Fig. 14. The points
with error bars are the result of applying the
program FIT to Monte Carlo events generated
according to the two-diagram Deck model. The
solid curves were calculated for a definite t'—
= -0.05 QeV and a definite s,' '=0.765 QeV or
1.269 QeV. The results from FIT represent, of
course, a complicated average over t' and s,. We
return to a comparison of the two types of calcula-
tion in Sec. IV.

IV. COMPARISON KITH Fn'

In the program PIT the reaction (1.1) is treated
as a two-stage process, the production of a state
with quantum numbers JMP followed by decay of
this state. Thus the distribution in angles and
energies of the three pions on the right-hand side
of (1.1) is given by a formula of the type

~J'bl'P'pZ 'N'P ', SNP +0hfP t'
J'NP J'&'P '

where p~ ~ p. ~~p is a density matrix describing
the production of the three-pion state with quantum
numbers JMI'.

FIT makes some plausible but not completely
general assumptions about the matrix element
Kz~p for the dec'ay of the state with quantum num-
bers JMP. Thus it is assumed that 3&,„p can be
written in a suitably Bose-symmetrized factoriz-
able product form:

m,„,=P C,', (W) fe.„(s„W)Z,'",(n„n, )

+6L„(s„W)Z,"",(n„n,)].

Here C~,, (W) is independent of M and is a. f~~ctio~

500

I/2
sI =.7e~ o I.Ze9 GeV

U
l80—

0 p{p7r
l40—

I's{p7r)

IOO-0 s{~

2 p{p7r

0 s{evr)
I+s {p7r }-,

I+p{e7r} &

-20— X

I

I.Q 2.0

w {Gev)

FIG. 14. Absolute phase of the important partial-wave amplitudes, as a function of 3~ mass, Only the large ampli-
tude E+++E is plotted. The dipion mass was set at 0.765 GeV for waves labeled px and em, and 1.269 GeV for waves
labeled f'Il'e P)gb 16 GeVy 8 0 o05 GeVo



PARTIA L-"II%I'A VE ANALYSIS OF THE DECK AMPLITUDE FOR. . . 3909

pIq 8

6t~q (s„W)—
R —Sl Z R

(4.3)

only of the three-pion invariant mass ~;
6t~z(s„W) is independent of J-and M and is a func-
tion of W and the dipion mass v s, . As written in
Eg. (4.2), it is assumed that the state with quantum
numbers JMP decays coherently (like a resonant
state with these quantum numbers). This assump-
tion can be eliminated (at the expense of greatly
increasing the number of parameters to be deter-
mined by the fit) by treating the states with differ-
ent L, S separately, i.e., by transferring the g~~
in (4.2) to (4.1) and using an enlarged density ma-
trlx ps~pl. s, z'~'I 'I. 's"

In practice, I. and S are restricted to low values
(S=0, 1, 2; L= 0, I, 2, 3) and a Breit-Wigner form
with appropriate threshold factors is used for
6t~q(s~, W):

q
28+ 1

(4.4)

Here p, and q, are given by (2.22) and (2.23), and

~~ and I ~ are the mass and width of one or the
other of the three well-known dipion resonances
(see Table II). q„ in (4.4) is q, [Eg. (2.23) j evalu-
ated at 8, =MR'.

The formula (4.3) corresponds to a cascade de-
cay process. The system first decays into a pion
plus a dipion resonance of spin S. The Breit-
Nigner denominator describes the propagation
of the resonant state. Finally the dipion reso-
nance decays into two pions. The threshold fac-
tors in the numerator are the simplest possible
approximations to the matrix elements for the
successive two-particle decay processes.

It is clear that these assumptions of the program

120 Ii.

80 p-

40-
Q—

a

-40'

4 (I's)-4{0s) ft&(l s)-~t)'{2 p)

I20—

80-
4Q—

4(2 s)-4'{0 s) 4&(2 s)-4 (I's)
ft)(2 s)-ft)(l'p)

I 1

LQ
O

UJ
l20—

4(2 s)-4 {2 p) 4(2 s)-4 (Yd)

~f

~0.8
t I

l,2
I I

I.6 20
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40

I.2 I.6 2Q 08
I I

l.2 2.0

w (Gev)

FIG. 3.5. Relative phases of the partial waves important in A& and A3 regions. Solid lines indicate calculated values;
points with error bars were obtained by applying the program Fn to a sample of Monte Carlo events.
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TABLE II. Masses and widths used to parametrize x7r

resonances in the program r'&. .

p

f

0.765 GeV

0.765

1.26g

0.400 GeV

0.135

0.154

FIT are not completely general, especially since
in practice one severely restricts the number of
allowed states in order to deal with a reasonable
number of parameters Cz~(W) and pg ~ p g„p to
be determined by the fitting procedure. It is
equally clear that the Deck amplitude will not, in

general, produce JMP states which decay in the
fashion given by (4.2). In this section we (a) ex-
amine the partial-wave amplitudes calculated
from the Deck model to see to what; extent they
have the properties assumed in Eq. (4.2), and (b)
discuss the application of FIT to a sample of Monte
Carlo events generated from the Deck amplitude
to see whether the maximum-likelihood method
can extract the correct partial-wave amplitudes
in spite of the differences in form. We find that
FIT does quite a good job, considering t~e differ-
ences between the Deck model and the assumed
form.

A. Form of Amplitudes

From Eqs. (4.2) and (4.3) we see that as applied
to the Deck model FIT in effect approximates nw

scattering by the form

and that after this "mm amplitude" is removed, the
only dependence of the partial waves on dipion
mass s, lies in the threshold factor P, . Plots of
our amplitudes for fixed g as s, varies show that
both the magnitude and the phase vary as s, varies,
and the magnitude changes like P,.~ only ext emely
near the threshold values. Hence the phases a.nd

magnitudes obtained for C~~~(W) by fitting all
events in one W bin are actually averages over s,
of numbers which do vary with s, .

How important is this variations Most events
will have Ms, near the p, e, or f mass; thus the
neglected variation will be se'. ious only if the am-
plitudes vary rapidly near these points. In Sec.
III, we show Argand plots of some of the interest-
ing amplitudes, with v s, fixed at values right on
resonance and +50 MeV from the resonance (Figs.

10 and 11). It can be seen that the variation
with vs, is not rapid near these points and the
averaging will not pose a great problem.

b.i;:xce no experimental information is available
about the nucleon spin structure in this amplitude,
FIT neglects nucleon spin (and therefore is effec-
tively using a spin-averaged amplitude in

p~» ~ „p ). This reduces the number of param-
eters, but it has the effect of assuming that the
nucleon spin structure of states with identical
JMP, but different L, and 8, is the same. A sam-
pling of values for the M=0 amplitudes is enough
to indicate that this assumption is not valid for
the Deck model. However, as long as we are in a
region where only one of the L,, S states is domi-
nant for a given J, M, P, this limitation of the
parameters in FIT should probably not matter
much. The determination of the sizes of the small
states is not expected to be as accurate as that
of the l.arge states; this nucleon spin dependence
will give one more reason for uncertainty in the
small states.

Finally, the form of (4.2) indicates that the ratio
of partial-wave amplitudes with the same JMP
and different I. and 8 should not depend on M.
Again, this is not true in the Deck model. How-
ever, the dominance of M=O in the model means
that this defect of FIT should just show up in the
sizes of the small states.

We conclude that the simple form of the gross
features of the Deck model (dominance of 1.=0
and M =0) should minimize difficulties due to dif-
ferences from the form assumed in FIT. However,
the facts that (1) the c effect in wm scattering does
not look exactly like a Breit-Wigner distribution
at 765 MeV, (2) the program must average over
s„and (3) the Deck model has a large tail of high-
L, partial waves which are not included in the fit-
ting hypothesis, indicate that a fair amount of
deviation between FIT and the calculated phases
and magnitudes can be expected.

8. Comparison of Answers

In Figs. 8 and 15 we display the magnitudes and
phases calculated by FIT as points with e;.ror bars,
on the same plot as the curves found by explicit
calculation with the formulas of Sec. II.

FIT does a fairly good job of extracting the total
amounts of each JP state for the 0, 1', and 2
states. The fitted values for the 1' and 2 states
are high at large g; this is to be expected because
at large W many values of J are important in the
Deck amplitude but FIT must absorb all events
into the hypotheses available. The totals for the
3' state are uniformly high; again this is probably
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because this state is acting as a "garbage col-
lector. "

If we turn our attention to the relative phases
between the 1's state and other states that are
large in the A, region, we see that FIT does a
creditable job in the region up to 9 = 1.4 QeV, for
all three states. It does an excellent job at all
W for the 1's —2 P phase difference; both states
in this difference are pm states. The discrepancies
between FIT and the calculated values for y„,
—y, , and y,+, —y,,~

when S' & 1.4 QeV may there-
fore be attributed to treatment of the cn states
in 0 s and 1'p. This is probably caused by FIT's
averaging over s„and the fact that there is a nm

s-wave effect near the f mass which will start
contributing to the 37T spectrum near 9 = 1.4 QeV.

If we attribute the discrepancies between FIT and

the calculation for y, -, —y, , and y, , —yy+p to this
same effect, the remaining three phases in the A.,
region involve only fv and pv states. Both of these
states are "cleaner" than the en state, as the p
and f a.re the only well-documented J =1 and 2 vv
resonances. The agreement between FIT and the
calculation is quite reasonable for these states.
The fact that in all three cases the FIT phases are
slightly high at low R' and slightly low at high 5"
suggests that there are systematic effects due to
the averaging by FIT in these cases also, but that
they are not so severe.

These results give us (limited) confidence that
the relative phases important for interpretation of
the A, and A, effects can be extracted from data
by FIT even for an amplitude as different from
cascade decay as the one provided by Deck.

The magnitudes of particular L, S states are also
reproduced reasonably well except for the 1's(pv)
state near the A, peak. Here FIT produced a
flatter peak than the calculation. To some extent
this difficulty may be attributed to a remarkable
similarity between the I's(pw) and I'p(ew) states
at low 5', ' which makes it hard for FIT to distin-
guish events belonging to the two states if g & 1.2
QeV. However, this cannot completely account
for the flatness of the peak, for attempts to force
FIT to follow the calculated curve decrease the
likelihood by a substantial amount.

We conclude that FIT does a creditable job, con-
sidering the many differences between the form
of the Deck model and the form assumed by FIT.
Some of these differences could be removed by
inserting actual mm scattering amplitudes as part
of the functions 6I~~(s„W), and modifications of
this sort might be considered for use of FIT in &he

future. However, we wanted to use exactly the
same form of the program that has been used in
fitting the data to facilitate comparison of the
results.

V. SYMMETRY PROPERTIES OF DECK
PARTIAL-WAVE AMPLITUDES

A. Consequences of Parity Invariance for nN~mmN

Helicity states have simple properties under
reflection, or parity symmetry P." In the rest
frame of the 3m system, the incoming and outgoing
nucleons lie in the xz plane. It is thus convenient
to use reflection in this plane, Y =e ' ~~/, instead
of the full parity operation. Using the relation

valid for a particle moving in the xz plane, where
J is the spin of the particle and g is its parity, we
may construct states of definite P for nucleons.
The states (1/v 2 )(l —,'-,') ail-,'-2)) are eigenstates
of T with eigenvalues wi, respectively. The con-
jugate states (1/v2 )((-,' l

vi(-,' —,'l) likewise have
=+i. The pion is an eigenstate of Y with eigen-

value -1. For simplicity in what follows, we will
abbreviate the nucleon states as (1/v2)(l+) ail-)),
suppressing the explicit S= —,'.

Because the strong interactions conserve parity,
matrix elements of the interaction taken between
nucleon states of definite 7 mill vanish unless the
three pions produced are also in an eigenstate of
F with the proper eigenvalue. In particular the 3m

states produced by the amplitudes

and

must be eigenstates of 7 with p= -1; the 3n states
produced by the amplitudes

and

must be eigenstates of 7 with g=+1. Adding and
subtracting to obtain the amplitudes used in Sec.
II, we find that ,'(T„+T ) and —,'—(T,—T, ) produce
states of negative Y. Likewise —,'(T„—T ) and

,'(T, + T,) pro—duce states of positive 1'.
The three-pion states of definite P are best

catalogued using their quantum numbers J, M,
and P. Since YlJM) =P(-1)~ "lJ M), the combin-
ations lJM)+ P(-1)~ ~lJ -M ) will be eigenstates of
P with &=+1, respectively. These will be pro-
duced in the amplitudes ~(T„—T ) and

2(T, + T, ) (for Y„=+1), and ,'(T„+T ) and—
—,'(T, —T, ) (for Y„=—1).

A considerable simplification results if I=0,
for in that case the state lJM) is itself an eigen-
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state of I' with eigenvalue P(-1)~. Thu.; ,'(T-
+T ) and —,(T, —T, ) will produce 3» states with
M =0 only if P(-1)~ = -1; and ,(T—„—T ) and

z(T, + T, ) will produce states with M =0 only if
P(—1)~ =+ 1.

Corresponding results of parity invariance for
our partial-wave amplitudes may be derived by
examining the 2-3 reaction m N-(m»'), w N,
where the dipion system is treated as a particle
with mass Ws, and spin $. In general, reactions
of this type will have 4(2S+ 1) helicity amplitudes;
in the 3w rest frame these amplitudes depend on
the variables s, t, W, s„and the angles 8, and y,
of the dipion produced. We use the notation
fq q, , &,,(s, f, W, s„8„9&,) where X, is the helicity of the
incident nucleon, X, is the helicity of the outgoing
nucleon, and X is the helicity of the outgoing m'm

system.
Invariance under Y now tells us that

f~~ . ~ (s, t~ W~ s„8gl g 1)

( I)s-) ( I)xg-x&

f & g . g (s, t, W, s]p 8$, pg).

Since the n'» system must have q„=(-1)z, we
arrive at the general parity relation

f&&, .~ (S, f~ W~ Sli 81~ 9 y)

1)x

xf q q, q (s, f, W, s„8„—y, ) .

(5.2)

We decompose our 2-3 amplitude into 2-2 par-
tial waves for production of spin-J 3w states with
spin projection M along the incident beam by Isee
Eq. (2.6)]

(5.3)

The combinations fez .&, a f», , . „ then have par-
tial-wave amplitudes E~& „,z, + E~& „„,which

2 1represent contributions to the 2- 2 process
mN- (3w)~~N:

(5.4)

The general parity symmetry stated in Eq. (5.2)
tells us that

g JN ( 1)J37f -L -S -Af + Xy-&Py J-N
LS; X&g& z, s

P ( I)rg„-v( 1)x~-z~Pz-u3' 2 1

Hence
(5.5)

PLs;&, x +( 1) PLs;-x

—+L~ . X~X~ 7 P3r( —1) ELs; &~Kg

to a multiplicative phase factor (since they are
eigenstates of J,). Hence the helicity combinations
(I/&2)(l+) +i I-)) are eigenstates of o, with eigen-
values +1.

This fact leads to a great simplification for
Lorentz transformations of the system which keep
the nucleon momentum vectors in the xz plane.
Such Lorentz transformations act on the nucleon
spin like rotations about the y axis, I,X)- e '~&~

x I-,'X). Hence our amplitudes producing 3» states
with T = -1 transform to

and the f„,,+f, . and f„„. f& , amplitudes —coup. le
to three-pion states IJM) —P„(-1)~""IJ -M),
whereas the f&„., -f&, . and f&,. +f&, , amplitudes
couple to three pion s-tates

I
JM)+ P, „(-1)~3"~

&& IJ -M ) as demonstrated in a different manner
above.

For the nucleons, states of definite p are states
with definite spin projection along the y axis.
This may be seen simply by constructing states
(I/v 2 )(,';) of definite J, from states of definite z
component of spin. If we rotate about the y axis
from the z direction to the nucleon direction these
states are acted upon by e ' & ~, which just leads

(5.6)

and our amplitudes producing 3w states with F=+ 1
transform to

(5.7)

We see that no matter what the I orentz transfor-
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gso;, ; = Q d l,"(&1)dl/'(&2»No (5.9)

where
+ t(s+ t —m, ' —m „')—2m, '(t —m, '+ W ')

cos$ =
2 2W~t(t 4m 2)1/2(E 2 m 2)1/2

t(s —W'-- m, ') —2m, '(t —m„'+ W')
2wwt(t —4m ')'/'(E ' —m ')'"

with Es and Eo defined in Eq. (2.30).
Writing out Eq. (5.9) and using the relations

between d functions, we find that

fN, , O, +fN-;O- =(fVO;.,+fNO: --)C»'(&1 —&2)

+ (f„', , f„', ,)si n(g2, -—],) &

(5.10a)

fN, ,.O fN, O, = -(fsO;„—+fNO; )»n'«1 —&2)--
+(fNO;. —fs'O;-. o «1 -— 2

(5.10b)

f„,,„f„,, =(f'„, -—f'. )cos2(k, +(,)
—(f„'o., +f»Io. ,)sin 2'(&,+ &2),

(5.11a)

f&&+;o-+f&&-;2+
=

(f&&o; f2&o;--)sln2(&1+&2)

+(f„'o , +fso. ,)cos2($, +. ]2),
(5.11b)

mation in the xz plane, there will be two classes
of amplitudes which mix among themselves but
not with members of the other class. Using he-
licity-labeled amplitudes, we see that T„+T
and T, —T, will mix with an angle;($, —$2),
whereas T„—T and T, + T, will mix with an
angle —2'($1+ g2). As it is convenient to transform
from the Sn rest frame to the lab frame, to the
t-channel center-of-mass frame, and to the s-
channel center-of-mass frame (all of which involve
spin rotation around the y axis), we will find this
useful.

As an example of this, let us relate our ampli-
tudes, calculated in the s-channel rest frame of
the Sw system, to those in the t-channel center-of-
mass for f7'-(3s)w. We begin by using the argu-
ments of Trueman and Wick" to relate our s-chan-
nel 3w rest-frame amplitudes f„.ol, to the corre-
sponding t-channel 3m rest-frame amplitudes
gl&o. „„.We find (up to an over-all phase) that

fNO;OX(12 P&2& flP1) @NO;2 X(I2& I P1&2& P])( '8),
Next we must rotate the nucleon spins from the 3m

rest frame to the t-channel center-of-mass rest
frame. The Sm spin projection M will not change
since it is along the same direction (the pion direc-
tion) in each case.

which shows explicitly that the i++)+i- -) and
i+-)- i-+) combinations are rotated by —,((1—(2),
while the i++)-i- -) and i+ -)+i-+) combinations
are rotated by —2'($, + $2).

B. Simplifications in Our Model Due to the Form
of Couplings Chosen for the Exchanged Pion

Although we have Reggeized the exchanged pion,
we have kept the couplings the same as those for
an elementary pion. This places constraints on
the form of the amplitude, because the spin-zero
elementary pion has only one form of coupling.
These constraints provide us with a model with
some special properties. In particular, (i) ampli-
tudes for production of Sw states with Y=+1 are odd
or even, respectively, under the replacement y- -&Il, and (ii) only natural parity is exchanged in
the Eg vertex in the t channel. This reduces the
number of independent amplitudes. We will con-
sider (i) and (ii) in turn.

Evenness or Oddness in y

Because our dipion is produced from an incident
pion beam with an exchange coupling like an ele-
mentary pion, the dipion has spin component zero
along the incident beam in the dipion rest frame.
The various amounts of different helicities A are
produced as we see for example from Eq. (2.12)
by a rotation into the 3m rest frame, do„(g) with
tang given by Eq. (2.30). Notice that rotation
through g produces no cp dependence. Hence the
dependence on y of the amplitudes in our model
is not connected with the dipion end of the graph;
it is all at the wN scattering end of the graph and
is not related to the dipion helicity. In effect,
therefore, the helicity amplitudes take the form

fly .1 (s, tN„& W, s„81,&I&,)

=do, l(()gl21, (s, tNN, W, s» 8» cp, ) .

This follows directly from substitution of Eq. (2.8)
into Eq. (2.7). Our parity relation Eq. (5.2) then
leads to

gl 1 ( & NN& W& 1& 81& Pl)

=(—1) 2 lg 1 1 (s, tN„, W, sl, 81, -(pl) .

Hence we finally arrive at

fly .1 (s, t, W, sl, 81, 911)

= (-1) fl „.1 (s, t, W, s„&„-yl),

(5.12)

an equation special to our model.
The combinations f&„.,(8„y,) +fl . (8„yl) and
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f~, (.g„y,) —f~ .,(g„y,) are thus even in y, andf,;,(8 V)-f ; (—8-m) andf ', (8 -V')
+fz .,(g„y,) are odd in y, as was shown in Sec.
II|.using the explicit form of the amplitude with
the mm scattering removed.

t-Channel Quantum Numbers

By assuming that the exchanged pion couples like
an elementary pion, we were able to put in on-
shell wN scattering as one vertex. Pion-nucleon
scattering has only natural parity exchange
[P,„=(-1) '"]; hence our model will exhibit some
additional symmetries.

The t-channel (w, Sm) states with total spin J„,
Sm spin projection M, and parity P,„=(-1)~x,xare
~J.~M) —P(-1)~~J,„-M). Hence our t-channel par-
tial-wave amplitudes obey the relation

TNox, x,(t), = -P(-I)'T'Ão, .x,x,(t) (5»)
Likewise, eigenstates of parity at the NN vertex
with P,„=(-1)'x are ~J.x+-,' a-,')+ ~J,„——,'+-,'), so we
obtain an additional relation for the partial-wave
amplitudes:

(5.14)

These relations between partial waves make cer-
tain amplitudes vanish. From Eq. (5.13) we see
that Too'."„,~ =0 if P = (-1)'. In subsection A of this
section we demonstrated that the Sm rest-frame
amplitudes T„—T and T,+T, will produce 3m

states with M=O only if P=(-1)~. Hence T„—T
and T,+ T, will not contribute to any M =0 states
in the model.

The other relation, Eq. (5.14), leads to

f&o ~ + f~o. =g (2 jex+ 1)(T&o".+++ T&o*. )do&"'(8&)

2+ (2J..+1)T„",".„d,'„'"(8,)

0, (5.15)

fvo;+ +fMo; -+ = Q(2 J-~x + ) [Teo"+-d xu (gt)

+ T„,'". ,d,'„"(e,)]

=g(2J..+ )T„'., [d,'„'"(e,)

~ d","„(8,)].

—f'„,. „which we saw previously produce Sw

states of T=-1.
The results derived here may be considered a

special case of a general "theorem. " In the case
of a t-channel exchange of definite naturality o
= P,„(-1)~'x for the t-channel reaction 3+4- 2+ 1,
the combination of amplitudes f~~ ~ .„~
+ortf~z „.&, z always dominates over f~~ ~ .„~

ortf-~z, ~, „,.„, by a power of cos g„and more
specifically

gt gtJ X1X2,X3X4 +OJ X1X2,.-X3-&4
gt yt

~1&2, &3&4 ~ ~1&2.-~3-~4 t

(x, —x,)(x, —x,)
cos Gt

(5.17)

Here 7) is defined by the equation Y~A, X,)
=q~-X, —X,), or q=rl, q, (-l)~& ~&'~4'"&. The proof
of this well-known "theorem, "which follows from
standard Regge arguments, is summarized for the
convenience of the reader in an appendix. Here
we merely note that for our case, o =+1, and we
have

t tf),,x,;, +f ~,~, ; —.-
cos 6}~ ~1~2'+ ~1~2' + t

(5.18)

as shown specifically above.

Explicit Form of the t Channel-
Heli city Amplitudes

f„+f =-2 o —+mq. ),
t p

In some of the discussion in subsequent parts of
this section we will use the explicit form of the
t-channel amplitudes in our model. As the ampli-
tudes are relatively simple and exhibit the behav-
ior expected from Eq. (5.18) in a pleasingly trans-
parent fashion, we take the time to derive them
here.

Straightforward insertion of spinors into our
amplitude leads to the following t-channel results,
where the pion propagator and mm scattering ampli-
tude have been omitted for convenience:

(5.16)

Since d, '„"(8,) —d;"„(8,) is a power of cos8, larger
than d,'„"(8,) + d;"~(8,) in the limit of large cosg„
we expect f„', , —f'». , to dominate f„', ,+f'„,
in the Regge limit (by a power of cos8, ). Thus
natural-parity exchange leads to the vanishing of
one t-channel amplitude and the relative unimpor-
tance of another at large s. The two remaining
large amplitudes are f„',.„+f~». and f~~o.,

f 0 ft 0
(5.19)

In Eq. (5.19) 8 and S are the invariant amplitudes
from pion-nucleon scattering, P = —,'(t —4m~')'t '
and E = ~t are the momentum and energy of the
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nucleon in the t-channel center-of-mass system,
and q„, q„and q, are the components of the mo-
mentum of the "bachelor" pion (the one not in a
dipion resonance) in this frame. We have defined
the z axis in this frame to be along the direction
of the nucleon.

To cast this into a form where we can compare
with the results derived above, the components q,
need to be reexpressed in a way such that the
helicity states of the three-pion system can be
picked off. Following our usual procedure, we
first write the four-momentum of the bachelor
pion in the t-channel rest frame of the three-pion
system, using the incident pion beam in the t chan-
nel as a z' axis: (E„q,sing cosy, q,singsiny,
q,cos8), where

E =(W +m —s )/2W,

q, = (E,'-m„')'~'.
To get from the rest frame of the three-pion
system to the t-channel center-of-mass system,
we boost along this z' axis in the negative z' direc-
tion until the three-pion system acquires momen-
tum

{[t—(W —m, )'][t —(W+ m, )']P'

Defining y = (t+ W ~ —m „2)/2v t W), our bachelor
pion now has momentum

(E,y —pq, cos8, q, singcosy,

q, sing siny, q,cos gy —pE, )

in the t-channel center-of-mass frame where the
z' axis is given by the direction of the pion beam.

Finally, we must reexpress this in terms of the
xyz axes determined by the t-channel nucleon. The
scattering angle in the t channel in our convention
is the angle between the nucleon and the incident
pion; hence we need only rotate through 8, to obtain
the four-momentum needed in Eq. (5.19):

(a) =- g~y —Pq~cos 8,

q„=q, sin 8 cosy cos 8, + sin 8, (q,cos gy -pE, ),
(5.20)

q, = q,sinesiny,

q, = (q,cos gy —pE, )cos 8, —q, sin 8 cosy sin8, .
Using these components and the momentum vector
(E, 0, 0, -P) of the antinucleon in the t channel
(which is the outgoing nucleon in the s channel),
we can calculate s,~, which appears in 9 and S:

s„„=m, '+ m, ' —2E(E,y —pq, cos 8)

—2p[(q, cos 8 y —pE, )cos 8,

—q,sin8cosy sin 8,].

Notice that this is a function only of cosy.
Substituting into Eq. (5.19) we see immediately

that
(i) f,' +f', is lower than f,' —f', by the expected

power of cos49, at large cos L9„.

(ii) since f,' +f' „ is odd in y, it can have no
M=O pieces; and

(iii) a Pro~i f'„+f' and f,' —f', are of the
same order of magnitude.

C. High-Energy Behavior and Consequences
of Helicity Conservation in mN Scattering

As was remarked in subsection B of this section,
the two amplitudes f,'„+f' and f', —f', , which
produce three-pion states of Y'= -1, are in general
of similar size at high energy. In the event that
pion-nucleon scattering exhibits helicity conserva-
tion (as it does in the amplitudes inserted for our
numerical calculation), the invariant amplitudes
9 and have the same order of magnitude at large
energy. Since the B terms in (5.19) are multiplied
by additional factors of cos8, and sin6}, from the
q„we see that they will be the dominant contribu-
tors to our two dominant amplitudes.

From the discussion in Sec. VA, we realize
that any Lorentz transformation in the scattering
plane will result in a mixing of these two ampli-
tudes which takes exactly the form of a rotation,

(New), =cos-', y'(f,', +f' )+sin —,'y'(f,' f', ), —

(5.21)

(New), =- ,siny'(f, ', +f'-)+cos-,y'(f,' —f',),
for an angle y' which is the difference in angles
of rotation for the two nucleon spins. Since the
dominant piece of both amplitudes is proportional
to 0, we are tempted to try to cancel it off by
performing a suitable rotation. This would lead
us to a frame in which only one amplitude was
dominant at high energy.

Beginning with the explicit forms of the two
amplitudes of interest,

I

f,'„+f' =-OIii —~ oi](o,noses —]iZ, )nosO,

—O, sinonosq sino, ]I,

f,' -f', = —2 —$[q,singcosycosg,

+ sing, (q,cosgy —PE,)],
we see that a rotation with

j. g
m~cos8,

[m '+(E' —m ')sin'8]' '

m~cos Hg

D
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leads to

g sing,
[~ 2+(E2 ~ 2)sin28 ]1/2

E sing,
D

COS2q 2 1/2 P

~ 1 p
Z/2

sin 2q7 4m~'- t

(5.23)

Examination of the rotation to the 3m rest frame
given by (5.S) shows that in this limit

cos-2((, —$2) —,
j4m

Z/2
sin-2'(g, —g2)- 4m~'- t

also. Hence the two rotations are the same at
large s, thus proving that at large s our 3m rest-
frame amplitudes behave like (5.22), i.e., f„,+f- s and f, —f, -const at f =0.

These statements all assume that the large-s
behavior of our partial-wave amplitudes may be
obtained by examining the large s„„behavior of
A and B. This of course, is only an approximation,
since in obtaining the partj. al-wave amplitudes we
integrate over all cos8, at a given s, and thus
actually include quite low s,„ in the calculation.
However, at very large energies, most of the
region of 8, integration has large s,„, so thinking
in terms of the large energy behavior of Q and S
is a fairly good assumption.

Since this is the case, we can profitably use the
concept of Pomeranchon exchange. If we assume
a factorizing Pomeranchon exchange dominates
the high-energy behavior of both nN- m'N and mN- (31/)„,I(/, then the residues at the nucleon ver-
tex must obey

X/2

-()„(t)(4, ( 8(t)(4, '),); =0,
(5.24)

in order that wN scattering preserve s-channel
helicity at high energy. Insertion of the high-en-
ergy behavior of cos —2'($, —$2) and sin —2'($, —g2)

D(New), = -28p cos 8, — — (q,cos 8y —pE, )D2
2$

+ —cos8, si n8, q, (m, —E )sin8cosq),
2$

(5.22)
D(New), = 28—E sin 8, —2$q,E sin 8cosq).p

In this new frame, then, the amplitude (New),
dominates at large energy, and the contribution
of the e amplitude to (New), is of order I/s.

In the limit as s- ~,

into E(l. (5.10b) shows that because of (5.24) our
3v rest frame amplitude f, —f, will be down by a
power of s from f„+f . Hence the behavior de-
tailed in Eq. (2.32) can be entirely explained in
terms of Regge language.

'We note also that the transformation from the
t-channel rest frame to the s-channel rest frame
is given by the following nucleon rotation angles:

-vt (s+m, ' —m, „')—2m '(W' —m„')/W&
1 (/ 4 2)1/ 23

t

Vt (S+m, 2-m, 2) —2m, '(W'-m„')/Wt
2 (t 4 2)1/ 23

where 3„=([s —(M, —M, )'][s —(M, +M, )']) ~ At
large s this gives the same rotation, with
cos-,'(8, —8,) = 2m2/(4m, 2- t)' '. Hence direct-
channel helicity conservation for mN scattering
gives approximate s-channel helicity conservation
at the nucleon vertex in our reaction also. Vfe
have previously seen that M =0 dominates in the
produced 3m states. Hence we have a model with
approximate s-channel helicity conservation at
the nucleon vertex but approximate t-channel
helicity conservation at the meson vertex.

The similarity of all these transformations [the
one to the "new" frame given by (5.22), the one
to the s-channel center-of-mass frame, and the
one to the s-channel 3w rest frame] is not, of
course, a coincidence. The angles for nucleon
rotation in all such transformations take the form

Wt E, 2m-, 'y„.„,—
1 (f 4 2)172 )

1

cos 8
~~E2 22122 rtrans

2 (f 4 2)1/2

where E&, P, are the resulting energies and mo-
menta and y„,„, .= (E, -E,)/~t is the parameter
characterizing the over-all transformation from
the t-channel center-of-mass frame. Hence any
frame with E„E,—~, and E, —E,- const (where
the constant may be zero) as s- ~ will yield a set
of amplitudes identical in nucleon spin structure
to our 3m rest-frame amplitudes in the large-en-
ergy limit.

D. Further Comments About Dependence of Our Calculation
on the mN Helicity-Conserving Amplitude

Because our calculation required mN scattering
amplitudes from threshold to large energies, we
used phase shift and Regge information in their
respective regions of relevance. Unfortunately,
as discussed above, amplitudes calculated from
phase shifts do not exactly match onto those from
Regge formulas. Vfe settled for a linear inter-
polation between the two formulas in the region
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2 &(s„„)'/g &2.2 GeV. This is not a bad approxi-
mation for the helicity-conserving amplitude,
where the discontinuity between Regge and phase
shifts is slight, but it is more drastic for 8 and $
individually (especially 8) at most values of mo-
mentum transfer.

Hence the credibility of our results depends to
some extent on the degree in which our amplitude
is a function only of the mN helicity conserving
amplitude. In this section we show explicitly that
the ratio of the large amplitude (New), derived in
E(I. (5.22) to the yyfUhelicity-preserving amplitude
approaches 1 as s- ~.

Vfe begin with the formula

(New), = -28g ' — — (q,cos Hy —PE,)D
cos 6)g 2 $

0 mp

+--= cosH, q, (mg -E )sinHcosq)
2$ sine,
m, ' D

and the algebraically useful exact expressions

X/2
D/cess, = —,'(sm ' —r) ~'('(—

(s —u '

4-t (s-u)
2r g (s-u)

-t '/' (s —u)
sing, ='=

t

2 t ~ 2 1/2-
() tr, grr (4 g )j/g

where T,„'=[t (IV m„)')[t —(IV+m„)']. Hence
the amplitude is

-2e(t -4m. ')" '
HI I/g TK 3W

g/( )g]t / g (qycos Hy pEt) Ht( mi) )
( )g

( m, g- Eg) sin Hcosq)sin8,
'm, '(4m''-t)" [I —~. ..'/(s-u)']"'

As s- ~, [1 —r„,„'/(s —u)']'/'-1 to order 1/s' and we obtain

2$28 — ——pcosHt(q, cosHy —pE,)+ — q,psinHcosq) sinHt
y4m~ -t} '

m~ W'p

The y/N helicity-conserving amplitude takes the form 28-(2$/m, )q„pa (after removal of a kinematic
factor containing cos —', 8). In our frame

q„pt) =E{Ey —pq, cos 8) + p(q, cos Hy —pE~)cos 8, pq, sin—Hcosq) sin8, .
Hence the yttt/ helicity-conserving (h.c.) amplitude as used in our model is

2$2Q- —(E(Ety —pqtcos 8) + p(qtcos Hy —pEt)cos 8, —pq, sin 8cosq) sine).

Thus, neglecting various multiplicative kinematic
factors,

2E
(New) t (tie() helicity-conserving + (Ety —Pqtcos 8)

P

and

(New), (()
In this case the s comes explicitly from cusp, and

sing„ i.e., it is not necessary to use the approxi-
mation that s„~ grows like s to obtain this result.
Hence at high energies the large amplitude in our
calculation depends only on the mN helicity-con
serving amplitude. Thus, the difficulties in
matching phase shift and Regge models for the
other amplitude do not seriously affect the major
results at large energies.

E. The Stodolsky Cancellation in Our Amplitudes

In Sec. III we sketched the argument given by
Stodolsky for 1.=0, M=0 dominance in a simplified
amplitude of form s,„/(ts —m„'). As the large
amplitude in our calculations actually has the form
(5.25), multiplied by the pion pole, we now exam-
ine this explicitly to see whether an analogous
argument still holds.

Since 9 and are functions of s,„, with y depen-
dence only in the form singcosy sing„and since
sing, vanishes in the forward direction of s-channel
scattering, we may, to some approximation,
assume that 9 and $ have no qp dependence. In
this approximation the first two terms of (5.25)
may be thought of as M =0 terms, and the last
term as M = 1. Let us examine them separately.



3918 ASCOLI, JONES, WEINSTEIN, AND WYLD, JR.

The pion propagator contains tR -m ' which may
be expressed as

t m—,' =—[t(W —E,) —E,(W ' —m, ')

+ T„~„q~cos8] .
Hence the M =0 term (at large s) is proportional
to

g[q, cos 8(t+ W' —m„') —T, ~~E, ]
t(W —E,) —E,(W —m„')+~„„qcos8

Near t=0, 7.„„=W'—m„' and we get

e(q, cos 8 —E,)
(qicos 8 —Ei)

Thus the tail of large- J. values expected from the
pion propagator will occur only in the lower-order
terms from Q although the explicit cos(9 depen-
dence of S and of d;„(g) will introduce some terms
with I.c0.

The M =1 amplitude will look like

q, sing cosy sing cosy ~ cosyjk' —1
tR —m, ~-o k —cos 19

x g(2J 1)( )

x Q~~' ~(k)d~, (8) .

Hence we expect a long tail of large- L contribu-
tions from this piece.

VI. COMMENTS

The simple form of the Deck model allowed us
to perform the partial-wave analysis in a rela-
tively straightforward fashion even though all the
complications of wN scattering (spin and resonance
contributions) were kept. At the heart of this sim-
plification is our treatment of the Reggeized pion

exchange, assuming that it couples like an elemen-
tary pion. This assumption does the following.

(1) It ensures that ally, dependence of the diagram
is in the mN scattering amplitude. This makes the
combinations of amplitudes which are even and odd
in y, be sums and differences of pairs differing
only in the change of sign of the nucleon helicities.
We found this simplified both calculation and anal-
ysis of the results.

(2) It leads to the knowledge that only natural-
parity exchange couples at the NN vertex. Higher-
spin particles on the exchanged m trajectory could
couple with the produced m to form an unnatural-
parity state. Our neglect of this allows us to put
in on-shell mN scattering.

(3) It allows us to avoid the sort of parameters
that would come in if we attempted a form-factor-
type continuation of the couplings off shell.

Although we have not stressed agreement with
the data in this paper, the calculations presented
here do yield magnitudes and relative phases for
the partial waves in substantial agreement with
the data. Comparison with the data is presented
in Ref. 4, after the diagram with m w scattering
has been added. Presumably a relaxation of our
assumption about the pion couplings wouM allow
introduction of some parameters which could be
adjusted to attempt to improve agreement with the
data.

Having an explicit amplitude with calculable
partial waves and phases allowed us to test the
fitting program used on Sw data. In general, FIT
passed this test very well, despite the complete
dissimilarity in form between the Deck model and
the cascade decay assumed in the parametrization
of FIT. However, we found (a) a systematic
problem in estimating relative phases of states
containing the mw S=O wave, and (b) FH' seems to
produce a more rounded A, peak than does explicit
calculation.

APPENDIX

We give here a proof of the "theorem" used in Sec. VB.
Suppose only exchanges of one naturality v = P,„(—1)~'" are present in the f channel of the reaction 3+4- 2+ 1. From the action of the parity operator

P((JX, X )+ g,q, ( 1) ~3 ~4(Z ——&, —&,)) =+ (-1)~((JX X ) + g,g,(-1) ~~ ~4(J —X —X ))
we deduce that t-channel partial-wave amplitudes for this 0 mill obey

T ~ ~ .~ x (t) = v'qs'q, (—1) T x~~2. ~, ~,(t) . (A1

Defining g by g =q,q~(-1)'~~'~4 ~~' 4, we may then write

fg, ),, y, g, +gofI„g, , g, g, =Q'(2J'+1)T g, g, . g, g (t)[d~, ~,g, q,(8,)+(-I) 4 ~d (~ „J), q (8,)].
From standard expressions for the d~z functions, we see that

(a) as cos8, - ~, d~ (8,)- (-1) d~ (8,);
(b) the combinations d (I)a8(-I) d~ (8,) have opposite parity under 8,- w —8„ i.e., cos8, —-cos8„
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hence if expanded as series in cose„one is com-
posed of odd powers and the other of even powers;

d' (8,)-(-1) 'd (8,) mm'
d~„,(8,)+(-1) 'd~ (8,) eos8,

' (A2)

M~,
(c) d', ~(-1) d', =

0

24~
(d) d~ +d~ =

0

Vfe conclude that as cosa, - ~,

Thus for a Regge-pole exchange, or for a single-
particle exchange in the t channel, we have

fXgk2, X~Xg 9+5X~X2,.-X~-X4 (~y ~2)(~3 ~g)
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