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Radiative Meson Decays in a Quark-Oscillator Model*
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One- and two-photon decays of meson resonances are calculated in a quark-oscillator model using a
nonrelativistic interaction Hamiltonian and vector dominance. Harmonic-oscillator wave functions are
assumed for l = 0 and l = 1 resonances (e.g. , m, p and 3„f, respectively). The calculations in general are
sensitive to the value of the well-width parameter a'. Good agreement with experiment is obtained for
decays of low-lying states (such as m. and q) and for the decay A 2 n —+ y fI (predicted) = 0.4—0.6
MeV], The calculated width for the decay f(1260) yy is less than that predicted by Kunzst et al, on the

basis of a phenomenological Lagrangian by a factor of 3 or more.
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(fqz- m /m~ is an assum—ption, not a theoretical

Quark models have successfully been applied to
obtain a basis for understanding the electromag-
netic properties of baryonic and mesonic states. '
The simplest of these models assumes that had-
rons are made up of structureless "quarks" of
three types: 6', K, and X with the quantum num-
bers given in Table I. (In Table I, 8 = baryon
number, I = isospin, Y = hypercharge, S = strange-
ness, e, = qua, rk electric charge. )

For mesons, the work of Van Royen and %eiss-
kopf' provides a basis for understanding electro-
magnetic properties and decays of mesonic states
on the basis of the process illustrated in Fig, 1
for the transition a 5+y.

For the case in which a (b) is a vector meson
(quark-antiquark pair in the 'S, state) and b (a) is
a pseudoscalar ('S, state), Van Royen and Weiss-
kopf assume a quark spin-flip electromagnetic
M1 transition, leading to the reaction V(P) - P(V)
+y. Computed in a nonrelatlvlstic approximation,
this gives reasonable results for the decays V- I'
+y, in particular for the decay rate of v- z+y.
Form-factor effects are neglected in the calcula-
tion of Van Royen and %eisskopf.

Two-photon decays of pseudoscalar states may
be calculated by coupling the photon emission
process of Fig. 1 with the vector-dominance hy-
pothesis, whereby a vector meson converts into
a photon as in Fig. 2 (note that the vector meson
is far off its mass shell).

The effective interaction Hamiltonian for the
process is given by'

IZ = ef„ym„VpAp,

where f„„is the vector-dominance coupling con-
stant (the strength of the vertex in Fig. 2). Em-
piricallv, 4 we have

result). The ratios of the vector-dominance cou-
pling constants for the P, &o, and p are given by'

fpy'. f~y' f)„2 ='. 9:1:1.17.

On this basis, Van Royen and Weisskopf obtain
good agreement with experiment for the decays

~pp and 'g ~ pp.

I. THE qq OSCILLATOR MODEL FOR MESONS

%'e begin with a summary of the qq l-excitation
oscillator model for mesons. In this model a
given mesonic state is represented by a quark-
antiquark pair interacting via harmonic-oscillator
forces. The Schrodinger equation for the relative
motion of the quarks is

-52
V~'g+ 2 up'g =Eg,

M mim2p=r —r
2 m, +m,

'

The wave functions which correspond to the equa-
tion in p are given by the expression

0„,.=&(~p)'Lr""(~ p') exp(-2n'p')I'1 (e 4)

where n = l +2K, K = 0, 1, 2, . . . is associated with
the number of nodes in the radial wave function,
l = orbital angular momentum quantum number,
n' =(2M')'"I ', where M is the quark mass for
equal-mass quarks. I&' are Laguerre polyno-
mials and YP(0, P) are the spherical harmonics.
The normalization constant N is given by

v v(zf+z+ .')(z+I -'.) "--',x-,'-
Finally, the energy levels are at E =(n+-,')h&u, with
aP =2m/M.
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TABLE I. Quark properties.

e, /e
V fv~

1
2
1
2

1
3
1
3
2
3

0
0

—1

2
3
1
3
1
3

In Table II we list the lowest mesonic states
(corresponding to I =0 and 1) and the observed
mesons associated with them. The mesons are
listed according to the assumed qq state and their
isotopic-spin value t. The numbers in parentheses
are the masses in MeV/e'. The last column is the
mixing angle for the observed t =0 mesons in terms
of the pure SU(3) octet and singlet states. ' The
wave function for l =0 is given by

FIG. 2. Vector-dominance diagram for the direct
conversion of a vector (1 ) meson into a photon.

of the calculations with respect to this parameter.
In Table III we list some selection rules for the

decays a- 5+y. In particular a and 5 cannot both
be spinless (no 0-0 transitions, rule 9). Further-
more a spin-1 state cannot decay into two photons
(rule 4). The other allowed and forbidden transi-
tions are determined by charge-conjugation in-
variance. For example, an even charge-conjuga-
tion state (C') can decay into two photons or into
a vector meson plus a photon (rules 1 and 5), but
not into a v' plus a photon (rule 2).

4 3 1/2

~4„exp(-2o' P )

and for /=1

1 4(y ' 1
&pexp(-2& p )

(8)
II. THE INTERACTiON HAMILTONIAN AND

ONE-I HOToN DECA+ PRoeassEs

The nonrelativistic Hamiltonian corresponding
to single quark deexcitation via photon emission
has the form

where p=v4w pl'P(Q ).
To fit the parameter aa we need the oscillator

level spa, cing Sco, since ko.' =-,'M~. As an esti-
mate, we may set this equal to the A, -p mass dif-
ference of approximately 550 MeV. The quark
mass is determined from the assumption that the
qua. rk magneton is equal to the proton moment
(which gives the correct nucleon moments in a
nonrelativistic qqq model for the baryons). Adopt-
ing natural units (K = c = 1)

p, = p. = —=0.13 GeVeg -1

where JL(.
= quark magneton, p~ = proton magnetic

moment, e = electron charge, M = effective quark
mass, and g= half the gyromagnetic ratio (=1 for
a Dirac moment). This implies M/g=0. 34 GeV.
Hence o,

' =0.094 GeV', assuming g= 1. If we had
taken the m-J3 mass difference for cu-1100 MeV,
this would have doubled the value of n', giving
+' =0.188 GeV'. In general, in the calculations
which follow, both values of o.' will be used in
order to obtain some feeling for the sensitivity

FIG. 1. Diagram for photon emission in processes of
the form a—b+ p, where a and b are mesonic qq states.
The nature of the photonic emission process depends on
the spin and orbital angular momentum of qq in a and b.

where

q'"(-2igS"'. kxA+2P«'g) ',
=1 2M' (10)

1/3 ~ ~ (~)g{r(n} (4&)l/2 &(&tele r +& e fk r )-
k k

S,=8„+iS,
P, =.P„+iP„. (13)

The wave functions of interest for the any vertex
are given in Sec. I.

Vfe now calculate the space part of the matrix
element (1p~e '"~~1s) and(1P~e '"'~I'„~ls). We
find

&Vl& '"'I») =(')"*I
—
) d'naaxg(--', a'p')

x I","(n)e-""I",(n)

(14)

Here eq~', BI'~, and PI'~ are the quark charge,
spin, and momentum operators of the ith quark,
M is the quark mass, and g is half the gyromag-
netic ratio. g is defined by the relation p. = eg/3M,
where p, is taken equal to the proton magnetic mo-
ment p,~ =0.13 GeV '. For a Dirac particle g=1.
For right circularly polarized photons [e = —(1/
W2)(l, i, 0)] we obtain

( ) -sk ~S(&) P(&)
1/2 (c) 1

+ + +

where S, and P, are given by
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TABLE II. Mesonic states (It -excitation 'model}. The numbers in parentheses are the mass-
es in MeV/c2.

qq state I=21

S
3$
i~

Po

3Q

3+

0++

7t'(137)

p(765)
a(1235)

e(966)
7r„(975)

Ai (1070)

A, (131O)

K(496)
K*(892)

K&(1280-1400)~

s(1080-1260)
K(1200-1400)

K~(1240)

IC//(142 0)

g(549)
cv (784)
(1300)

e(~750)

D(1285)

f (1260)

q'(95s)
0 (1019)

S~(1070)

pp(1410)
K,K,(1440)
f '(1514)

11'
40'

330

~ The bvo 1+Hz (or Q) states, having identical quantum numbers, are undoubtedly strongly
mixed.

4

(IPIe ""IIs&=f4~2 dpp"'exp( ~p')&-./. (2kp)
k

(15)

8 . 8 8 . B---—+i =- +i
B~x B~y

= ——sin8e-
&p

(22)

(1PIe '"~I1s)= —exp g2 2 o! 16oi

where we have applied the identities

(16) and noting that
1/2

Y"(8$)= — — sin8 e' ~.

e"""'= 4~ 2&+1 "'s'q W ~' e
j=o

1/t 2

2l (p) 2 if/+1/2(p) t
2p

(18)

Finally, using

Y', +(n) Y,'(n) = -
&

- Y,'(n) + — Y',(n)

we find that

(22)

drr" 'J,(kr) e xp(- o'r' )
0

r(-,' v + -,' p, )(k/2 o.)"
2o."r(v + 1)

6

(Ij) I
e "*»„I1s)=f'. — dpp'exp( ~'P')-

&& [jo(2kp) +j2(,'kP)]—

=in exp

(24)

(25)
xexp —

4
—

2 F 2p —2p, +1 @+1'4 2 . 19

[F(a, I/, c) is the hypergeometric function. ] Simi-
larly

4~'
f (x)1/9 dsp p exp( 1oimp2)e 'lacy

vm

Bgy Bpy

x exp(--,'o.'P') Y',(n) Yp&*(n)

(20)

-k
(1pIe '"'~I1s) = —exp 1, A,

with the selection rule

m, =0, m, =m,'+1,
and orbital

(26)

TABLE III. Selection rules for electromagnetic de-
cays of mesonic states.

Summarizing, we obtain the two matrix elements:
spin

using

=i ~ n' f dp p exp(-u p'1 f dfl F, "(0)

~ Y1(n)e Illgy

C+

(2) C
(3) C+ x y
(4) &1+VV

(5) C'- V'y
(6)
{7)
(8) C xy
(g) 0 ~0

(forbidden by charge conjugation)

(forbidden mode for spin-1 particle)
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(apl e ' "P.l I
is) = —exp, =B,

with the selection rule

(27)
This yields

F„, &&=0.11 MeV for e' =0.094 GeV'

and
+

& ms ms'

We have labeled the first matrix element "spin"
to indicate that it corresponds to a spin-Qip tran-
sition, whereas the second matrix element ("or-
bital") corre."nonds to a spin-nonflip process. The
g factor is usually taken to be unity (corresponding
to no anomalous moment), which gives good agree-
ment between nonrelativistic calculations and ex-
periment. '

Finally, for completeness, we give the easily
obtained matrix element (space part) for transi-
tions between ls states (vector and pseudoscalar
mesons)

= 0.92,

&fiql q2I ~&=i&f1 ql q. l
p-}

(30)

Fp ~y 0 29 MeV for a =0.188 QeV

The width for A2- z+y is similarly obtained (see
Table IV) taking into account appropriate SU(3)
pr operties.

To calculate the width for f- V+y we take into
account the mixing between the SU (3) octet and
singlet for the tensor states. We have

1 1
&fl q, —q, I p) = cos8, ~2+»n8, ~2

A,
'

(lx~ e '"
( lx) =exp

(
with the selection rule

(28)

= 0.31,

(fl q, —q, I p) =-cos8r22~6 +sin8r 3~3

l' = l -0 m$ mg +1 ~

qO (1)1/2 y+1S-1 + ( )l 22y/OSO + (1)1/2 y
—1S+1

The decay width is given by

r„-p+y= ———1 4
4~ 2Z+1

(29)

As an example consider the decays A, - V+y.
The following transitions are allowed: Between
the substates m =+2 and m =+1 there is an allowed
transition corresponding to the orbital matrix ele-
ment (B amplitude) with the expectation value
(A, I q, —q, I p) = —', . The minus sign comes from
interchanging quarks 1 and 2 in the space part of
the l =1 wave function. The appropriate Clebsch-
Gordan coefficient =1. Between the substates
m =+1 and m =0 there is an orbital transition with

(q, —q,}=—', and Clebsch-Gordan coefficient = (—',)"2
and a spin-flip transition with (A, I q,S„—q,S„Ip)
=—', ~2 and Clebsch-Gordan coefficient=(-', )'"corre-
sponding to the wave function (2" = (-,')"'y", S,
+(—2')'"y, S", . Finally there is a spin-nonflip tran-
sition between the substates m =0 and m= -1,
with (q, —q, ) = —,

' and Clebsch-Gordan coefficient
= ( )"' and a spin-flip transition between these
substates with (q,S„—q, S„)= l/3 W2 and Clebsch-
Gordan coefficient =(-,')"' corresponding to the
wave function for m =0:

= 0.24,

where we have assumed 8~= 33'. Similarly

(32)

&f'I ql —q. l ~) =o &2,

&f'
I q. —q. I 4» =o 6l.

(33)

(34)

(35)

TABLE lV. Computed one-photon decay widths.

Decay I'(n =9.4 X10 GeV')
(MeV)

I'(n =1.88X10 GeV )

(MeV)

A2 p+y
A2 CO+y

f-p+v
f -~+'Y
f-4+vf'- p+v
f'-~+v
f'-0+v

7r +y

B~vr+y
CO ~ 'll +)/

A~ —p+y
Al 4)+ )/

~pk
Vl p ~p + ')/

7l p ~ (d +P

0.11
0.84
0.84
0.096
0.048
0.13
0.014
0.37
0.60
0.40
0.16
1.1
0.13
1.2
0.20
0.10
0.80

0.29
2.5
2.2
0.24
Ox10
0.36
0.040
0.96
0.40
0.24
0.44
1.2
0.25
2.2
0.11
0.19
1.5

Substituting the appropriate values in Eg. (29)
we obtain the results listed in Table IV.

We may also calculate one-photon decays of the
form M-P+y (P= pseudoscalar) For .example,
for A,'-m'+y the only allowed transition is between
the substates m =+1 and m =0. This is a. spin-
flip transition (A amplitude) with (A,

'
I q,S„,

—q,S„I
1/'} = -1/v 2 and the Clebsch-Gordan coef-
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ficient = (-,')'". The spin-nonflip amplitude vanishes
due to the orthogonality of the singlet- and triplet-
spin matrix elements. The decay width is given
by

20Q2exp BQ2

=0.60 MeV for n' =0.094 QeV'

=0.40 MeV for no =0.188 QeV. (36)

For the decay l4y 7l +y the width is given by

k' p.
' -k'

I'A *, =,exp

corresponding to the values given in Table IV.
Finally, for the decay 8'- m'+y we have only

a nonflip (8 amplitude) transition between the sub-
states m =+1 and m =0. The expectation value
(8'Iq, —q, l

v') =-', and the appropriate Clebsch-
Gordan coefficient = 1. Therefore

8 2 2I"8,+&=»kp. n exp (38)

(see Table IV).
As a test of the model we consider the observed

decay oP- 7t +y. We find for the width

24, , -kI' „, =-, k p. exp

III. TWO-PHOTON DECAYS
OF MESON RESONANCES

We will now calculate decay processes of the
form C'-yy following the model of Van Royen and
Weisskopf. 2 We assume the Feynman diagram for
the process as shown in Fig. 3. (C' is a neutral
nonstrange meson of positive charge conjugation. )
The coupling at vertex 1 is given by the nonrela-
tivistic Hamiltonian as in Sec. II, Eqs. (10) and
(11) for one-photon decay processes. The coupling
at vertex 2 is given by vector dominance. The
amplitude corresponding to Fig. 3 is

Ae+~ ~
= Q Ae ~ yf~ (40)

r, -„=4, 2~, 1(IA,'.-,.I
+ IA',

where f~z is the vector-dominance coupling con-
stant. " As an example we calculate the decay

yy in this model. At the first vertex (A+~z),
the permitted decays are spin-nonflip (orbital)
transitions between the substates, with m =+2 and
m =+1, and between the substates m =0 and m = -1.
(There is no allowed transition between the sub-
states m =+1 and m =0 since this would yield a
photon of spin projection zero, which violates
gauge invariance. ) The amplitudes A„vz haveA2F y
been given in Sec. II, while the vector-dominance
amplitudes fr~ are given by Eqs. (2) and (3}. Using
these, we find for the width

=1.1 MeV for n'=0. 094 QeV'

=1.2 MeV for n' =0.188 QeV, (39)

+ IAo--x+Ao-. il')

.(2IA, . „I'+4IA, , I')

both in good agreement with experiment. '
Note, in Table IV, the strong dependence of the

decay widths on n2, except for the one well-mea-
sured decay, co- m+y. In contrast to all the
others, the decay widths for the processes A', , A2'- z'+y and B'- p'+y decrease as z2 is increased
due to the factor 1/n which appears in the matrix
elements for these spin-Qip processes.

The only other case (beside e- vy) that can be
compared with an existing experiment, and which
'is therefore a result of particular interest, is for
,the process A,' - m'+y, with I'(predicted) =0.4-0.6
geV. Eisenberg' et al. observed production of the
A2 meson in the reaction y+p- n+m '+ m'+ m . As-
suming a model in which the A2 production is due
to one-pion exchange, they estimate the width
r(Ao- m'+y) to be approximately 0.5 MeV, in ex-
cellent agreement with our calculation. Since the
calculated width for this decay is the least sensi-
tive to the parameter n', this observation also
does not help to limit the permitted range of choice
of e'.

x(f~ +3f )'e'

45 W6 2v6 n

x exp (41)

C+ Oj V 02

FIG. 3. Diagram for the bvo-photon decay of positive-
charge-conjugation mesons.

The factor of 3 in (fqz+3f~)oeo comes from the
form of the qq isospin combinations for p and w.
Substitution into Eq. (41) yields the values shown
in Table V.

The f and f' decays into two photons can be cal-
culated from Eq. (41) but taking into account the
appropriate SU(3) properties of the two vertices
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[see Eqs. (30)-(35)]. The results are also listed
in Table V.

For the 1' member of the l =1,$ =1 mesons,
I'~ &&=0, since a spin-1 meson cannot decay intoAl~ yy
two photons. "

Finally we have calculated the decay m„-yy,
where v„(975 MeV) =5 is the 0' member of the
l =1, s =1 multiplet, with wave function

yO (1)1/O IP+ 1S -1 (1)1/O I/OSO + (1)1/O yr-1Sl

v], = —3(6'6'+X5I +/).X) .1

Thus

(46)

=0.72.

Similarly

(ll l q, S+, + q,S„l p) = cos 11 2 + sin 11'—2
-1 . ~ 1

6

We obtain

k' 4'-»=4 u+I l"'"-'l' and

(qlq, S„+q,S„l&o) =0.24

«I qlS, 1+qoS,o I 0) = o45-

(48)

4$p~ Q& 2 jP
()(+ exp, 4f~ 'e',

1 2 2 2
lp& Q e fp~ exp

8

with the results given in Table V. The values are
approximately the same for the two values of z'
since the form factor is -1 for the small value of
k.

For the case of the q we have

q =q, cos 11 +q, s1n 11,
where

(44)

bio
= —((P(P +'ZX —2)).i~\.

1
(45)

(42)

and the values are given in Table V.
It is useful, as a check on the model, to calcu-

late also the decays m yy and q - yy in this model.
Consider the decay 7t -yy. The transition 7t- t/'y

is a magnetic dipole (M1) transition. The spatial
matrix element is given by Eq. (28):

((s~ exp(-(ps, )( (s) = exp ()p

while the expectation value (v l q,S„+q,S„lp)
=1/3v 2. Therefore the width is given by

4~"-»=4 2m+I l"'--'l'

Hence

I'„~&= ~o „'p,' exp(-k'/8n')
2

&& g &nlqs, l v&f„ (50)

2;„, (x) = — G„,F""F1,
'+ G„„S"—1/S'v (51)

for the fyy and f7/)/ vertices with couplings g and

f, respectively, where G„, is the spin-2 field op-
erator, F„„=a„A,—s,A„(A„ is the photon vector
potential), and v is the pion field. A universality
hypothesis requires the hadrons to be coupled to
the symmetric energy-momentum tensor with the
same strength:

(m „=q mass) giving the results in Table V.
Referring to Table V, we observe a rather strong

dependence on n' for the decays of tensor mesons
but only the slightest n' dependence for the decays
of the pseudoscalar mesons. Notice that the decay
f'(1514)-yy is suppressed due to SU(3) considera-
tions. The numbers for the pseudoscalar meson
decays agree with experiment to better than within
a factor of -2. Experimentally, ' I',0 = 7.8 a 0.9
eV and I'„„=1.0+0.3 keV.

For comparison purposes Kunzst et al." compute
&~=6.6 keV. '4 This calculation is based on the

assumed phenomenological Lagrangian

TABLE V. Computed two-photon decay widths.

e„„= (s„~s„~+—v„„v,+ ~ ~ .),
mf

(52)

Decay

A,

f (1260) ~yy
f'(1514) —n'
A

1

g(975)
2-YY
rl yy

I'(~2 = 9.4 x 10 GeV )

0.46 keV
1.2 keV
0.14 keV

0
2.5 keV

13 eV
1.7 keV

j."(~ =1.88x10 GeV )

0.81 keV
2.3 keV
0 ~ 19 keV

0
3.8 keV

13 eV
1.8 keV

where 8„,is the stress-energy tensor and V„&
=8 „V'&—8 ~V„. Finally, the vector-dominance hy-
pothesis is applied to connect V„and A„, yielding
the result quoted above for the width I /z z (based
on the experimental value for I'/„, ).

Reviewing our results for one- and two-photon
decays of meson resonances in the quark-oscilla-
tor model, we find the us'ual good agreement with
experiment for decays of /=0 states (for example,
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&u- wy, mo-yy, and q-yy). These results are
not very sensitive to the well-width parameter a'.
Calculations for 1=1 resonances decaying via ra-
diative emission are quite sensitive to the value of
+' in general. The prediction for A~- m'+y
[F(predicted) =0.4-0.6 MeV] is in good agreement
with the experimental value F(experimental) -0.5

MeV.
On the other hand, our calculations give a pre-

diction for the decay width of f (1260)-yy which
is lower than the value predicted by Kunzst et al.

on the basis of a phenomenological Lagrangian
by at least a factor of three. It will, therefore,
be interesting to obtain experimental information
on this decay width as a test of models. We con-
clude with the remark that, although the quark
model gives good agreement with experiment for
radiative decays of low-lying meson states, more
experimental information is needed to test the
validity of the quark-oscillator model for the de-
cays of more highly excited mesonic states such
as the tensor mesons.
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We analyze the relation between increasing NN production and increasing a.„,in a two-component
picture. The possible increasing contribution to the cross section of diffractive dissociation into high-mass
states is taken into account. We conclude that it is likely that both effects are important at CERN ISR
energies. We also find that the short-range correlation part of the inelastic cross section without NN
production must decrease above s —150 GeV', The decrease is consistent with the form cr 'pc s ' ' with

ao ——0.92 + 0.04.

I' INTRODUCTION

A possible explanation of the rise in the PP total
cross section over the CERN ISR energy range"
(500 & s & 3000 GeV') is the presence of threshold

effects. For example, within the context of a
two-component model, Chew and others have shown
that the contribution to atot of single diffractive
dissociation into high missing mass (M) exhibits
a logarithmic threshold increase with energy. ' '


