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Using the expression for the form of a partial-wave amplitude near a double-Regge branch point as

obtained from t-channel unitarity equations, we investigate the conditions required for self-consistency of a

Regge pole and its associated Reggeon-Pomeron branch point near t = 0 where the two singularities collide.

The self-consistent solution we obtain implies the vanishing of the Reggeon-Reggeon-Pomeron coupling at
t =0.

INTRODUCTION

At high energies, it is thought that two-body
scattering amplitudes may be described in terms
of the exchange of t-channel Regge poles together
with cut contributions arising from multiple-Reg-
geon exchange. Where the t-channel quantum num-
bers are such that Pomeron exchange is not pos-
sible, the exchanges of other Reggeons together
with their associated Reggeon-Pomeron (RP) cuts
provide the dominant contributions to the ampli-
tude. At sufficiently small t and high enough en-
ergies the other multi-Reggeon exchange contri-
butions (Rpp, Rppp, AA, etc. ) will be unimpor-
tant since they will fall off as a power of s or lns
more rapidly than the Reggeon-Pomeron cut con-
tribution. If the Pomeron is assumed to be a
Regge pole of intercept 1, we find that at t=0 a
Regge pole R and the AP, RPP, . . . branch points
collide.

By using t-channel unitarity equations Gribov
et al. ' have shown that, near a double-Regge
branch point at j = c(,(t), the t-channel partial-
wave amplitude for a process in which the t chan-
nel is elastic has the form

plitude it must occur as a zero in the denominator
in Eq. (1). Therefore, if

D(j, t) —= B(j, t) + v(j, t) ln( j —a, )

we must have

where o(t) is the trajectory of the Regge pole. In
an investigation' of the special case of the Pomer-
on-Pomeron cut, Bronzan has obtained solutions
to Eq. (3) in terms of consistency equations relat-
ing coefficients in an expansion of B about j = 1,
t = 0, and the parameters defining the Pomeron
trajectory. Assuming that any fixed j-plane cuts
in B are weak, Bronzan finds that if the double-
Pomeron exchange cut is to have the Mandelstam
sign it is necessary for A and B to share a second-
order Castillejo-Dalitz-Dyson (CDD) pole which
moves through j = 1 at t = 0. A consequence of this
is that the triple-Pomeron coupling vanishes at
t=0. In this paper we extend Bronzan's analysis
to the general Reggeon-Pomeron cut, and again
find it is necessary for A and B to contain a sec-
ond-order CDD pole. This results in a vanishing
of the Reggeon-Reggeon-Pomeron coupling at t=0.

where A and B are undetermined functions of j and
t. v is a known function depending on the Regge
trajectories being exchanged. The function B will
contain weak singularities associated with multi-
Regge exchange cuts, and may also contain fixed
or moving poles or fixed j-plane cuts without
violating any general principles. However, B
cannot contain any t-plane cuts other than the
multi-Regge cuts, as this would be inconsistent
with Mandelstam analyticity. From the above dis-
cussion, we see that in the case of the Reggeon-
Pomeron cut, near t = 0, f(j, t) should also contain
the Regge pole. It is now well known' that if the
pole is also to occur in the Reggeon scattering am-

v=(p'(-'t)tp'(-'t)+-'to"(-'t)j} "'. (4)

It is not too difficult to show that for nonidentical
trajectories, n and P, this becomes

v=2 cy' t', +P' t',

s(I~'('l)I'(("(&')+(0'(')('~" (')&) '"
o'(t', )+p'(t;. )

where the derivatives are evaluated at the branch
point, i.e. , at the points t, =t» t, =t', for which j

II. THE SELF-CONSISTENCY EQUATIONS

First of all we consider the function v(j, t) in
Eq. (1). In Ref. 1 it is shown that for the exchange
of identical poles, P(t), v is given by
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= n(t, ) +p(t 3) —1 is a maximum subject to the con-
straint I"'=t,"'+t2'". t', and t', may be ex-
pressed as functions of t.

We note that in the special case we are going to
consider where one of the trajectories has inter-
cept 1 and positive signature, Eq. (5) is unaltered
if instead of using the analysis of Ref. 1 we use
White's expression' for the discontinuity across
the double-Regge cut where signatured amplitudes
are used.

Using Eq. (5) we may write D, for small t, as

n = a(j, t)+ . . . , + O(t) In(j —n, ) .2

(6)

It is obvious that Eq. (3) cannot be satisfied un-
less either B, cy, or P contains a singularity at
t=0 or j= a, (0), otherwise the logarithm in Eq. (6)
will lead to D diverging at t=0. Solutions to Eq.
(3) may be found by introducing a. fixed j-plane
branch point at j= a, (0) in B. However, we find
that in such solutions the fixed cut will dominate
over the moving cut for t &0 and at t =0 will com-
pletely cancel the double-Regge cut contribution
so that there is no cut contribution to the ampli-
tude in the forward direction. We feel that such

a strong fixed-cut contribution is unacceptable,
and also, when o. =P = P, we should like our solu-
tion to Eq. (3) to reduce to that of Ref. 2. There-
fore we shall follow Bronzan in assuming that A
and B have a second-order CDD pole and that the
trajectories may have a left-hand cut starting at
t=0. In order that this t-plane cut in the trajec-
tory functions should not result in a corresponding
branch point in the partial-wave amplitude, it is
convenient, as in Ref. 2, to use the inverse func-
tions T„T„and T, defined by

A branch point at t = 0 in the trajectory functions
corresponds to fixed j-plane branch points in the
T;t.c By expressing Eq. (1) in terms of the inverse
trajectory functions we can ensure that f(j, t) will
only contain fixed j-plane cuts but no fixed t-plane
cuts even though the trajectory functions have such
cuts.

Taking P to be the Pomeron and n to be an ar-
bitrary Regge pole trajectory having intercept Qp,
we assume that the T,. have expansions of the form

T,(j,) =d,(j, —o', )+d,(j, —n, )'+d, (j, —o', )' In(j, —o', )+ ~ ~ ~,

T,(j,) = e, (j, —1)+ e,(j,—1)'+e,, (j,, —1)' ln( j,, —1) + ~ ~,

T.(i ) =f.(i —~.) +f,(i —~.)'+f,(i —~.)'»(j —~ ) +

In terms of the functions T; the Reggeon-Pomeron branch point is given by

j =j,=—max( j,+j., —1),

subject to t"'=T,"'(j,)+T,"'(j,) The pos.ition j,=j;, j,, =j,; of this maximum is given by

[TED(j,)l' ET.'(j.)]'
T,(i,) T,(i.)

(9)

(10)

Using Eq. (10) we may relate j; and j'„and near t=0 we may expand them in terms of j, —o.„obtaining

6 +g (4 +8) 6 +8Q 6 +8Q

3d,e, (d, —e,)+ '-'—' ' (j —o. )'ln(j —n )+ ~ ~ ~

(d +e )3 c 0 c 0

g —1 = —(j, —n, ) —— 3 d ln ———e ln —+ d —e + 2(d, —e ) (j —o. )
-c ~o - ~o~o AQ eo 2

d+e ' ' (d+e)' ' d+e ' d+e, 2 2 c

3d,e,(d, —e.,) (j —o. )'ln(j —o. )+ ~ . -
(d +e )3 c 0 c 0

Using Eq. (11) together with the equation

1/2( jc + jc~ 1) T 1/2( jc) + T 1/3( jc) (12)

we may obtain
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T(j)=(d +e)(j —n)+ dd )n +e e )n +dd +e e)(j —a)0 0 0 d +e 0 3 d +e 0 d +e 0 1 0 1 0

do+ go)

If n and P are given by

a(t) = n, + a,t + n, t'+ n, t'ln t + ~ ~ ~,

P(t) = 1 + P,t + P, t'+ P,t' Int+ ~ ~,

then from Eq. (13) we find that

n, (t)=n, + ' ' t+, 2n3P, ln ' +2P,n, ln ' +n2P, +P a,' t + ' ' ' 11 nt +~ ~ ~ .

We can now consider the problem of reexpressing Eq. (1) in terms of the functions T, At sm. all t we
find that

Tl(71)T2(22) + 0( ) + 0( )n'(t', ) + P'(t.') T',(jl) + T!(j l) n, + P,

We also find that

j —n, (t) = ', . +0(t,j —n,).T,(7') - t,
C

Therefore, for small t, we may write Eq. (1) as

f(j t) = a(j, t) (18)

Bronzan regards this form for f(j, t) as more fundamental than that of Eq. (1) since it is still valid (in the
sense that no undesirable t-plane cuts occur in it) if the trajectory functions contain branch points at t =0.

In order to obtain a self-consistent description of the Regge pole o. and the Regge-Pomeron cut near t =0
we now have to determine the constraints imposed by Eq. (3). As described above, it is necessary to as-
sume that A and 8 contain a double CBD pole. We assume that any cuts in A and 8 are weak, and that near
t =o, j = n, the functions take the form 4

b, +b,t+b, (j —n, ) +b, t'+b, (j —n, )'+b, (j —n )t
[c„t+c (7 —a )]

A—
[c,t+c,(j —n,)]''

(19)

where a(j, t) is analytic at t =0, j = n, To second. order in t and (j —no) we may write Eq. (1) as

a'(j, t)

b, +b, t+b, (j —n, )+b, t +b,(j —n, )'+b, (j —no)t+ ~ ~ ~ + ' ' ln2[c,t+ c,(j —n,)]' T.(j ) —t

a, +pa Tc 7

(20)

In order that this expression should contain the Regge pole at j = n(t), we must have

bo+b, T,(j) +b~(j —no) +b~[T,(j)] +b, (j —no)2+bs(j —ao)Ti(j )+ ' ' 2 0 ln ', . + ~ ~ ~ =0.
1 1 c 7
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c

FLQ. 1. j-plane singularities of f(j,t) for (a) t &0;

(b) t &0.
FIG. 2, Reggeon-Reggeon-Pomeron vertices.

Substituting for T, and equating coefficients of powers of (j —n, ) to zero, we obtain [working only to sec-
ond order in (j —n, )]

2n1 b,bo=0~ b1= ~ ~ (cl+c3nl) ~
b3=-

n3~n1 1j Q1

2n3 3 2(C1 + c3n1) n1
b, — b~n, —-b, n, +, , (c, + c,n, ) ln

Q3(CVg + pg) n1 1 nI 1

(22)

Thus the consistency requirement provides relations between the b;, c„n„and P, which reduce the
number of undetermined parameters in Eq. (20). If we were to take higher terms in our expansions we

should find that 8 has to contain a weak fixed cut at j = n, Look.ing at the j-plane structure of f(j, $), we

find that for t& 0 there is a pole at j = n(t), the Regge-Pomeron branch point at j = n, (t), where n, is given

by Eq. (15) and a fixed cut with branch point at j = n, [see Fig. 1(a)]. As t is decreased the pole and cuts
converge on one another and collide at / =0. For t&0 we find that f(j, t) contains complex conjugate pairs
of poles and moving cuts such that the real analyticity of the amplitude is maintained.

DISCUSSION

Theoretically, the form for f(j, t) given by Eqs. (20) and (22) would provide a more satisfactory means
of parametrizing s-channel inelastic scattering amplitudes near t -0 than is obtained using the absorption
model. However, unless further constraints are imposed on the large number of undetermined parameters,
the resulting amplitude will have very little predictive power.

The most interesting point arising out of the above analysis is in connection with the Reggeon-Reggeon-
Pomeron (RRP) coupling. In Ref. 1 it is shown that if the particle scattering partial-wave amplitude is
given by Eq. (1), then the Reggeon production amplitude has the form(f).

~:,„8+vin(j —n, )
'

Therefore the expression corresponding to Eq. (20) is given by

2[c,t+c,(j —n,)]' T,(j) —t
(24)

Looking at the Regge-pole contributions we find
that in the particle scattering amplitude the resi-
due of the pole is finite at t =0. However, in the
Reggeon production amplitude the residue vanishes
at I =0 because of the factor c,t+c3(j —n, ) in the
numerator of Eq. (24). This implies that the RRI'
coupling, nz»(t, t„ t3), vanishes when t =I, =t, =0.
By carrying out a calculation similar to that in
Ref. 4, we may deduce that the coupling nR»(0, f, t)
vanishes linearly as t- 0. Thus if Bronzan's anal-

ysis of the Pomeron-Pomeron cut is extended to
the Beggeon-Pomeron cut, we find that in addition
to the triple-Pomeron coupling the ARP coupling
must also vanish at t =0. At first sight it would

appear that this prediction could easily be tested
by looking at inclusive cross sections of the type
a+b- c+ (anything), where ac does not have vac-
uum quantum numbers. However, when the helic-
ity dependence of the Reggeon production amplitude
is taken into account (see Refs. 2 and 5), we find
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that the coupling which we predict to vanish corre-
sponds, at t =0, to the inclusive coupling shown in
Fig. 2(b), but is not the same as that shown in
Fig. 2(a).' Thus it becomes necessary to look at
inclusive reactions in which ac has vacuum quan-
tum numbers, but even then our prediction can be
tested experimentally only if the triple-Pomeron
coupling and the two RPP couplings all vanish at
g =0. Although a number" of the proofs of the van-
ishing of the triple-Pomeron coupling at t =0 are
in doubt, '4 the derivations of Abarbanel and
Green„' that of Ref. 2, and the arguments" based
on Gribov's Reggeon calculus still lead us to be-

lieve that this coupling vanishes. Experimentally
there is evidence" that it is small, but the data
are not good enough to confirm that it vanishes.
When more is known both theoretically and experi-
mentally about the RPP couplings, the vanishing
of the RPP coupling at t=0 may be open to experi-
mental verification.
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