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Schiff has conjectured that the weak equivalence principle (WEP: free-fall trajectories independent of
test-body composition) implies the Einstein equivalence principle (EEP: all nongravitational laws of
physics the same in every freely falling frame). This paper presents a proof of Schiff's conjecture,
restricted to (i) test bodies, made of electromagnetically interacting point particles, that fall from rest in

a static, spherically symmetric gravitational field; and (ii) theories of gravity within a certain broad

class—a class that includes almost all complete relativistic theories that we have found in the literature,

but with each theory truncated to contain only point particles plus electromagnetic and gravitational

fields. The proof shows that every "nonmetric" theory in the class (every theory that violates EEP)
must violate WEP. A formula is derived for the magnitude of the violation. Comparison with the

results of Eotvos-Dicke-type experiments rules out various nonmetric theories, including those of
Belinfante and Swihart and of Naida and Capella —theories that previously were believed to agree with

all current experiments. It is shown that WEP is a powerful theoretical and experimental tool for

constraining the manner in which gravity couples to electromagnetism in gravitation theories.

I. INTRODUCTION

In a previous paper' we have discussed the con-
tent and significance of Schiff's conjecture. In

brief, the conjecture states that all theories of
gravity which satisfy the weak equivalence prin-
ciple (WEP), i.e. , predict a unique composition-
independent trajectory for any test body at a given
point of spacetime and with a given initial veloc-
ity through that point, must satisfy the Einstein
equivalence principle (EEP), i.e., must show that
the nongravitational' laws of physics are the same
in every freely falling frame. When specialized
to "relativistic theories of gravity"' (as will be
done throughout this paper), Schiff's conjecture
says that every theory satisfying WEP is neces-
sarily a "metric theory. "' Plausibility arguments
(e.g. , Refs. 1 and 2) have frequently been given
for the conjecture, but there have been few de-
tailed calculations that bear upon its validity or
invalidity. Indeed, the conjecture is so sweeping
that it will probably never be proved with com-
plete generality. (Such a proof would require a
moderately deep understanding of all gravitation
theories that satisfy WEP —including theories not
yet invented, and never destined to be invented.
Such understanding is well beyond one's grasp in

1973.)
On the other hand, one can gain useful insight

by proving restricted versions of the conjecture,
and by searching for the most general versions
that are provable. For example, one might first
analyze test bodies with purely electromagnetic
internal interactions and thereby attempt to show
that particles and electromagnetism must interact
with gravity in the manner of metric theories
(EEP) in order that WEP be satisfied; next ana-
lyze purely nuclear systems and attempt to show
that nuclear fields must couple to gravity metri-
cally; etc. Unfortunately, for our purposes, nu-
clear interactions have not been given an adequate
mathematical representation even in the absence
of gravity; and the nonmetric theories known to
us make no attempt to write down nuclear force
laws. Hence our present program must end one
way or another after the first stage. Even a gen-
eral proof of the first stage (Schiff conjecture for
bodies with internal electromagnetic interactions)
is too much to expect. To make it manageable,
one must assume some restricted (but hopefully
quite general) form for the interactions. This we

shall do in the present payer —with an interaction
form general enough to include all metric theories
plus almost all nonmetric theories we have found
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in the published literature. As a byproduct of our
proof, we can rule out several nonmetric theories
in the literature.

In order not to prejudice ourselves, the lan-
guage and concepts used in the calculation will be
those employed in standard classical field theory
with gravity treated as just another ordinary field.
In particular, we will not use such phrases as
"curved spacetime" and will not make any co-
ordinate transformations to real or pseudo- "free-
ly falling frames. " The concept of gravity as a
metric phenomenon should be forced upon us by
WEP.

As spelled out in Sec. II, we shall take a non-
quantum-mechanical approach and shall use a
particl. e rather than a fluid picture for the test
body. Since the gravitation theories with which
we attempt to tie in are largely classical theories,
we feel. that a cl.assical approach is completely
justified and perhaps essential. There are two
reasons why a particle approach has been taken:
first, more often than not, classical field theories
formulate the interaction of gravity with matter
in the form of point particles; second, a charged-
particle approach allows one to deal with the ex-
act "gravitationally modified Maxwell equations"
of a given theory, rather than with their smeared-
out averages.

Our calculation is not the first of its type. For
several particular theories, and at lower orders
of approximation, the acceleration of electromag-
netic test bodies in a gravitational field has been
previously calculated. Nordtvedt' and Belinfante
and Swihart' have both done calculations, to first
order in the gravitational field potential and
squared particle velocities; Nordtvedt for general
metric theories, and Belinfante and Swihart for
their theory of gravity. In addition, Post' has
done a calculation, at post-Newtonian order, of
the acceleration of a confined quantity of electro-
magnetic energy in a gravitational field. Had his
calculation been carried to higher order it is con-
ceivable he could have obtained part of our result:
that e = p [cf. Eq. (21)J.

Section II of this paper gives an outline of the
assumptions, procedure, and techniques of our
calculation, including the results; Sec. III pre-
sents the details. Section IV compares the pre-
dictions for WEP violation with the results of
Eotvos-Dicke-type experiments, and thereby rules
out the nonmetric theories of Belinfante and Swi-
hart, "Capella, ' Naida, ' and Whitehead. ' Also
discussed is the manner —both quantitative and
qualitative-in which WEP is an experimental
probe of the "gravitational-Maxwell equations, "
as contrasted to previously recognized experimen-
tal tests of those equations.

II. GENERAL FRAMEWORK AND RESULTS

where we have used the bar above the I. to indi-
cate that I. may be only a part of the total. Lagran-
gian, and where the various symbols will be de-
fined below. The "gravitationally modified Max-
well equations" (GMM: Maxwell's equations in
the presence of a gravitational field) are of the
for m

V (eE) = 4wp,

V x(p 'B) =4pj+ —(eE) .
BE

(2)

(3)

Definitions of the quantities in Eqs. (1)—(3) and
of other quantities that will. be used in the calcula-
tion are given below:

x' = spatial coordinates; they are nearly Carte-
sian when gravity is weak,

E=a time coordinate associated with the static
nature of the SSS field, nearly equal to. proper
time for slowly moving particles when gravity is
weak,

m»=rest mass of particle k, a constant,
e~=- charge of particle k, a constant,
x„"(t)=world line of particl. e k,
v,"-=dx~]'/dt,
x'=—t 7

v~'=—5,.&v~v~ with 5,, the 3-Kronecker 5,

U(r) = a gravitational potential equal to t]d, /r,
where M, is a constant ("active gravitational
mass") characterizing the source of the SSS field,
and r is coordinate distance, [(x — ) +x(y2—y, )'

In calculating the center-of-mass acceleration
of an electromagnetic test body, we would like to
set up a formalism which includes as many types
of gravitation theories as possible, but which is
not too complicated. In particular, our formalism
should be able to deal with scalar, vector, tensor,
scalar-tensor, etc. theories.

We have found that all of these different types
of theories can be put into a somewhat universal
form when describing a static, spherically sym-
metric (SSS) gravitational field-providing their
dynamical law' for particle motion is derivable
from a Lagrangian. (The restriction to SSS fields
is certainly a limitation in principle, but it allows
us to handle many different theories at once; and,
as discussed in Sec. IV, is not a limitation in
practice. ) The quasiuniversal description of par-
ticles and electromagnetism in an SSS field is as
follows:

The motion of charged particles under the joint
action of gravity and the electromagnetic field
A.

&
can be derived from the Lagrangian'

T=p f ]- „( . uv ]'H~-eAe ,'eve]et, ,
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+(e —e,)]"2, from source of field point,
V, V ~ =the usual differential operators of gravity

free Euclidean space,
g

—= VU —= the gravitational acceleration to be ex-
pected if the theory in question were Newtonian

theory,
T, H, c, p, —= functions of the gravitational potential

U; functions that are arbitrary in this calculation
but that have a specific form in each theory of
gravity when the coordinate system has been suit-
ably specified,

A" =- components of an electromagnetic vector
potential, a four-vector,

(A)' =A, =- spatial part of vector potential,

J —= Q ep vg, 5 (x —xg,(t)), (4a)

p = g e,5'( —xx,(t)), (4b)

E -=VA, —aA/st,

B -=VxA.

(4c)

(4d)

Although in most theories the form of L in Eq.
(1) is typical only of SSS fields, it turns out that
all of the results we shall obtain hold even if U

is an arbitrary, but time-independent function of
position.

For an SSS field in a given theory, T, H, e, and

p, will be particular functions of U (and hence of
position). Here we assume that T, H, e, and p,

have been given and eve seek Ne relations among
them, if any, that are required for comPliance
with WEP. It is clear from Eq. (1) that we have
sacrificed general covariance of the particle La-
grangian in order to encompass a wide range of
theories.

Note that Eqs. (2)-(3) can be reinterpreted (dif-
ferent physics; same mathematical representa-
tion) as the usual Maxwell equations for a perme-
able medium in which the free sources originate
from charged particles labeled by k. Thus e and

p. play the role of "gravitationally induced di-
electric and permeability parameters, " respec-
tively. We require that T, H, e, p, all approach
unity as U vanishes so that the special relativistic
limit is maintained.

Given the SSS restriction, one may ask how gen-
eral are Eqs. (1)-(3). Except in the most general
(nonmetric) case of Jordan's theory, "which is
incomplete' in the sense that it involves unspeci-
fied processes of particle creation, all theories
we know of which are complete enough to formu-
late the interaction of the electromagnetic field
with gravity have GMM equations of the form of
Eqs. (2)-(3)." In fact, the "e-p. formulation" of
the sourceless Maxwell equations in metric theo-

ries has sometimes been used in calculations. "
The particle Lagrangian I. [cf. Eq. (1)] also ap-
pears to be fairly general, except for a class of
theories discussed by Naida' which includes the
theory of Capella. ' We treat the Capella-Naida
theory on an individual basis in Sec. IV, using the
methods developed in this section. We point out
that it is sometimes necessary to perform a re-
formulation (same theory; new "mathematical
representation") of a theory in order to put it into
the form of Eqs. (1)-(3) (see, for example, the
Belinfante-Swihart theory as analyzed in Ref. 14).
Finally, we should emphasize that, even more
important than the generality of Eqs. (1)-(3), are
the techniques and methods developed in this sec-
tion, since they can also be applied on an individ-
ual basis to that handful of theories which is not
included in Eqs. (1)-(3). We now proceed with

an outline of our calculations.
Variation of Eq. (1) yields an expression for

the acceleration of the kth particle, which, togeth-
er with Eqs. (2) and (3) constitutes three coupled
equations. We seek a perturbation solution.
There are two obvious, small dimensionless quan-
tities in which one could expand: the gravitational
potential U and the squared particle velocities v,'.
Since we prefer a result correct to all orders in
the gravitational potential, we expand only in v~'
and leave T, H, e, and p. as arbitrary functions
of U. We do, however, expand these latter func-
tions in a Taylor series about the instantaneous
center of mass of the test body (defined below),
l.e.,

T=T, +(g x)T,'+ ~ ~ ~,

where

T' = dT/dU and -To = (dT/dU)-„=, . -

(5)

(6)

+ O(m, v'),

x ~
=—x] —xg, q

M= m~,
k

X,m —=M 'Qmq x~.

(6)

Here E, G, K, 8 are again arbitrary functions of the

We shall assume that the body is small enough
so that secondderivatives of U make negligible con-
tributions. Indeed, this is part of the definition
of "test body" (Ref. 1) and is a, necessary and in-
tegral qualification in Schiff's conjecture.

W'e define the center of mass for the test body
by the following sequence of equations:

m, = m»{1+Z[U(x„)]}+,' m„v, '{1+—G[U(x,)]}
+ —,

' e,Qe, ~x,, ~
'{I+K[U(x,)]+S[U(x,)]}
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potential U. (Whenever two indices, e.g. , i and k,
occur in terms, in double or single sums, it is
always assumed that i ok in the sum. ) Any cred-
ible result should be independent of the particular
definition of the center of mass as long as it re-
mains inside of the body, that is, the resultshould
not depend on the spec ific forms of the functions
I', G, K, andS.

We now assume that at t = 0, the center of mass
of the test body is momentarily at rest, at the
origin of the coordinate system,

center-of-mass acceleration

A. =m '(g ", ,+2+m, v, r, a,}, pl)

where

A, —= d'X, /dt',

ag, = d vt /dt,

m p
= dm p/d-t, etc.

Return for a moment to the details of the expan-
sion scheme. Our expansion is in the quantity

(X, ), ,=(dX, /dt), ,=0. (10) v'-=(typical squared particle velocity) ~ v,'.
By differentiating Eq. (9) twice and combining
with Eqs. (10), we obtain for the instantaneous The virial theorem guarantees that

(12a)

(typical charge of a particle)' e,'
(typical mass}(typical separation of neighboring particles) m„lx;„l

(12b)

Thus, without serious error, we may treat both terms on the right-hand sides of Eqs. (12a) and (12b) as
0(v') when ordering the terms in the expansion.

Besides the dimensionless quantity v' in which we do expand, and the dimensionless quantity U in which
we do not expand, there is a third, less obvious dimensionless quantity:

gs -=lg l(size of test body) & lg l lx, l . (13)

We shall expand in this quantity —independently of the v expansion —but, in practice, by examining powers
of g rather than gs.

Now, if A, is to be body-independent in general, it must be so for each order in v' and each order in

g, independently. Surprisingly, perhaps, it will be sufficient to work to first order in v and to first order
in g. The imposition of WEP at this order will force the dynamical equations (1)—(3) to take on metric
form, thereby guaranteeing that EEP (and hence WEP a fortiori) is satisfied at all orders.

To first order in v and g, after solving Eqs. (1)-(3) for ap and substitution into Eq. (11), we find (de-
tails given in Sec. III)

A, =-—g(T,'H, ')+gM, ' ,'(H,'H, ')Q —mv,'+q g q, , +M, '(d g (p;„+M, 'Gg m„(g v, )v, , (14)

where

(15a}

q-=(Tp' 'Hp ')(pfpEp+& Tp 'ppHp ) (15b)

(15c)

0= Tp Tp
' —Hp Hp '+2(1+Ep) '[Ep ——,'(1+ Gp) Tp Hp "],

'0;(, -=e;calx;al

(p; p
=—~; ea(g ' x;a) Ix;a l x;a .

(15d)

(15e}

(15i')

Equation (14) becomes much simplified when we use some gravitationally modified virial relations (see
Sec. III C for details):

(16'}

where m, p refer to to components of the appropriate vectors and () denotes the usual time average. Using
Eq. (16), Eq. (14) becomes
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(A, )=--,'(!(T,')(, ') ——,'((M, '(T,'")(, 'e, ')(H,'H, ' —2c,' a, ' —7", ,g, H, ') gq), .

——M '(T'T''H, 'E, ')(H, T ' —E, g, ) Q „).j,k
(17)

The first term of this acceleration is body-in-
dependent (satisfies WEP}; the second term de-
pends on the body's self-electromagnetic energy;
the third term depends on the electromagnetic en-
ergy, the shape of the body, and the orientation
of the body with respect to the gravitational field
gradient. Thus (A, ) will always be body-in-
dependent only if the second and third terms al-
ways vanish, i.e. ,

I =Q —mo), ds), + e~A ~dx), ,
k

g N8 4+gcx
t

In this metric form

ds'=g &dx"dxs,

gpp= &~

g,, = 5,~H (s-pherical coordinates

(22)

(23)

(24a)

(24b)

H,'/H, —2e,'/e, —T,'e, p, ,/H, = 0,

Ho/To —Cop ()
= 0

(18a)

(18b)
turn out to be "isotropic"), (24c)

; denotes the covariant derivative

(the other factors in the body-dependent terms
must be nonzero for correct Newtonian and spe-
cial relativistic limits), or equivalently,

with respect to g 8,
F" =g"'g "(A -A ) (24d)

e,'/e, = ,'(H,'/H, ——T,'/T, ),

p, o
= H/o( To(&e) .

(19a)

(19b)

z'-=Q f e,()'( —g( ))(dx",/ds)(-(, ) "'ds .

(24e)

e = C(H/T)"'

&(H/T)~~2

(20a)

(20b)

where C is a constant. Since, "in the absence of
gravity, "' we must have e =H = T = 1, C must also
be unity. Therefore we finally obtain, as a nec-
essary condition for our electromagnetic test
body to fall. with a composition-independent accel-
eration:

e = p =(H/T)"'. (21)

It is worth noting that, using heuristic argu-
ments (see, e.g. , Ref. 15) about the electromag-
netic energy content of atoms and the expression
for the fine-structure "constant" a in a dielectric
medium

o. = (e y. )"'e'/( k)e

one can see why %EP should require constancy
of the ratio (e/p).

Comparison of Eqs. (21) and (1)-(3)with the
discussion in Sec. HjE reveals that Eq. (21}is a
necessary and sufficient condition for the dynami-
cal equations (1,)-(3) to take on the familiar met-
ric form

Since we have not specified the initial location
of our test body with respect to the external grav-
itating source, and Eqs. (19) should be satisfied
at any point we choose to deposit the body, the
naught subscript can be removed from quantities
in those equations, yielding, upon integration,

Note that all dependence on the arbitrary func-
tions used in the center-of-mass definition, Eq.
(7), has vanished by the time one reaches Eq. (17).

Higher-order calculations [v' or (gs)', for ex-
ample] could only yield results consistent with
Eq. (21), since WEP at first o~der implies t)tat
gravity has a met sc-theory descrsptson (auto-
matically satisfying WEP) to all orders

Our theoretical results can be summarized by
the following statement: Conside~ the class of
gravitation theories that Possesses a mathematical
~eP~esentation of the form of Eqs. (I)-P). For
that class, zenith each theory u)ritten in that repre-
sentation,

(WEP) ~ [Eq. (21)]~[the theory is metric with

the metric given by Eqs.

(24b)-(24c)l .

III. DETAILS OF T:HE CALCULATION

A. Single-Particle Equations of Motion

where

W=-(T -Hv ')"

(25)

(26a)

Variation of Eq. (1) with respect to the coordin-
ates of particle k yields

(HW ')a))+vt, + ~W 'Vt(T Hv~') =A~(x„), -d(HW ')
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Az{x,) —= Lorentz acceleration of particle k

=(e,/m„)I-v('(, )+7'[, X(,)]
——A(x, )},

and all functions of U are evaluated on the par-
ticle's world line, e.g. , H=H(U[xo(t)]). Using
Eqs. (5)-(6) and the discussion following Eqs. (13),
we can write, to the order of our calculation,

VII=IIog, etc.

(26b)

We shall regard g as spatially constant [see dis-
cussion following Eq. (6)]. Equation {25) can then
be written as

a,,= —,'g(H,'v„' —T,')H, '

-v, (v, g)[H,'H, ' ——,(T,'-v, 'H,')W ']

-vo(v~ a(,)HW '+(WH ')Az.

+v„(v, g)(T,'T, '-H,'H, ')

+ (&"H-')A + O(v')+ O(g') (28)

B. The Gravitationally Modified Maxwell Equations

We must now solve Maxwell's equations and com-
pute the quantity A~ which occurs in Eq. (29). If
Eqs. (4c) and (4d) are substituted into Eqs. (2) and

(3) and one uses the gauge

(gati) —+V A=O, (30)

the result is

V (I] = e ti —4vpc -6 V6' V/7 +—,(31a)
Bt Bt

Note that whenever functions like II, T, e, etc.
occur in terms multiplied by g, we may evaluate
them at naught, i.e. ,

Bg-H,g,
because we work only to first order in g.

We further expand 8' in a power series in v' and,
since we are only working to O{vo), we ean set
W = 7't ' in Eq. (28). This follows from the fact
that Az - O(v') and from the explicit velocity depen-
dence of other terms in Eq. (28). [It should be
mentioned that when a term is considered O(v'),
it is not necessarily intended that the term is
dimensionless, but only that v'(or the expression
in Eq. (12b)) is a multiplicative factor in the term.
The same applies to the notation O(g). ]

By dotting v„ into both sides of Eq. (28), solving
for (a, v,), and substituting the result back into
Eq. (28), we obtain

ag = og(Hov(, —To)Ho

O'A
V'A=up, t, 4vtiJ+(eV, ) '(V A)V(ep. )

+ ti '(VxA}x Vp, . (3lb)

We can now do a perturbation solution of these
equations by expanding simultaneously in powers
of v' and g, treating foi'mally v'-g:

9' = @o+0 i+ @2+ {32a)

A =Ao+Aa+A +

V Po=-4%6 P,
V'y, = e p. (S 'q&o/S t')

(SSa)

-&o &o[g'(VPo+ SAo/S t)1 ~

(SSb)

V it]o =tel(S ipi/St ) —eo ~Co [g'(V(]oi+SAi/st)],

etc. , (SSc)

V2Ao= -4m p.J,
V'A, =cV(S'Ao/St')+(eV)o '(V A )V(eP)

+]L(o 'p, o(VxA, )xg, etc.

(34a)

(34b)

Equation (35) gives the lowest-order vector poten-
tial at particle k due to all other particles (l e k).
Note that ti{x;) is considered to be a constant with
respect to the O'Alembertian operator acting on
functions of xi, . The above Ao can produce terms
of the desired order in A~. For example,

ea —A.(xa}=Z e(esca(t (x(}lxa; I
'+" (36a}

=Z e e i( g ti (x ) lxa(l + ' ' '

where we have substituted a; =g+0(v')+ O(g').
The indicated term in Eq. (36b) is bilinea. r in v'
and g and is therefore acceptable. However it can
be shown that no higher orders of A after A, can
contribute. For example, the second source term
on the right-hand side of Eq. (34b) makes the con-
tribution

(36b)

O(g)A. - O(g) O(v'),

(One should not confuse the perturbation order of
A, Ai„with the kth component of the vector A((, }

The solution of these equations is far simpler if
we remember from the beginning that since the
particle acceleration is required only to O(vo) and

O(g) we need Az only to the same order. Rernem-
ber also that a„=O(v')+ O(g) whenever the solu
tion of Eqs. (33)-(34) requires a particle accelera-
tion as a source term (right-hand side of equa-
tions).

We solve the equations for A first, Clearly,
from the expression for J [cf. Eq. (4a)]„

A.(x.) =Z eiv;t (x()lx.;I ' . (35)
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dA,Ai- '+ V(v A, ) = O(gv')+ O(g'v').
2

,'-Qe, (a., x„)e '(x, )lx„l '+O(v'), (40c)

v.(x~) =Ze~e '(x;)lx.;I ' (37)

From the expression for p [cf. Eq. (4b)], we can
write down the lowest-order solution for the sca-
lar electromagnetic potential:

where we have carefully interpreted the partial
time derivative on functions of x~ as acting on co-
ordinates of particles labeled i with i ~ k. From
Eq. (40c) it is clear that the second source term in
Eq. (89) does not contribute and the remaining
equation is trivially integrated to yield

The source term proportional to BAo/Bt in Eq.
(33b) doesn't contribute to our order of calculation.
Now, define a "superpotential" X by the equation

&'X =yp. (38)

Using X we can write Eq. (33b) as, to appropriate
order,

~X - - ~XV'y, = |7' eg, —2V(ep) V

o
—eo eo(g'+X)

Using Eqs. (40a) and (40c), Eq. (41) becomes

{o,——.~oZe;(a; x., )lx~;I

--'e. 'eoKe;(g x.;)lx~;I '
i

(41)

(42)

—~ [&o &o(g'&X)].

Using Eqs. (37) and (38), we obtain

(39)
and, using Eq. (29) for a, ,

0'i = (4 Topo Ho —oeo eo) Z e (g'xo ) I "a I

X(x.) = )Ze;e '(x;)lx.; I,

—"=--,'Qe;(v,'x„)e '(x;)lxa;I '
Bt i

—,'Qe, (g ~ v,.)e '(x,.)e'olx„l,

(40 a.)

(40b)

In the same manner as with the vector poten-
tial, one can show that y„y„etc. do not con-
tribute to the Lorentz acceleration at the desired
order. Using Eqs. (26b), (35), (37), (43), one
obtains

A~(x~) = (e,/m»)Z&[xa;e '(x )lxa. l

' —a a(x )I"a I

']e ]'+ o(o To'p, oHo '-e, 'eo)Z[ura; —(ea/m»)e;glx, &I ],

where m~, is as defined in Eq. (15f). From Eqs. (29) and (6) we obtain the relations

a, , = --,'(T,'H, ')g+O(v'),

e(x() = eo+ (g'xq)eo,

which, when substituted into Eq. (44), yield
-1 mI rr -1%

A t~ 4 M/ / 5 XffiEQ CQCQ C Xi)Xfti (Cp Cp + Z 4 pp, QADI p j ~ 1 I 1 ~~ -1 -2
4 IXnz I i

(44)

(45a)

(45b)

C. Virial Conditions

We now have enough information to derive some useful virial conditions. Substitution of the expression
for A~ [cf. Eq. (46)] into Eq. (29) reveals

moa( ~)'=T,' 'H ' oQeoe;e„(x„) lxa;I '+O(g),

where P denotes a particular vector component. Multiplication of both sides of Eq. (47) with (x,) yields

d(xavD™ok dt ™py~y~y

= To H &o g e'ey(xy') xylxy' I (48)
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If we sum Eq. (48) over the index k, use the antisymmetry of x„, and take a time average, the result is
Eq. (16). Summing Eq. (16) on / and P produces another useful virial relation:

„v,*+ ,r, '-'~'H, 'c, 're, e,l;, l ') = +0o(g).
~

~

k i, k

0. Center-of-Mass Acceleration

(49)

We now have all of the necessary tools at our disposal for calculating the test-body acceleration. We

begin with Eq. (7). To the required order

m„=m„[F,'(g v, )+(1+G)(a, v, )+ —,'v, 'G,'(g v, )]

+ kZe;ea(&l(g v;)+ S.'(g v~) - I&(x;)+S(xa)](x;a v(a) lx;al ')Ix(al ', (50)

m~ = m»[E,'(g a~) + (a„a~)(1+G)] . (51)

In obtaining Eqs. (50)-(51) we have, as before, used the fact that a., -O(g)+ O(v'). To be exact, Eqs. (29)
and (46) show that

a.= -kg(T|H. ')+ T."'H. 'e. 'Z(e(e~&m»)x. (lx.(I '+ o(gv') .
i

Using Eqs. (50)-(52), the first two terms in the expression for A, [cf. Eq. (11)]become

M 'pm~, =-', M 'H, 'e, 'T, ' '[F,' —(1+G,)T,'H, ']+~„;,
i, k

2M 'Pm~x~=2M '[F,' ——,'(1+Go)TOHO ']pm, (v~)g)v(, .
k k

(52)

(53a)

Again using Eqs. (29) and (46) to get the O(gv ) contribution to a, [cf. Eq. (52)], the third and last term
contributing to A, . is

M 'Qm, a, =M '(, --', M, T,((+)',)H, '+-'', H, '[B,'(1+ ))-', )",((+t,)]Em„,'+-',
i, k

+ (1+F0)(TOTO HOHO )M Q-m»(V), g)V), + 2 T2M Q (d(),

where

r2=TO' 2HO '[(I+Fo)HO '(~Togo —eo 'Ho)+eo 'F0+2(i+F0)eo 'To 'To],

(55a)

(55b)

with M„q;„(d;,defined in Eqs. (15).
Now, expand the expression for M ' using Eqs. (7) and (8):

(56)

With Eqs. (53)-(56), the expression for A, , Eq. (11), becomes that given in Eq. (14). Use of Eqs. (16)
and (49) then yields Eq. (17), and subsequently Eq. (21).

E. The "e-p"Formulation for Metric Theories

In any static, spherically symmetric, locally
Lorentz manifold with metric, one can introduce
"spatially isotropic coordinates, " for which

relativity. ) For the problem at hand we can re-
gard g,o and f as functions of U=M, /r rather than

as functions of r. In such a coordinate system,
the standard metric-theory Lagrangian for the
motion of charged particles reduces to

g.o
= goo(&)

gok= o

g,.~—- -5, y f(r),
r =—[(x' —x')'+ (x' —x ') + (x' —x,')']'~ '

(57a)

(57b)

(57c)

-m»Jt (g Bdx~ dxs)'~ '+ e, A„dx,"

[-mo„(g» —fvt, ')'~ '+ e, A~ v„"]dt, (58)

(For proof, see any standard textbook on general and the metric-theory Maxwell equations read
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F" s=(-g) "[&"'(-g)"],=4~J

where

(59a)

Z"=—Qe, (dx, /ds, )f)'(x —x~)( g) -'i'ds,

=pe, ( g) -'i'5'(x —x,)(dx", /dt) . (59b)

Here g =—determinant of g 8, and commas and
semicolons denote partial and covariant differen-
tiation, respectively. Combining Eqs. (59) gives

[g"'g'"F,„(-g)' '],= 4v Qegdg(x xg)(-dx", /dt) .

e = u = (f/g. .)'" (61)

Conversely, for a theory with GMM equations of
the form of Eqs. (2) and (3) and with

(62)

one can define an "effective electromagnetic
metric" by

goo=+ ~

g, , = —E'45, , ;

(63a)

(63b)

then the GMM equations will take on metric-theory
form. In Eqs. (63) 4 is an arbitrary function and

reflects the well-known conformal invariance of
Maxwell's equations. If, in addition to satisfying
Eq. (62), the effective metric determined by Eqs.
(63) is correctly related to the functions appearing
in the particle Lagrangian [cf. Eqs. (57)-(58)],
then the entire theory of particles and electro-
magnetic fields can be consistently put into metric
form.

IV. CONCLUSIONS AND APPLICATIONS

A. Theoretical Implications of the Results

We have shown that, in a spherically symmetric
gravitational field, a theory of gravity described
by Eqs. (1)-(4) can be put into metric form (with
respect to the dynamical equations for particles
and electromagnetic fields) if and only if it satis-
fies the weak equivalence principle. " Equivalent-
ly, if such a theory is nonmetric then Eq. (21) will
not be satisfied, the acceleration of test bodies
will have body-dependent contributions [cf. Eq.
(17)], and WEP will be violated. The result has

(60)

Equation (60), when written out for the diagonal,
spatially isotropic metric of Eq. (57), has the
"e-g" form of Eqs. (2) and (3), with

F., =F«, etc.

and

H =1+2yU+ &SU'+ ~

T =1 —2+U+2PU2+ ~ ~ ~

~=1+&,U+e, U'+ ~ ~ ~,

p =1+p, ,U+p2U + ~ ~ ~ .

Then, Eq. (17) can be written in the form

(64b)

(64c)

(64d)

x (I', + I',U, + I",U, '+ ~g )

+—~Ma

x(To+ T,UQ+T, U0'+ ), (65)

far-reaching consequences if one accepts WEP as
a valid principle: Having proved, from WEP, the
metric nature of the GMM equations inside of an
electromagnetic test body, one knows how to de-
scribe all gravitational-electromagnetic phenom-
ena —e.g. , the bending of light by the sun, electro-
magnetic radiation in a gravitational field, etc.

There are two potential weaknesses of our eal-
eulation. First we have assumed a spherically
symmetric gravitational field. Now, it is conceiv-
able that a theory could be of "metric form" for
spherically symmetric gravitational fields, but
nonmetric in other cases. Such theories would
have to be analyzed on an individual basis, to see
whether their non-SSS fields violated WEP. How-
ever, we feel that such a theory would be difficult
to formulate and, in fact, have seen no examples
in the literature. In practical applications, one
considers a particular nonmetrie theory, solves
the spherically symmetric problem, and finds
that Eq. (21) is not satisfied, thus constituting a
violation of WEP at some order. Examples will be
given below.

A second possible weakness, discussed previ-
ously, is the limitation to the types of equations
discussed in the beginning of Sec. II. However,
except for the Naida-Capella nonmetric theory,
discussed below, Eqs. (1)-(4) appear to be quite
general among "complete" theories. (There are
many theories which are not explicit as to the
formulation of the GMM equations, and we must
require that such theories be completed before
given further consideration. )

Finally, we point out that WEP and Eq. (21) de-
mand that the center -of-mass acceleration be
body-independent at each order in the external
gravitational potential U. As will be seen below,
a given theory violating the WEP will do so at
some order of U. To be more explicit, suppose
that one expands the functions H, T, p. , ~ appearing
in Eq. (17) in a power series in U, i.e. ,
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where

I P= P —61+0!

&p=o
y

r, =2(—', 6 —2y' —e, —p+e, ')

+ye, +n(i). , —5y+e, —n),

71=2/+2& —6 1
—P, 1 )

etc.

(66a)

(66b)

(66c)

(66d)

(For the correct Newtonian limit, one must re-
quire that a =1, but we leave o arbitrary here. )

Each theory will yield certain values for the I"s
and T's. We have shown that nonmetric theories
must have some of the I"'s or 7's nonzero —the
first nonzero I' or 7 determines the order at
which the theory violates WEP.

B. Experimental Verification of WEP and
Applications of our Calculations

I&A.~)A —&Ao. .)A. I l&A. .)~ —&&. )A. I

1&A.

I &Ac.m. )Al &~o.-.)pt I (]p ]2

(67a)

(67b)

Our calculation involved a test body dropped in
a static field. The following argument justifies
direct comparison of our calculation with the re-
sults of the above experiments:

(i) The 24-hour component of the acceleration
can easily be isolated so that the sun can really
be considered as the sole external source of grav-
itation (see page 172 of Ref. 17). To make this
more clear, if one uses the 24-hour period varia-
tion to select out g,„„from g,u„+g,„+, then Eq.
(17) has body-dependent terms of the form

Thus far, our results have been completely
within a theoretical context. We now investigate
the experimental and practical applications.

Experimental support for WEP comes from the

type of experiment developed by Eotvos in the
late nineteenth century, and redesigned extensively
by Dicke in the 1960's." The particular Eotvos-
Dicke (ED) experiments of highest reported preci-
sion are the Princeton experiment of Roll, Krot-
kov, and Dicke, "and the Moscow experiment of
Braginsky and Panov. " These experiments mea-
sure the relative acceleration toward the sun of
two different substances (gold and aluminum in
the Princeton experiment; platinum and aluminum
in the Moscow experiment). The reported results
are

(&(, )=»„,»», ' r, »&,. )j,k

&&Ir, +r, (U,„„+U„„,)+ . ]

»»»»=, ,
'„„p&»,) [&, &, U ."..]

j,k

electromagnetic energy
total mass

+ F(+o» To» eo» &o& ufo & To & eo)

+body-independent term, (68)

where I' is a function of the indicated variables.
Now, the largest contribution to the electromag-
netic energy of the total atom certainly comes
from the nuclear protons and for platinum or gold
this amounts to, using the semiempirical mass
formula, "

electromagnetic energy
total mass Pt or Au

=5xf0 '.
(6Sa)

since Ugun 10Uearth .
(ii) The fact that the earth is rotating rather

than at rest can only contribute inertial accelera-
tions; in particular no relative accelerations be-
tween the two test bodies can be introduced in
this manner.

(iii) We have considered only electromagnetic
test bodies; but we wish to apply our results to
the actual atoms used in the experiments, atoms
which have nuclear as well as electromagnetic
interactions. Thus the complete equation for
(A, ) for realistic atoms has, in addition to the
terms shown in Eq. (17), terms which involve
nuclear energies. Is it possible that the nuclear
and electromagnetic terms would cancel each oth-
er'P The only mechanism by which the terms
could be combined and related is through the vir-
ial relations; yet an examination of Eq. (1"I) re-
veals that p., does not even occur in the electro-
magnetic portion of the virial relations. In partic-
ular, given the combined virial relations for both
electromagnetic and nuclear interactions one
could construct an infinity of different theories
merely by changing (((, (and thus changing the body-
dependent terms in (A, )). Thus there is no cred-
ible mechanism by which nuclear and electromag-
netic body dependent terms could conspire to can-
cel each other. The "electromagnetic violation"
of WEP thus constitutes a lower limit to the total
violation (allowing for possible nuclear violations).

We can now ask to what order does Eq. (67) test
the GMM equations of a theory. Equation (17) has
the form
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For aluminum, the corxesponding quantity is (70)
em enex'gy
total mass A,

(Z'A "')A~ em energy
(&4 "')

p, „A„ total mass
=2@10 3.

Usings Eqs. (65) —(VO), one finally obtains, for
n = 1 (correct Newtonian limit)

Noting that Uo has the magnitude

Uo=-potential of sun at earth-10 8

(69b)

C. Applications to Specific Nonmetric Theories

(71)

and using Eqs. (65) and (67), we see that current
experimental accuracy bears upon the 1~ and Y~

only for h ~1. The accuracy of the exPeriment
must go uP by a factor of 10 to require that I'z

and Tz vanish. Equations (66) show that the ex-
periment thus measures H, T, and s to O(U'),
but V. only to O(U). We expect that almost all theo-
ries will do well enough to have I'0=-0.

Before continuing with direct applications to the-
ories of the current experimental verification of
WEP, let us return to Eq. (1V) and analyze the
specific way in which it constrains the GMM equa-
tions of a gravitation theory. The second body-
dependent term in Eq. (1V)—the "directional Cou-
lomb energy" term-involves the GMM equations
only through the product cp. . This particular pro-
duct is also equal to the square of the index of re-
fraction, n', and is tested by light-bending and
time-delay experiments (see, e.g. , Ref. 21 for a
dlscusslon of these experiments —altI1ough 1Q the
context of metric theories). In fact, exploiting
the "e-p," analogy for the GMM equations and tak-
ing the geometrical optics limit, one sees that
the current experimental tests, with the exception
of WEP, are sensitive 0gly to the pxoduct ep. —
and only to first order in U of that quantity. On
the other hand, the first body-independent term
in Eq. (1V)—the "nondirectional Coulomb energy"
term —samples the GMM equations in a deeper
manner, both qualitatively and quantitatively. Not
only is e distinguished from p. (magnetic and elec-
tric effects distinguished) but also is e explored
to second order in U (cf. the s'0) for the current
experimental verification of WEP. Thus WEP
is revealed as a powerful tool for probing the
GMM equations —the most seQslt1ve px'obe of those
equations existing in 1973.

On purely theoretical grounds one can require,
as we have previously remarked, that the I"s
and Y's vanish independently. However, in prac-
tical experimental applications, the second body-
dependent vector in Eq. (65) has some particular
relation to the first for any given experiment.
Since the nuclei of the atoms in the ED experiment
are approximately spherical,

Betinfante-Sutihart Theory

An analysis of the Belinfante-Swihart theory in
Ref. 14 reveals that its pm. ticle Lagrangian can
be put into metric form with

g s =(1 —Eh)'[g s +h s +-,'h„, hs„q""+O(h')],

(V2)

where E is an arbitrary constant, h—= q "Bh„&, and

q 8 is the Minkowski metric. The GMM equations
are of "e-u" form [i.e., have the form of Eqs.
(2)-(3)j, with, in the 888 limit,

e =[1 ——,'(h„+h„)] ',
p, = [1+~(ho, +h„)j.

(73a)

(73b)

In the SSS limit, h» has the form

I oo= COD

h;~ = 5]~C,tf,

ho~ =0,

(74a)

(74c)

where Co, C, are arbitrary constants, but with
the implicit relation

2K(3C, —Co) + Co —2 = 0 (75)

in order to satisfy the Newtonian limit (goo= -1
+2U+ .. ) Defining T and H by comparison of
Eqs. (72}, (74) with Eqs. (24) and then evaluating
the various I; and T„[cf.Eqs. (64) and (66)],
OQe finds

(76a)

In this section we discuss WEP for three partic-
ular nonmetric theories. The Belinfante-Swihart
and Whitehead theories have equations of the form
of Eqs. (')-(3). As an illustration of the formal-
ism of Sec. IVA and IVB, the WEP violation is
calculated explicitly in the case of the Belinfante-
Swihart theory. The Naida-Capella theory, which
is an apparently rare exampl. e of a theory not
having a particle Lagrangian of the form of Eq.
(1) in the 88'i limit, is treated on an individual
basis, using the techniques developed in, Secs. II
and III.
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r, --,'7, =--,'C,(c,+c„)wp. (76b)

In order to predict an amount of light bending and
perihelion shift compatible with experiment, one
must require that C, and C, satisfy

0.9 ~ —'(C + C, —2) ~ 1.1,
0.8 & —.'(C, +1)&1.3.

(77a)

(77b)

If one requires the light-bending and perihelion-
shift predictions of the Belinfante-Swihart theory
to be same as in general relativity, Eq. (78) be-
comes

(Ac.m. / Au or pt ( c.m. )A1
-~A,

(A, )
(79)

The combinations of Cp and C, occurring in Eqs.
(7'ta) and (77b) correspond to the y and P param-
eters, respectively, of the "PPN formalism""
and the experimental limits indicated above are
discussed in Ref. 21.

Using Eqs. (71) and (77), we find that the non-
metric theory of Belinfante and Swihart predicts

1 p 11 + ( cm. }Pt or Au ( cm. )Al + 1 10 tp
(A

(A,
(78)

I~ =Pip d8 —'g~e Q Q + /hing Q Q 'g p~Q Q

-e gqdx",

where q &
is the Minkowski metric and

ds—= (tl„tt dx dxe)t",

X
-=(7&)"3

u" =—(dx" /ds) .

The GMM equations are of "e-it" form [cf. Eq.
(3.7) of Ref. 7] with

(83)

lates WEP at the order of 10 '. [Note that in
Whitehead's theory the product ep. is the same as
in metric theories, so that the coefficient of the
second body-dependent term in Eq. (17}vanishes
identically. In some sense one can say that, with
respect to the light bending and radar time-delay
experiments, Whitehead's theory is a metric
theory. ]

3. Naida-CaPella Theory

The nonmetric theory of Capella' as completed
by Naida' has the following Lagrangian [cf. Eq.
(2.1) of Ref. 7]:

Thus, the Belinfante-Swihart theory violates seri-
ously both the Princeton and the Moscow versions
of the ED experiment.

e = 1+g(hop + h„),
V=[1 —X(hpp+h 1)] '.

(84a)

(84b)

Z. Whi tehead's Theory

Synge analyzes only the motion of uncharged par-
ticles and the sourcel. ess GMM equations in White-
head's theory:

5 (g„tt dx"dx8)"'=0 [Eq. (1.7) of Ref. 8]

(80a)

(g""gs"F„„)tt
=0 [Eq. (1.9) of Ref. 8] (80b)

E„s &+ESP „+Ez tt
=0 [Eq. (1.9) of Ref. 8].

(spc)

Solutions to the SSS gravitational. field equations
yield

h„=C,g 'U, (Ssa)

(85b)h, =C,~ 'UO, , ,

—Uptt3 (2CpC, + Cp'+ 2C,3)]

where Cp and C, are arbitrary constants. Vari-
ation of Eq. (83) and use of Eqs. (85) gives the par-
ticle equation of motion [analog of Eq. (29)]

a3=g[Cp —Cp(Co+ 2C, )Up+ Cttt33

A straightforward generalization of these equations
to include sources shows that the GMM equations
have "e-p," form in the SSS limit, with

-2v, (v„g)[C,+ C, —2C, (C, + C,)U, ]

+Al [1—U(C, + 2C,)].
Using Eqs. (84)-(86), the GMM equations give

(86)

e=( g..f) ', - (Sla)

(81b)

[in the notation of Eqs. (57)]. Using Eqs. (17),
(57), and (81), one can then show that

( cm. ')Au or Pt ( cm. )A1 lp 3 d
[l ( f3)]

(A, ) dU

A~(x, ) = (m„.) "(1—CUp+C'Up')P e,e„~x,, ~
'x, ,

+ 3(mp, ) '[C, —Up(2C —Cpct)]gp ti, c

——,'(mp, ) '[Cp+ C —Up(2C'+ Cpcr)]Q ttt, 3

-(m„.) 'C(1 —2CU }gpe, e,(g «,)~xto~ 3«;»
k

(82)

so that, for experimentally acceptable values of

gpp and f', this version of Whitehead's theory vio-

with C —= Cp+C, .
Using the same center-of-mass formulas as

given in Eqs. (7)-(9) and the virial theorem

(87)
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g nz„.(v, )"(v, )e+-,'[1 —U, (3C, +2C,)]pe,e,(x„)"(x„)8~x„~' =0+0(g)

one finally obtams

(A, )=gCO[l+Uo(-2C, +Co)] ——,'Mo '(Co'+3C~')Uog p q;~ +Mo '(g+2C, —5C, ' —C ' —4C C, )U
i,k i,k

Now, with Eqs. (69)-(71)we get

= 10 "(1 3C —19C ' —5C ' —8C,C, ) .
Jgl

1 1 0 0

The correct Newtonian and light-bending results require, respectively,
Co= 1,
0.9~-,'(C, + 1)el.l.

(90)

(9la)

(91h)

Equations (90) and (91) indicate then the relation

(92)
(X..m. )

Thus the Naida-Capella nonmetric theory seriously violates both the Princeton and Moscow versions of the
ED experiment.
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