
PHYSIC AL REVIEW D VOLUME 8, NUMBER 2

Implications of Classical Two-Tensor Gravitye

15 JULY 1973

P. C. Aichelburgf
International Centre fox Theoretical Physics, Trieste, Italy

(Received 3 October 1972)

We discuss implications off-g gravity on the. level of classical field theory, with special
emphasis on its metric structure. We show that although space-time is "bicausal, "f-g
theory reduces to general relativity in the limit of weak static fields. The discrepancy
between the degrees of freedom of the linearized and full theory is discussed. Further, we
review all known exact solutions and give a new exact nonvacuum solution.

I. INTRODUCTION

Recently there has been considerable interest
in two-tensor theories of gravitation. ' ' These
theories assume that gravity is described by two
tensor fields, thereby modifying Einstein's equa-
tions of general relativity (GR}. The reason for
introducing a second tensor field is not experi-
mental, since GR is in good agreement with ex-
periments, but theoretical.

(i) There exist in nature massive spin-2 fields
such as the f-meson-hadron state. The inclusion
of a spin-2 field into GR by coupling minimally its
energy-momentum tensor to the gravitational field
causes severe difficulties, as pointed out by

Aragone and Deser. '
(ii} There have been attempts to assign a mass

to the gravitational field, ' ' which of course breaks
general covariance (as in electrodynamics gauge
invariance is broken by massive photons). If the
theory is to be self-consistent to all orders in the
field, the massless part of the Lagrangian must
be the same as in the Einstein case. In Ref. 2 we
have shown that the causal structure of this theory
is then Riemannian and that such a theory is ac-
tually the limit of a generally covariant two-tensor
theory.

This motiviates the study of two-tensor theories
on the level of classical field theories. We shall
concentrate here on the f gtwo-tensor the-ory pro-
posed by Isham, Salam, and Strathdee'; however,
the main features of this theory are also found in
theories with different interaction between the two
tensor fields. Thus the aim of this paper is to
consider the implications of a two-tensor theory
for GR with special emphasis on its metric struc-
ture, and to give a review of what is so far known

about the theory by summarizing previous papers
and stating new results.

In Sec. II we start by giving the Lagrangian, in-
troducing notations and drawing general conclusions.

Section III is devoted to the vacuum field equa-

tions. We state a theorem about trivial solutions
(i.e., f„„=g~„) which is important for linearizing
the theory. We discuss in some detail the problem
of internal degrees of freedom and show explicitly
why the mass term introducep an additional degree
of freedom in the full theory. Moreover, we con-
sider the propagation of the f and g fields.

In Sec. IV we consider implications following
from the coupling of the tensor field to matter.
The question of which field might play the role of
a space-time metric is discussed by looking at the
motion of test particles. We show that in general
there is no natural metric interpretation of the
gravitational field in the f gtheory. -We discuss
what Hammel and Lubkin called the "local cor-
ruption of space-time. "

By identifying the mass of the linearized mas-
sive field with that of the f meson and assigning
definite values for the coupling constants, the
Riemannian structure of space-time is recovered
for weak static vacuum fields, at distances & 10 "
cm from the source.

Finally, we turn our attention to exact solution
of the field equations. We give a review of the
known solutions, all of which belong to the Kerr-
Schild type (or related), also encountered in GR.
Further, we give a peculiar nonvacuum solution
with no analog in GR.

These solutions have only a limited physical
significance because they all possess a geodesic
null congruence with vanishing optical scalars. So
far no spherical symmetric solution is known.

II. CLASSICAL FORMULATION OF THE f-g THEORY

The f gtheory is a g-enerally covariant theory
with two dynamical, symmetric, and self-interact-
ing tensor fields (f„,and g„„). General covari-
ance implies that no absolute objects' are con-
tained, and dynamical means that hyperbolic prop-
agation of both fields is possible. We therefore
do not restrict the fields to have the same signa-

377



P. C. AICHE LBURG

ture. " The main assumption is that matter can
be divided into two classes (hadrons and leptons)
on which gravity acts differently. While the en-
ergy-momentum tensor of hadronic matter is sup-
posed to couple only to the f field, leptons couple
only to the g field. The two kinds of matter inter-
act gravitationally only via an f gc-oupling. The
theory is given by the following generally covari-
ant Lagrangian density:

I.=—,I fR(f—)+ —,v'-g R(g)
1 — 1

Kf Kg

II h(fhh, d o d)d'*= f-, T„"„d fdf-""d'*

and (2.3)

6 L, leptons d'x = —,
'

TLV —g 6g"'d4x.

Therefore, hadronic (leptonic) matter couples
minimally to f (g). We note that the theory does
not include nongravitational interaction between
hadrons and leptons, which would spoil the covari-
ant conservation laws

+Lz, + L(f, hadrons)+ L(g, leptons) . (2.1)
TH IV TL v pPV PV (2.4)

Notation

f„„and g„, are the covariant components of the
tensor fields, and we denote their inverses by f""
and g"":

Also,

f =detf„„and g=detg„, .

By defining two symmetric connections I'„'„(f)
and I"„„(g)from f and g as in Riemannian geome-
try, one can build up all geometrical objects used
there For .example, R„„(f)denotes the Ricci
tensor formed with respect to the f field. Two
types of covariant differentiation can be defined,
which we denote by

~
and; when taken with respect

to f or g, respectively. Note that raising and
lowering of indices is obtained with the help of

f (g) for quantities formed from f (g) only. Greek
indices take the values 0, 1, 2, 3 and Latin indices
1, 2, 3, and a comma denotes partial differentia-
tion.

The first two terms are the free-field parts of
the f and g field, respectively, and are chosen to
be the same as in GR in order to obtain second-
order hyperbolic equations for both fields. Lf,
describes the interaction between the f and g
fields and represents a "generally covariant mass
term" containing no derivative couplings:

( f)d/2(f nB gnB)(f Aa gXa)4K'f

following from Eq. (2.3). Two sets of field equa-
tions are derived from (2.1) by variation with re-
spect to g"' and f"",

—.a„.(f) (-f) '", ';—.)

—.a..(d) (-d) "', ,:)Kg Bg

G„, is the Einstein tensor and

I Ta
pv&

--2 TL
PV '

(2.5)

BLfg 1 ~ M
sf v. =

2Kf

8Lfg M
Pv

—
2 PgQV ~g Kf

where

(2.6)

6'„=-(-f)'"—fg((f"g .f '
f

g„f"(g..f"-—3)~.

Because Lf, is a covariant density it follows from
Noether's theorem" that

'dLf g BLfg (2.7)

and therefore the field equation does not require
separate covariant conservation of T„, and l „„.
This is in contrast to the Einstein equations. Con-
versely, if Eq. (2.4) is valid, the mass term of
the field equation imposes four conditions on f and

g of the form

X (gnkgBa gn8 g)ha) ' (2.2)
fg fg p (2.6)

The last two terms in the Lagrangian (2.1) give
the coupling of f to hadronic and g to leptonic
matter. Variation of these terms with respect to
f„,and g„, defines the covariantly conserved en-
ergy-momentum tensors T&„and T» for hadrons
and leptons. Assuming that the equations of mo-
tion for matter are satisfied, one has

If f„,(x) =g„„(x), then the mass term in Eqs. (2.5)
vanishes, as can be seen from Eqs. (2.6), and the
field equations decouple into two Einstein equa-
tions. Therefore, any solution of the Einstein
equation is also a solution to the system (2.5) with

f„,=g„„and identical source term
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2 0 2 L
f ~pv = &g ~pv ~

We call these solutions trivial. In particular, the
Schwarzschild solution of GR is a spherical sym-
metric solution for f-g theory if hadronic and

leptonic energy is related by Eq. (2.9). However,
as we shall see from the linearized theory, for
this case the source does not couple to the "mas-
sive, " i.e., short-range part of the field.

III. THE VACUUM EQUATIONS

In this section we discuss consequences of the
vacuum equations. By vacuum we understand the
absence of all matter and fields except the f and

g fields, i.e., T~„=T~„=O.
We first state a theorem concerning trivial solu-

tions.
Theorem I. If for a vacuum solution either

R 2 „(f) = 0 o2" R „„(g)= 0, then f„„=g„,.
We shall only sketch the proof":
Let R„„(g)= 0; then from Eqs. (2.5) it follows

that 5„"=0, multiplying by g "/'f gives g/„f 1'=4
and then g18f 2 = 51.

This theorem has important consequences.

f„„=2}„„+«/F „„(x),

g„,=r/„. + «, &„,(K),
(3.1)

where

afar„„and

g, h„„are small deviations from
This is a nontrivial result since one could

imagine the q term of one field to be nondiagonal
or to have different signature from the other.

A. Linear Theory

We now proceed to linearize the field equations
by substituting (3.1) into the Lagrangian (1.1) and
retaining at most quadratic terms in the fieM
variables. The result is

Suppose that, in vacuum, R„,„(g)=0; it then
follows that also R„„~~(f) = 0. The coupling be-
tween the fields is therefore so rigid that if one
field is "flat" the other is also forced to be flat.

A still stronger consequence is that if one choos-
es for R„,„~(g) = 0 a coordinate system where g&„
=2i„, (where 2i„„standsfor the signature of the
field) then in the same coordinate system f„„=
This implies that all solutions obtainable by ex-
pansion around flatness can be written in the form

L =L(F)+L(h)+L(F, I1)

=, (F F""'-&F F '"-F F "+2r F"' )+-'(@ . & "-2a a"" -I h'+2h a"" )pv, X pv, X pv;X pv, X, , X , X,v

111
+

4 (K,F"—«, &"')(K,F"—«P ")(2}~1n 8. 2)n8n 1,.)-,

where

p=p"„and h =h„". (3 2)
8. Internal Degrees of Freedom

of the Free Fields

One can further introduce "diagonalizing" fields
+""and h"" by writing

(K 2+ K 2)1/2FP& K F~u —K .
I1~1'

f g . f
(K 2+ «2)1/2Pu «F2u+ K I21vf f

(3.3)

and finally arrive at the decoupled linear field
equations of the form

(CI+M )F~ =0, F~ „=F=0, (3.4)

O(a~" ,'q2"a)=0—, —h~"„=-,'h ~, (3 5)

where M' =M'(1+ «,'/«/') is the renormalized
mass of the E field; we have used the conditions
for pure spin-2, following from the mass term,
to simplify the massive equation. In Eqs. (3.5) we
have taken advantage of gauge invariance under
transformations

h~'- h~'+A~'+A '~

to impose the Hilbert gauge.

The Lf, term in the linearized Lagrangian be-
comes a Pauli-Fierz mass term leading to a mas-
sive pure spin-2 field. The linear theory thus
contains 5 (from F"")+2 (from I2"")=7 independent
polarization modes or degrees of freedom.

While a decomposition into massive and mass-
less parts of the fields is possible in the linear
theory, this is not so in the full theory. It is im-
possible to find a covariant combination of f and g
such that the field equations decouple into massive
and massless parts. The reason for this is simply
that one cannot build from one tensor field a co-
variant mass term. " (Note that the cosmological
term in GR is not a mass term. ) Nevertheless, it
is possible to obtain the total number of degrees
of freedom also in the full theory.

Like the Einstein equations, the f -g theory con-
tains redundant field components. In GR there
exists the Arnowitt-Deser-Misner (ADM) formal-
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ism" to eliminate systematically constraint and
gauge variables by making a I3+ 1 (space + time)]-
dimensional decomposition of the field, and there-
by extracting the independent dynamical modes
of the theory. For the Einstein Lagrangian the
quantities G =(-goo)'" and G =g... i= 1, 2, 3, play
the role of Lagrangian multipliers leading to four
constraint equations on the remaining six quantities
g,.„ together with their canonical momenta m".
The 4 constraints +4 gauge conditions, due to co-
ordinate invariance, reduce the dynamical degrees
of freedom from 6 to 2.

Lawrence and Toton" have generalized the ADM
formalism for the f gtheor-y. They give the
Lagrangian (1.1) in a (3+ 1)-dimensional decom-
position and show explicitly that the mass term im-
poses only four constraints. The reason for this
is that the corresponding eight quantities, G, G,.
and F =(-f")'", F, =f„, appear . quadratically in

the mass term. Variation with respect to, say,
G and G,. leads to equations which determine them.
Reintroducing for G and G,. into the Lagrangian
leaves the remaining four quantities p, I',. linear,
i.e., as Lagrangian multipliers, thus leading to
four constraint equations. Again, general covari-
ance allows one to fix a coordinate system by im-
posing four conditions. Therefore, the total of 24
dynamical variables, namely, g, ,, f, , , and their
canonical momenta x"(g) and w"(f), are related by
eight equations, leading to eight unconstrained
pairs of canonical variables. In contrast to the
linear theory, the full theory has 8 degrees of
freedom.

Thus, in this case, the nonlinearities in the
mass term increase the number of degrees of
freedom by one. '" Following Deser, we show
now why this happens for the f gtheory-. If we
decompose the linearized mass term, we obtain

In the linearized version the quantities E"and h"
appear linearly in the free part of L(F) and I-(h),
respectively, as can be seen from (3.2) if one
introduces the canonical momenta m "(F) and v"(k)
of p', , and h, ,. But they also appear linearly in
(3.6) and, therefore, lead immediately to the fol-
lowing constraints:

Kg

f
(3.7)

where the left-hand side follows from the free
Lagrangian.

From (3.6) we see that F ' and ho' occur qua-
dratically, as in the full theory. Variation with
respect to them gives six equations containing
&" and h". These equations can be separated into
three equations defining three of the quantities + '

and h.",

tions. The total number of unconstrained variables
is therefore 24 —10 =14, i.e., seven canonical
pairs of independent modes. We should 'mention
that in Refs. 7 and 13 it is emphasized that this
extra degree of freedom, probably present in any
nonlinear Einstein-like massive field theory,
causes severe difficulties with the positive defi-
niteness of the energy.

C. Propagation of Fields

It is well known that the causal structure of GR
is governed by the null cone of the metric g„„(x).
In particular, disturbances of the g field itself
propagate along the characteristic surfaces ~(x)
=const. of the Einstein equations, defined by (see
Refs. 16 and 17)

(3.10)

In the f gtheory the cha-racteristic surfaces for
the g field are again given by (3.10) whereas for
the f field one has

f""~„~,=0. (3.11)

and three constraint equations of the form

(3 6)

a, m", (F)+~~w", (Pi) = 0.. . (3.9)

In the linearized theory the number of constraints
is five instead of four. Choosing the corresponding
Lagrangian multipliers imposes five more condi-

The mathematical reason for this is that the mass
term contains no derivative and therefore does not
change the coefficients of highest derivative in the
field equations. Hence, there are at each point in
space-time two null cones along which disturbances
of the gravitational field propagate. In the next
section, when considering the coupling to matter
and other fields, we shall see that the two cones
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are also essential for the propagation of other
fields and the motion of particles.

The phenomenon of two (or more) propagation
cones can occur already in Lorentz-covariant
theories, with derivative couplings. " Whether
this almays breaks causality is an open question.

IV. INTERACTION WITH MATTER

A. Motion of Test Particles

In order to obtain an understanding of the metri-
cal structure of the theory consider now the in-
teraction of g and f with matter. In GH all matter
(and fields) couples minimally to the gravitational
field. This ensures that test particles follow
geodesics in a Riemannian space-time and that
fields propagate along the g null cone. In the two-
tensor theory, hadrons (or hadronlc fields) and

leptons also couple minimally, but to different
fields. Assuming the existence of test particles
mith only hadronic or leptonie mass, we have,
e.g. , for a hadronic point particle m~, the energy-
momentum tensor

5'(x- ((~))j('f"
8 H[ '(&)j((j&]ll2

where ("(X) is the world line of the particle with

arbitrary parameter X and (~=d$" /dX. From the
covariant conservation law T~, "=0 then follows
the equation of "geodesic" motion,

(4.1)

5" + I'",
(, (f)k "k'=0, (4.2)

with the affine parametrization ( "f „~(~=1.
Similarly, one obtains for leptonie test particles

with world line g" (o) the equation

f««((+ I«(( ( g)( U«) P«0 (4.3)

where f'= df'/do and the parameter v is chosen
such that g'"g„,f"= 1. Therefore, in general the

two types of matter mill move along different "geo-
desics. " Matter containing a mixture of hadronic
and leptonie substances will not follow along geo-
desics of either field.

VF(" —g"('"+M'(F(" —q('"F)

=-'«'(«'+«') '" r«" —' r«')f f

(4.6)

with only E"",=0, while F WO since it couples to
the trace of the energy-momentum tensor. We
notice that both hadrons and leptons couple toh~'
and E"" (to the h"" field with equal strength, while
to F('" with the ratio «,'/«z')

We have not yet specified the coupling constants
&f, g, and the mass M. All that has been said up
to now is independent of their values. This, how'-

ever, becomes important when the connection be-
tween theory and experiments is established. If
the f gtheory -is to be realistic it should repro-
duce the classical experiments of GB. If we now

follow Salam et ul. ' and identify the E field with
the spin-2 f meson of mass M= 1500 MeV, Eq.
(4.6) tells us that the f meson couples to the en-
ergy-momentum tensor of the other hadrons. "
The coupling constant

« =«'(« '+«,') '"
f f f

is estimated to be a few BeV. Because Eq. (4.5)
is identical to the linearized Einstein equation, it
is natural to identify

«, =«,«~(«~'+«, ') "'
with the usual gravitational constant. Thus the
ratio of the coupling constants is «,/«& = «,/«& =10 "
which completely suppresses the coupling of 5' to
leptons (f-meson dominance).

Solutions of Eq. (4.6) for a bounded static source
show the typical e ""/r falloff outside the source.
Therefore, a weak static E field goes to zero with-
in a distance -10 '2 cm from its source. The mo-
tion of macroscopic bodies in weak static gravita-
tional fields is governed by the long-range corn-
ponent h.

C. Geometrical Interpretation

8. The Linearized Nonvacuum Equations

The linearized interaction term of the Lagran-
gian (2.1) is

L(y, hadrons)+ I {'g, leptons) = «zf „,&"„"

+ g h~ 2'~&~

(4 4)

and the diagonalized field equations become

(h"" ——,'q""h) = ,' «~«g («'+-« ') '"(r""+r'")

We have seen that at each point in space-time
one has two propagation cones. One is given by

f» along which disturbances of the f field and of
fields minimally coupled to f propagate. The
other is defined by g„„, for propagation of g and

fields coupled to it. Particles mill in general not
follow geodesies of either fields. This implies
that one cannot naturally assign to either fieM
(or some combination of them) a metrical inter-
pretation. " One could think of taking, for exam-
ple, the g field to be the metric of space-time.
Then leptons would move along geodesics while
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hadrons would not. The hadronic mass would play
the role of a charge, in analogy to electrically
charged pRrtlcles ln GR. The important dlffel'eQce
in the f g-theory lies in the existence (for this
case) of purely hadronic matter. (The same argu-
ment applies for any combination of the fields. )
Moreover, the theory is "bicausal" at each spaee-
time point, in the sense of having two fundamental
propagation velocities.

For weak ~tatic fleMS E"p =0 at distances & j.0 "
cm from the source. From the definition of E~"
[Eqs. (3,3) and (3.1)j it follows, for regions where

P ""=0, that f„„=g„„.This means that hadrons
and leptons move along the same geodesics given
by the Riemannian metric

in the form

(5.1)

where l„ is a null vector field with respect to g
and, therefore, also to f, i.e., g""/„l„=f""I„l„=0.
Geometrically (5.1) means that the two null cones
hyperosculate each other along l&.

A. Vacuum Solutions

The simplest solution (and first found") of the
type (5,1) are the PP waves known from GR."
They can be written in the form

g„„dx"dx"=26(dx')' —2dx'dx' —(dx')' —(dx')',

(5.2)

gpp Qpp + Qg kpp Qpp + Qg App j (4 'I)

where A.„„is given by the linearized Einstein equa-
tion (4.5). We note that for strong fields (i.e.,
where linearization in terms of I and h is not
possible) 1n regions where F" =0 the f -g equa-
tions reduce to the (full) Einstein equations. The
Schwarzschild metric is then the only spherically
symmetric vacuum solution.

Since all classical tests of GR are in a weak
static gravitational field, the f gtheory a-grees
with the classical experiments. "

However, the f-g theory gives results different
from those of GR when (even weak) radiation fields
are considered. %bile for static sources we have
asymptotically f„„=g„„,for radiation this is not
the case. In the next section we shaD give an ex-
act radiation solution for which f„„4g„„every-
where. In principle, radiation expex'iments could
test between f -g theory and GR, e.g., a hadronic
harmonic oscillator will only be excited by an f
wave and remain unaffected by g waves.

f„,dx" dx" =2E(dx')' —2dx'dx' —(dx')' —(dx')',

where 6 and g are functions of x', x', and x'
only. The null vector of (5.1) is l„-5„, and from
the field equations (2.5) only the p, = v =0 compo-
nent remains, leading to simple linear equations:

~,y =m'(r-G),

82 82

2 (s 1)2 (sx2)2

(5 3)

Physica11y, solutions of Eqs. (5.3) represent
waves of the f and g fields propagating in the
(same) l„direction.

One knows from GR that the null congruence to
which l„ is tangent is goedesic with vanishing op-
tical scalars because l„ is covariantly constant
with respect to botlg fleMS. Fox' both fields the
Acyl tensor is of Petrov type N, thus they are
pure radiation fields.

Mansouri and Urbantke" have generalized the
above solutions to the Kerr-Sehild' form

V. EXACT SOLUTIONS

gppdx dx ='gpp +2Cl~ 1p y

f„„dx"dx ' =q„,+2FI„I, (5 4)

with l„g"'l, =0 and l„not necessarily covariantly
constant.

In GR the Kerr-Schild class contains important
solutions such as the Seh%arzsehild, Kerr, and
Vaidya metric. In f -g theory the result is rather
poor. All solutions of the form (5.4) have alge-
braic type N and are plane-fronted waves, i.e.,
fields with R geodesic null congl'uence with VRnlsh-
lQg optlcRl scR1Rx's. The dlffel ence to pp %Rves
is that the rotation does not vanish in general,
Finally, Urbantke" studied general vacuum fields

The f-g equations show all the difficulties of the
Einstein equations plus the coupling due to the
mass term. In GR, symmetry assumptions on the
metric have been very successful in finding exact
solutions. This is not yet the case for the fg-
theory. Ho%'ever, imposing algebraic relations
between f and g fields in order to simplify the
mass term has turned out to be profitable.

The simplest relation is f„„=g„„;for it the
mass tex'm vanishes and one obtains Einstein's
solutions. The generalization of this relation to
f„„=n(x)g„„ leads to a theorem formulated by
Pirani, "which we state without proof.

TIIeoxem II. The only vacuum solutions where
f and g are conformally related are trivial, i.e.,
n(x) =1.

All exact solutions known so far can be %ritten
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under the condition (5.1), where the previous
solutions are contained as sub-cases.

Summarizing the general properties of all the
vacuum solutions so far known, one has that:

(a) &„ is a tangent vector to a congruence of
null geodesics with vanishing twist, shear, and
expansion, for both fields.

(b) Both fields have algebraic special Weyl ten-
sors of the same type, with l„a multiple principal
null direction.

B. A Nonvacuum Solution

g„,dx "dx" = 2dx'dx' —(dx')' —(dx')'. (5.5)

This implies R„„p,(g) =0, and the g field is flat,
written in radiation coordinates. In vacuum it
follows from Theorem I or Eq. (5.3) that E—= 0 as
well. However, taking an energy-momentum ten-
sor of the radiation form

T~„=T(x)l„l„, l„=5„', (5.6)

which couples only to the g field, while T~, =0,
we get nontrivial solutions. The equations can
simply be read off from Eqs. (5.3) by adding (5.6)
and setting G =-0,

a,F = M'F, M'F = ——,~~' 7. ,

so that T(x) must satisfy the equations

(5.V)

(5.8)

We give a prescription for obtaining a nonvacuum
solution from the special vacuum solution (5.2).

Assume that the f and g fields are of the form
(5.2), but with G =—0, i.e.,

Chela-Flores" have tried to find a spherical sym-
metric vacuum solution for the f field by setting
g„„=q„„.Since our Theorem I also requires f„„
=q&„, they also had to put z, =0, so that only the

f equation remained. They succeeded in giving a
solution in the form of a power series showing
the expected Yukawa behavior.

VI. CONCLUSION

We have seen that f ggra-vity, although a gen-
erally covariant theory, cannot be geometrized.
The reason for this is the nonuniversal coupling of
all matter and fields. Moreover, the concept of
causal metrical structure, the main element of
classical field theories, breaks down due to the
existence of two propagation cones at each space-
time point.

In spite of these drastic consequences the theory
is capable of reducing to GR for present experi-
mental situations. The large value of the f -meson
mass and weak static field approximation makes
this possible. Differences from GR come into
play for strong or radiation fields.

The linearized theory is a "normal" massless
and massive pure spin-2 field theory which has
1 degree of freedom less than the nonlinear theory.
We have shown how this degree is constrained in
the linear theory. Further, we have summarized
the exact solution known at present, giving also a
nonvacuum field. None of these fields is spherical
symmetric. The knowledge of an exact spherical
symmetric solution would show the implications
of f-g gravity for gravitational collapse', giving an
answer to Salam's question, whether two-tensor
gravity becomes repulsive for short distances.

for covariant conservation of (5.6). The solution
to (5.8) will be similar to the solutions of the de-
coupled vacuum equations. We show elsewhere"
that explicit solutions taking for T~„and electro-
magnetic null field can be obtained. Thus we have
a solution where the source of the g equations
leaves the g field flat, i.e.,

R„, ,(g) =0 but T~„(g)w0.

Finally, we should mention that Aragone and

ACKNOWLEDGMENTS

The author wishes to thank Dr. W. Graf, Dr. R.
Mansouri, and Dr. H. K. Urbantke for clarifying
discussions and Professor R. U. Sexi for critical
reading of the manuscript and helpful comments.
He is also indebted to Professor Abdus Salam and
Professor P. Budini as well as the International
Atomic Energy Agency and UNESCO for hospital-
ity at the International Centre for Theoretical
Physics, Trieste.

*Work supported by Fond zur Forderung der Wissen-
schaftlichen Forschung Nr. 1534.

)On leave of absence from Institute for Theoretical
Physics, University of Vienna, Austria.

C. J. Isham, A. Salam, and J. Strathdee, Phys. Rev.
D 3, 867 (1971).

2P. C. Aichelburg and R. Mansouri, Nuovo Cimento

10B, 483 (1972).
3W. C. Hammel and E. Lubkin, Wisconsin-Milwaukee

Report No. UWM-4867-72-5 (unpublished) .
4C. Firmani, Astrophys. Space Sci. 13, 128 (1971).
5C. Aragone and S. Deser, Nuovo Cimento 3A, 709

(1971).
6P. G. O. Freund, A. Maheshwari, and E. Schonberg,



384 P. C. AICHEI BURG

Astrophys. J. 157, 857 (1969).
TD. G. Boulware and S. Deser, Phys. Rev. D 6, 3368

(1972).
P. van ¹euwenhuizen, Phys. Rev. D 7, 2300 (1973),

9By this we mean that the invariance group of the
theory is the group of general coordinate transforma-
tions, see J. L. Anderson, Gen. Relativ. Gravit. 2, 161
(1971).

koln the original paper (Ref. 1) this point was left
open but is of great importance since the g andf fields
define the characteristic surfaces of the equations.
Locally the signature of the fields must be either
(+ ——-) or (+++ -). See also Ref. 3.
i~See e.g. , A. Trautman, in Lectures on Particles

and Field Theory, 1964 Brandeis Summer Institute in

Theoretical Physics, edited by S. Deser and K. W. Ford
(Prentice Hall, Englewood Cliffs, N. J., 1965), Vol. I,

~~A similar theorem with proof is given in Ref. 2. See
also R. Mansouri, Acta Phys. Austriaca (to be published).

See S. Deser, ICTP Report No. IC/71/144 (unpublished).

R. Arnowitt, S. Deser, and C. W. Misner, in Gravita-
tion: An Introduction to Current Research, edited by
L. Witten (Wiley, New York, 1962).

~J. K. Lawrence and E. T. Toton, Ann. Phys. (N.Y.)
72, 293 (1972).

F. A. E. Pirani, in Lectures on Particles and Field
Theory, 1964 Brandeis Summer Institute in Theoretical
Physics, edited by S. Deser and K. W. Ford (Prentice
Hall, Englewood Cliffs, N. J., 1965), Vol. I, p. 269.

i~R. Courant and D. Hilbert, Methods of Mathematical
Physics (Interscience, New York, 1966), Vol. II, p. 291.

P. C. Aichelburg and R. U. Sexi, Nuovo Cimento 2B,
63 (1971).

~8%hether the spin-2 hadrons play such an exceptional
role 'in hadron physics is not known, but at least it is
not in disagreement with present experimental data.
See J. Wess, lecture given at the Conference on Broken

Conformal Symmetry in Elementary Particle Physics,
Frascati, 1972 (unpublished).

A metrical structure can always be defined by conven-
tion about the behavior of clocks and rods. A natural
metrical structure should, however, show explicitly
the symmetry of a physical system. (We are indebted to
Professor R. Sexi for this remark. ) See also H. Reichen-
bach, The Philosophy of Space and Time {Dover, New

York, 1958); A. Grunbaum, Philosophical Problems of
SPace and Time (Knopf, New York, 1963).

2~The only experiment which tests the field equations
beyond the linear approximation is the advance of the
perihelion. Although no exact spherical symmetric
solution is known, one infers by looking at the second-
order mass term contributions that they are completely
negligible in comparison to the second-order massless
part.

F. A. E. Pirani, ICTP Report No. IC/71/144 {unpub-
lished) .

P. C. Aichelburg, R. Mansouri, and H. R. Urbantke,
Phys. Rev. Letters 27, 1533 (1971).

~See, e.g. , J. Ehlers and W. Kundt, in Gravitation:
An Introduction to Current Research, edited by
L. Witten (Wiley, New York, 1962).

2~R. Mansouri and H. K. Urbantke, Commun. Math.
Phys. 26, 301 (1972).

26R. P. Kerr and A. Schild, in Proceedings of the

Meeting on General Relativity, Firenze, 1965, edited
by G. Barbera; A. Trautman in Recent Developments
in General Relativity, edited by PWN-Polish Scientific
Publisher, Warzawa (Pergamon, New York, 1962).

2~H. K. Urbantke, Lett. Nuovo Cimento 4, 155 (1972);
J. Math. Phys. (to be published).

P. C. Aichelburg (unpublished).
29C. Aragone and J. Chela-Flores, Nuovo Cimento

10A, 818 (1972).


