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Continued-Fraction Representation of Propagator Functions in a Bethe-Salpeter Model
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Using the well-known relation between the vertex function and the Bethe-Salpeter amplitude and
knowledge of the bound-state energy eigenvalues of the Bethe-Salpeter equation, a continued fraction
representation for the modified meson propagator D„' is obtained. The Bethe-Salpeter equation for the
nucleon-antinucleon problem with a massless-pseudoscalar-meson coupling is solved in a certain
approximation, and the corresponding energy eigenvalues are determined through a continued-fraction
technique. We have considered the nucleon both as a Dirac particle and also as a scalar particle. The
analytic properties of the continued fraction are discussed and the existence of a Lehmann
spectral-function representation for the D~ obtained in the approximation is shown.

I. INTRODUCTION

It is well known that the integral equation for
the vertex function in field theory is closely re-
lated to the Bethe-Salpeter equation, which pro-
vides an energy eigenvalue equation for the bound
state' of two relativistic particles. In particular
if $(p) describes the wave function in momentum
space for a bound state of two scalar particles
interacting via a scalar particle, where p is the
relative four-momentum between them, the energy
eigenvalue can be expressed as

—2[g 1
(2v)' E' 4(p) d'P,

where E denotes the total energy of the system in
the center-of-mass system. It is interesting
to point out that from a knowledge of the relation
between P(p) and the vertex function I", one can
show that Jp(p)d'p in this case reduces to the sum
of all self-energy corrections m*(E) to the free
scalar propagator function. Noting that the free
propagator for the scalar particle in our frame
of reference is simply -i/E', we see that the
energy eigenvalue equation

2ig2 11+
(2 )4 E2 4(p)d'P =o

reduces to 1-Dr(E)v (E) =0. Comparing this
with the expression for the exact propagator

D'(E) =D (E)[l -D (E)gr*(E)j

we see that solving the energy eigenvalue problem
is the same problem as finding all the poles of
D~. Thus a study of the energy eigenvalue prob-
lem in the framework of relativistic field theory
should lead to a calculation of the propagator func-
tion. Most of the studies of the energy eigenvalue
problem using the Bethe-Salpeter equation have
been confined to a special case when the total

energy of the system is zero. '
In this paper we will consider the calculation

of the meson propagator obtained from an approxi-
mate solution of the Bethe-Salpeter equation' for
a nucleon-antinucleon system for nonvanishing
E, assuming that the exchange particle has mass
zero and that the interaction is of the pseudoscalar
type. In the main part of the work we take the
nucleon to be a Dirac particle. Assuming the most
general Lorentz-invariant form for P(P), we ob-
tain a system of differential equations for the
invariant amplitude from the relevant integral
equation of the problem. An approximate scheme
is then developed to obtain the 4 =0 bound-state
solution of the problem. 4 The associated energy
eigenvalue is then expressed as the vanishing of
an infinite continued J fraction. ' This functional
equation is then used to obtain a nonperturbative
expression for the propagator in the form of a
continued fraction. From the analytic properties
of the continued fraction, we then derive a number
of interesting properties for the D„' function. The
continued fraction representing D~ is a real J
fraction, and it is well known that it represents a
meromorphic function of E' having only simple
poles with positive residues and that it has a
Lehmann spectral representation.

The fact that the propagator function may be
represented by a continued fraction does not en-
sure the existence of the propagators as well-
defined functions. The problem of convergence
of the continued fraction has to be dealt with. We
have discussed this problem in Sec. V. The real
~ fraction is written as the even part of an S frac-
tion. Such S fractions have been studied in detail
by Stieltjes. '

It is well known that the S fraction may be ex-
panded in a power series, and also one can asso-
ciate a continued fraction with a. given power
series. From this point of view our continued-
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fraction expression for D~ is equivalent to a series
in 1/E2. The continued fraction is a sum of the
series even when the series is divergent. In Sec.
VI we have obtained a J-fraction representation
for the D~ function resulting from the scalar
nucleon-antinucleon bound-state problem.

II. EIGENVALUE CONDITION
AND THE POLES OF DI';

We consider' an interaction Hamiltonian of the
form A. (t)'(x)A(x), where (P(x) is a neutral scalar
nucleon field and A. is a massless scalar field.
The Bethe-Salpeter (B-S) equation incorporating
the normal exchange diagram and also the pair-
annihilation diagram is

(2.2)

We then obtain from (2.1) the equation for P(P):

1 1
(-,'E+P)'+m' (-,'E -P)'+m'

4ig' d~k P(k)
(2)) )' (p —k)' (2.3)

where E denotes the energy-momentum four-
vector for the center-of-mass motion, and f (p)
is the wave function for relative momentum p.
Following Okubo and Feldman, ' we put

-4ig 1 1
(2m)' (-,'E+p)'+m' (,'E -p)'+-m'

1
X d4k k + (2.1)

Let us now see the connection between p(p) and
the generalized vertex operator I". If we use the
ladder approximation, then I' satisfies

4ig2 4 1 1 1I'(p+ ,'E, p —,'E)-=1-
(2—) k

( —k)' (-' )' (-,
' —k)' ' k+ E' k (2.4)

Comparing this with (2.3) we find

1 1
(-,'E+P)'+m' (-,'E -P)'+ m'

xr(p+-,'E, P —,'E). (2.6)

III. FORMULATION OF THE PROBLEM

In the ladder approximation, the Bethe-Salpeter
equation for a spin--,' fermion and spin-~ anti-
fermion, each of mass m, for a bound state of
total momentum P = (P, iE) is

A functional equation for the energy eigenvalue
condition follows from (2.2) by integrating both
sides with respect to P, and it is given by

2 2

, D (E*) fk(D)& 0=O. ' (2.6)

The analogous condition for particles with spin is
2

1 —
~ D~(E2) Tr[r, p(p)]d'p =0. (2.7)

It is thus evident that the eigenvalue condition
(2.6) determines the poles of D~.

In Sec. III we will formulate our B-S equation
for the spinor nucleon-antinucleon case and relate
the functional equation for the energy eigenvalue
to a continued fraction.

It is interesting to note that by using (2.4) and
(2.5) we can easily show that fp(p)d~p corresponds
to all closed-loop corrections to the free propaga-
tor D~(E'). Thus, writing ~*(E)= [2g '/(2)T)']
&& fg(p) d~p and taking the usual definition of Dz
as D~(E) =D„(E)[1 D~(E) m*(E)] '-, we have

where

), = -4)T' f)4(p —k),
jp -k' (3.4)

[r (P+lP)+ ]4'(P)[ r (P-lP)+
sg dk

—
(2 )4 ( k), r5@(k)r5, (3 )

where 4 is a 4 ~4 matrix, and P is the relative
four-momentum of the system.

In writing Eq. (3.1) we have assumed that the
nucleons interact via pseudoscalar coupling with
a massless neutra, l pseudoscalar meson field.
Equation (3.1) may be written in terms of a new
wave function (t)(p), where

((P) [r (P=+lP')+ ]C'(P) ['r '(P -lP)+
(3.2)

We now decompose $(p} into appropriate Lorentz-
invariant amplitudes and write $(P) as'

g(p)=r, t, (p)+r, (r P)4.(p)+r, (r P)4, (p)

+r,[(r P)(r P) —(r'P)(r P)]g, (p) (3.3)

Making a Wick rotation and applying the property'
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822—
~P v~P v

(3.5)

the integral equation (3.1) reduces to the following
differential equation for P(P):

~;~(p)= 4„. G(p)r.[r (p 'p)-- j

XP(P)br (P --.P)-m~r. ,

where

G(P) = j[(P +-,'P)'+ m'j [(P ——,'P)'+ m'j j-&. (3.6)

Substituting (3.3) for p(p) into (3.5) and carrying
out the spin algebra, the resulting coupled differ-
ential equations for the p,. (p) are

,'p, (p)=
4 . &(p)[(p P-+-m')4, (p)+~mP'p. (p) +im( Pp) p.(p)+2[(P p)'-P'p'1$. (p)f, (3.7)

P', 'C, (P)+2P. ,~,(P)+(P P) o; ~,(p)

= —,, G(P)(imP'e, (P) [2(P P)'-P'(P'+-,'P'-m')~ C.(P)+ (P -P) C.(P)(P'--.'P'- m')

+4~m[P'P' —(P P)'~4, (P)I, (3.3)

(P 'P),' l, (P) + 2P.& y 4, (P) +P', ' 0,(P)
2=-, . C(P)bm(P P)&, (P)+(P P)(P'--.'P'-m')C. (P)+[P'(P'+ ,'P'-m')-- :(P P)'t&-. (P)),

(3.9)

and

(P p),' 4, (p)+ 4[(P ' p) P. -P.P'~, 4.(p) +2[(P p)' -p'P'~ & '
4, (P)

2
= 4,. G(P)f4, (P)[(P P)(P' —-'P'+m') —(P P)'+P'P'~+»m&. (P)[-'P'(P P)+(P P)'-P'P'1

+fm(P 'p) 4,(p)+20.(p) [(P p)' —(P p)'(p'--"P' —m')+p'P'(p'-m'--'P' —(P p))11.
(3.10)

Here the g,. 's are functions of p', P', and p P. The angular dependence of the wave functions is projected
out by making use of Gegenbauer polynomials. ' We expand the wave functions in terms of a complete set
of Gegenbauer polynomials' '":

p,.(p', P', p P) =g C'„( cos8) p,'. "'( p', P'), i =1, 2, 3, 4. (3.11)

Confining our aitention to S wave only and ignoring coupling between the various radial functions, we get
in this approximation the following set of uncoupled radial differential equations:

.2

s(s —c)(s —d) P, "(s)+2(s —c)(s -d) P, '(s)—,(s —~P'+m') P, (s) =0, (3.12)

2

s(s —c)(s -d) g, "(s)+2(s —c)(s —d) g, '(s)+, (m' —
& P') p, (s) =0, (3.13)

and

2

s(s —c)(s —d) y, "(s)+3(s —c)(s -d) P, '(s)+, (s —m') P, (s) =0,

s(s —c)(s —d) P,"(s)+3(s —c)(s d) P4'(s)+-, (s —,' P'-m') P~(s) =0, —

(3.14)

(3.15)

where prime denotes differentiation with respect
to s, and for simplicity we have written P,. (s) for
gI''(s). Here s stands for p', and c and d are the
roots of the quadratic equation

x'+ 2m'x+ (-,
' P'+ m')' = O.

These are our basic equations and are the well-
known Heun's equations' with four singularities.
Equations (3.12), (3.14), and (3.15) are similar
and it is quite sufficient to discuss only one,
namely, Eq. (3.12), which contributes to the Jp
= 0 state~ of the nucleon-antinucleon system.



CONTINUED - F RA C TION RE P RE SE NTA T ION 0 F P RO P A GA TO R. . . 3629

Since we are concerned here with the J~ = 0
meson state of the nucleon and antinucleon states,
the invariant amplitudes that contribute to this
state are given by the combination P = y, (P,
—P»[y p, —,'y P]), where P, and P» are functions
of p', P', and P.P only. Hence, in this particu-
lar state we need only consider the coupled equa-
tions between P, and P» which can be trivially ob-
tained from set (3.10) and by setting g, and )3
equal to zero. Furthermore, if we consider the
weak-binding limit of the nucleon-antinucleon
system (we assume the coupling is weak), then in
the limit of P -0 we may confine our attention to
the case of P, only. It is worthwhile to point out
that in this limit P», however, does not possess
any singularity. To be precise, the relevant equa-
tion for P» in the weak-binding limit is

s'(s +2m') P»"+ 3s(s +2m') P, '+A.P»(s —mW) =0, (3.16)

where W is the binding energy defined in Sec. IV
and X =g'/16rr'.

The solution of (3.16) is of the form

y»-s~, E, k+1+ (1 —A.)' ',

k+1 —(1 —A.)' ', 2k+3;, , (3.17)
S2

which (for X&1) does not produce any singularity
for P'- 0 [for P'-0, k tends to —»'&].

In Sec. IV we study the functional equation for
the energy eigenvalues, and in Sec. V we use this
equation to write down a continued-fraction rep-
resentation for the meson propagator function.

IV. EIGENVALUE EQUATION

Equation (3.12) is a particular form of Heun's
equation. Heun's equation with four singularities
has the form"

+nP(x —k)y = 0, (4.1)

where the exponents are assumed to be connected
by Riemann's relation

n+P —y- 5 -e +1 =0.

The general solution of (4.1) is of the form

(4.2)

y =g g C&(a, h; n, p, y, 6, ~) p,'(u, p; 5, x).
)=0 l =1

(4.3)

The summation over l results from the fact that
there are six different fundamental branches of p
which contribute to the solutions for certain do-
mains of the variable x. The P's are connected
with the hypergeometric functions.

The C's in (4.3) satisfy the following difference
equation:

M„C~+, +L~C~+K~C~ ~ =0,

where

(4.4a)

x(x —1)(x —a)
dx

+ [y(x —1)(x —a)+ 5x(x —a) + ex(x —1)]
dx

a(n + k)(p+k)(e + k)(n». p —6+ k)
(n+ P - 6+2k)(n + P -6+ 2k+1)

(u+k)(u —5+ k+1) + ( p+ k)( p —6+ k+1)
(u+ p- 6+2k —1)(n+p- 6+2k». 1)

np(y+2k) —ek(6 -k —1)
(n+ p - 5+ 2k+ I)

1
n+P- 5+2k —1

(4.4b)

(4 4c)

a(n —5+ k)(P —5+k) k(y+ k —1)
)(n+P —5+2k —1)(u+P —6+2k)

Z, /M,L,

L,/M, Z,/M,
K»/M»

L /M4 4

(4.6)

For Eq. (3.12) we have

a+P =1, -g 1
nP =, , k= —(-.P'-m').

16m' ' c

d Sa= — @=2 g=e =0 x=—
(4.6)

Equation (4.6) is also equivalent to

K2 M~

K~M2

K4 M33—
~ ~ ~

4

(4.7)

The nontrivial solution of (4.4a) exists if and only
if the following functional equation is satisfied":

%e introduce the relations

P2 gRg0 (4.6)
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P +m

where ~'&0. The relation between cu and the
binding energy W is given by'

v' =W(m ——,W). (4.9)

Here E is the rest mass of the bound system and
is therefore also the total energy in the c.m.
system. For bound states we must have E & 2m,

We consider the case where the binding energy is
quite small compared with the nucleon mass. For
small binding energy the solution of Eq. (3.12)
exists if

W
—', x &(2 —A.)(6 —A.)2+X 1 ——

m W —', x —, (6 —A.)(12 —((.)
—, x —, 12 —A. 20 —A.

m W20 + g 1 ~ ~ 0 ~ ~

(4.10)

where

l(. = g'/167('.

The eigenvalue equation (4.10) for our problem
has the form of an infinite continued fraction. Now

we discuss two cases of Eq. (4.10):
(a) The infinite continued fraction (4.10) term-

inates'4 when

A. =2, 6, 12, . . . ,

1—D'=
x E +2x— a,x'

2

E +6x- a2X

E 2+12x—

(5 1)

system and the zeros of the inverse of the propa-
gator function, we consider in the Appendix an
exact1y solvable one-dimensional model Lagran-
gian. In the present case we can represent the
D~ function by the following continued fraction:

or

A. =k(k+1); k =1, 2, 3, . . . .

(4.11)

The termination of the continued fraction (4.10)
means that the solution of (3.12) is a finite series
of hypergeometric functions. Remembering that
A. = g'/16m', where g is the pseudoscalar coupling
constant, we see that for the indicated values of
A the nucleon-antinucleon system does possess
bound states. For example, for A. = 2, 6, 12, etc. ,
we have W=2m, W= —,m, W=m, —,m, etc. It is
interesting to note that with increasing strength
we find a spectrum of new bound states when the
coupling constant reaches a certain critical value.
This result is quite different from that which one
expects in standard perturbation theory.

(b) Obviously our J fraction (4.10) is nontermi-
nating unless we choose special values of ~. In
this case we have to discuss the convergence of
the J fraction. We will consider this in Sec. V
in connection with the continued-fraction represen-
tation of the propagator function.

where x =4m'/l(. ,

k(k+ 2)
Qg

( )( )(k(k+ 1)

V. REPRESENTATION OF THE PROPAGATOR
FUNCTION BY A CONTINUED FRACTION

AND ITS ANALYTIC PROPERTIES

It was pointed out in Sec. II that the bound states
are the poles of the meson propagator. To see the
connection between the energy eigenvalues of the

xOk+1)(k+2) -l(), k=1, 2, 3, . . . .

In writing Eq. (5.1) we have utilized Eq. (4.10)
for the energy eigenvalue problem.

Assuming 0& X& 2, we see that (5.1) is a real J'

fraction" in which the constants a,'s are positive.
We then know that it represents a meromorphic
function of E having only simple poles with posi-
tive residues" and that it has a Lehmann spectral
representation of the Stieltjes form":

(5.2)

where y(s) is bounded and nondecreasing.
It is further known that the zeros of the denomi-

nator of the various approximants of D~ are all
real, showing the reality of the energy eigenvalues
of the corresponding Bethe-Salpeter equation.
From the convergence property'8 one can show
that if D~ converges for single nonreal values of
E', then it converges uniformly over every finite
closed region whose distance from the real axis is
positive, and its value in each of the lower and
upper half planes is an analytic function of E' in
that plane.

We now discuss the convergence of the continued
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fraction (5.1). For this, let us consider a con-
tinued fraction':

VI. PROPAGATOR FUNCTION IN SCALAR
NUCLEON - ANTINUCLEON CASE

5, +52+a— 625g

53+ 54+Z— 5455

5 6+ + g ~ 0 ~ ~

where 6„5„5„.. . are any numbers such that

(5.3) We conclude this paper with a short discussion
of the propagator function resulting from a scalar
nucleon-antinucleon Bethe-Salpeter equation. The
energy eigenvalue equation in this case can be eas-
ily obtained from the study of the difference equa-
tions"

5p -Re5) ~ 2,

5~52P+, 0,

Im(5,q, + 52p) ~ 0;

zl+Rez =2. (5.4)

Then the above continued fraction converges if z
is outside the region bounded by the lower half of
the parabola:

M a, +I. a =0,

M, a„„,+L,a, +E,a, , =0,
where

M, =(v+1)(v+n+1),

I., =-,'Z —ev(v+n) —(v+-,'n)[v+ ,'(n +-1)J,

K„=e[v+—,'(n —1)J(v+ ,' n ——1), e —= E'/m'.

(6.1)

(6.2)

For our J fraction representation of DF we find
that we can identify (5.1) with (5.3) provided we
choose 5, = 0, 52 = 2x„5,+ 64 = 6x, 65+ 6, = 12x, etc. ,
and 6,6, =a,x', 5455 = a2x', etc. We can satisfy
these with real 5's, and further if 0&3.& 2, then
a„a„.. . are all positive; thus the relevant condi-
tions of convergence of our continued fraction
(5.1) are satisfied. We thus conclude that the prop-
agator function D~(E') converges if e (=E') is out-
side the region bounded by the lower half of the
parabola:

The energy eigenvalue condition is given by the
vanishing of the continued fraction:

(6.3)

We can utilize the above continued fraction to
write the corresponding propagator function DF in
the form of an infinite continued J fraction:

I eI+Re(e) =2.

It is interesting to note that the continued J frac-
tion (5.3) is an even part" of the Stieltjes S frac-
tion":

a~ —6 -ed—0 0 0

where

eC1

ec2gA. —b -ed—
1 1 1 g A. —5 —ed—2 2 2

(6.4)

1
k~z+-

+ ~ ~ ~

4

(5.5) 1
4(v+ 1)(v+n+ 1) '

(v+ —,
' n) [v+ —,-'(n + 1)J

(v+ 1)(v+ n + 1)

where k, =1 and k~k~„= 1/5~; P =2, 3, . . . . It is
well known" that an $ fraction may be expanded
formally in a power series in I/z and that the
series is unambiguously defined by the S fraction.
We can write the vower series in the form

[v+ (n —l)](v+ —,
' n —1)

(v+ 1)(v+n+1)

v(v+n)
(v+1)(v+n+1) '

(6.5)

D (e)-c +~+—+ ~ ~ ~F 0 e e2 (5.6)

If the quotient c„„/c„goes to a finite limit I,
then the series (5.6) converges for

I 1/eI& l; if,
however, the quotient increases to ~, then the
series is divergent. What we are doing with the
continued-fraction representation is summing the
divergent expansion in 1/e by means of a continued-
fraction technique.

Analytic properties of this will be closely similar
to those described in the previous sections.
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APPENDIX

We consider the Lagrangian of the form"

Z = rl ( f ——I, g+ rp
~' ——g ) q

where the fields P and cp are functions of time
alone. The canonical commutation relations are

I'(P, P —&) = -—' [S'-'(P-- u) - S'-'(P)]. (AP)2g k

Using (A7) and the spectral representation for
S'(P), one obtains the following difference equa-
tion for the propagator function S'(p):

(f + P—)F(t) = 1 —PF(t —1), (A8)

This equation can be exactly solved from the rele-
vant Ward Identity of the model, namely,

[P, gt]=1 and [y, cpt] =1. (A2)

Associating g with d/dx and g with x, and sim-
ilarly cp with d/dy and y with y, we have the Ham-
iltonian equation in function space of x and y in the
following:

where

p g2

t=P —mo,

S'(p) = -F(f),
(A 9)

d
m,x—+ p, y —+gx y +——f (x, y) = F.f (x, y) .

GLx dg dx

(A3)

and we have used p = 1.
The difference equation can be easily solved to

give
Making the anstaz f (x, y) =x+„C„y", we easily
find that the C„'s must satisfy F(t ) =—,F,(l, y + 1;x),

1
(A10)

(m, —E)C„+p.nC„+g[C„,+(n+1)C„+,]=0.

The condition that this equation has a solution is'

3g 2

2 —t—
3 —t —~ ~-

=0 (A5)

xS'(p —k, ) . (A6)

where p =1 and t=E —m„which is the functional
equation for the energy eigenvalues of this model
Hamiltonian. The exact modified propagator S'(p)
is given by

[S'(p)J '=p —m, —g „~l da, r '(k, )r(p, p k,)—
2g1-t-

2 —t—

(A11)

Thus S' ' is related to the functional equation for
the energy eigenvalue of the Hamiltonian. The
convergence of this continued fraction follows di-
rectly from the well-known convergence property
of the hypergeometric function.

where, E, is the standard hypergeometric function
and we have put x for Pand y =-t —P. Prom t-he

repeated use of the differential equations for the
iE t function we can d eve lop the fol lowing continued-
fraction representation for F(t):
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