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We study in detail the allowed s-channel intermediate states in the unitarity equations for the Mandelstam
and Amati-Fubini-Stanghellini diagrams. The aim is to contrast them with Abarbanel's analysis of the full

unitarity equation. On this basis we argue that Abarbanel's ansatz for the general production amplitude is
incomplete. The details of our calculation depend strongly on the off-mass-shell behavior of the ladder
diagrams which we analyze in some detail. Our analysis is also generalized to present arguments against the
inclusive-sum-rule proof of the vanishing of the triple-Pomeron vertex at t = 0.

I. INTRODUCTION

Recently two opposite conclusions have been
reached concerning the sign of the two-Reggeon
cut contribution to the total cross section. Abar-
banel' gave an argument based on a decomposition
of the s-channel unitarity equation and claimed a
definite positive sign. %'hite, on the other hand,
has given an analysis, using the t-channel unitar-
ity equation continued to complex angular momen-
tum, which gives a definite negative answer.

In this paper we wish to study Abarbanel's de-
composition in the context of weak-coupling Q'
perturbation theory. In this context we show that
his ansatz for the production amplitudes is incom-
plete. If the ansatz is incomplete in this simplest
of unitary (s and f channels) models, we fa.il to see
how it is justified in the case of the real world.
The essential point is that two-Reggeon cuts may

arise in, at least, two ways. First, one may put
a Regge pole in T, another in T*, and convolute
them in the classic Amati-Fubini-Stanghellini
(AFS) manner to obtain the cut using the s-channel
unitarity equation as in Fig. 1. However, one may
also put a production amplitude in T and a produc-
tion amplitude convoluted with a Reggeon in T*
such that when the unitarity equation joins the pro-
duction amplitudes, they give rise to a Regge pole
and hence to a cut through the convolution (cf. Fig.
2). This latter method is, we believe, available in
any conceivable model of the Pomeron except that
the Pomeron is some kind of elementary, struc-
tureless, singularity. Because of the nonfactor-
izability which our analysis of the Mandelstam dia-
gram will clarify, it i difficult to see how s-chan-
nel techniques will be able to cope with this com-
plexity.

We realize that many models have been con-
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FIG. 1. The AFS cut mechanism. Wiggly lines rep-
resent Heggeon exchange.

structed which give rise to negative cuts through ab-
sorptive effects. Since these models do not pos-
sess unitary properties in the Reggeon I; channels,
comparison with White's' analysis is difficult. Al-
so since they always compute effectively the AFS
cuts, which probably should cancel, one has doubts
about their calculation. We therefore believe that
the calculation of the Mandelstam diagram cut us-
ing s-channel unitarity is of some interest.

In the course of analyzing the AFS' diagram and,
in particular, the cancellation of the cut in this di-
agram, we were rather surprised to find that the
cancellation depended strongly on the ladder dia-
grams not going to zero rapidly when an external
mass M'- ~ with s/M' -~. This result is not in
contradiction with the analysis of Rothe or Gribov'
of this problem as the crucial behavior for their
application of Cauchy's theorem occurs for s/M'
-0.

The plan of the paper is as follows. In Sec. II we
describe the behavior of ladder diagrams at high
energies s when one or more external masses M,. '-~ such that s/M, '-~. The derivation of these
results is given in the Appendix. These results
are used in Sec. III to show which s-channel inter-
mediate states of the AFS-Feynman diagram can-
cel the AFS two-particle intermediate state. The

importance and general significance of the off-
shell behavior is then discussed. In Sec. IV a sim-
ilar analysis is then carried out for the Mandel-
stam diagram and the known minus sign derived
for these diagrams. In Sec. V we use these results
to sharpen our disagreement with Abarbanel's
analysis. In Sec. VI we analyze the derivation' of
the zero at t=0 in the triple-Pomeron vertex using
inclusive sum rules due to DeTar and Weis. We
show that this proof depends on assumptions which
are false in @' perturbation theory. Thus, to ob-
tain the result we are forced back to the t-channel
proofs.

II. OFF —SHELL BEHAVIOR

In our calculations of the cut contributions we
will repeatedly require the asymptotic forms of
the ladder diagrams both on and off the mass shell.
We shall give the matrix elements of S= I+i(2m)~T
between states

n

Ip, p„) = ga'(p, )lo),

[a (p), a'(q)J = (2z)'2B(p)5'(p —q) .

Thus we have positive imaginary parts of two-body
amplitudes in order to obtain positive cross sec-
tions.

Thus, for the on-shell amplitude of Fig. 3, we
have for the uncrossed ladder'

, [IC(t) (lns —z~)]"
s(m!)

(lns —iw)+B t (~ s~ -, t finite)

+ ~ ~ ~ (2-1)

where the two minus signs in the first term are de-
termined by the two criteria, that Im T ~ 0 for s =

~
s

~

+ie and ImT = 0 for real s& 0. Similarly B (t) must
be real.

The crossed ladder then gives

M2
3

FIG. 2. Another cut mechanism. FIG. 3. The crossed and uncrossed ladders.
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T" (s) = T'(4m' —t —s)

g'[ K(t) lns] B' (t) (lns)
s(m!) s (2.2)

for s-+ ~ along the real axis with B' (t) rea!.. This
real form agrees with the fact that T' has no
right-hand cut in s.

Notice that for s-~ along the positive real axis,

T =T +T

i' [K(t)]
( )~,

s (m —1)! (2.3)

Thus the signatured ladders, i.e., the sum of
crossed and uncrossed ladders lose a power of lns
compared with the uncrossed ladders. This i ab-
solutely crucial for our calculations.

The function K(t), which is positive definite for
t& 0, is given by

)
-g !' dP, dP, 5(P, +P, —1)

16m g'+ rn K+q + gyes'
(2.4)

where z, q are Euclidean and t=-q2.
If only one mass squared M,.2- ~ the above for-

mula becomes, for s, M,. '& 0, and s/M, ' large,
2

Z".= —,[K(t) in(s/M, . ')] (2.5)

2
T' = —,[K(t) ln(s/N')] ~, (2.6)

where N' = max(M, ', M, ').
If one mass at the top M ' (o. =1 or 2) and one at

the bottom MB' (P =3 or 4) tend to minus infinity,
then

If both M, ' and M,'- -~, then for s& 0 and s/M, '
large,

FIG. 4. The AFS Feynman diagram.

2
~g

mls K(t) in
n 8

(2.7)

III. THE AFS CANCELLATION

We wish to show that the Feynman diagram of
Fig. 4 does not possess the cut which is present
in the discontinuity of the amplitude across its
two-particle cut in the s channel shown in Fig.
5(a). To do this we show that the leading behavior
of the unitarity cut of Fig. 5(a) is exactly canceled
by the two cuts of Fig. 5(b) and Fig. 5(c).

This result is, of course, known from other

provided s/M„'MB' is large.
The case (2.7) for M, ' M,'-s has previously

been studied by Altarelli and Rubinstein. ' The cor-
rection terms to (2.5), (2.6), and (2. '1) are easily
obtained by altering the arguments of the loga-
rithms in (2.1) and (2.2) to agree with the leading
terms.

Notice that although we let M,. 2- ~, we always
insist on s/M, . being large. This means that in
the region we are considering, these amplitudes
never become small.

We would like to stress that the analysis of arly
given diagram changes dramatically when we turn
to the limit s/M, '-0 and the result (2.5), for ex-
ample, is certainly not applicable.

p'

I

1
2 I g p

!

I

!

I

I

p

(a)

FIG. 5. Three canceling s-channel intermediate states.
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techniques. Thus Polkinghorne computed the full
Feynman diagram and showed it had no cut. Man-
delstam' showed the same result essentially using
t-channel unitarity. Rothe and Gribov' also calcu-
lated the Feynman diagram directly using an ap-
parently simpler technique. Nicoletopoulos and
Prevost' have carried out an analysis of these
Feynman diagrams using Cauchy's theorem, which
is similar in spirit to our analysis. However it is
very hard to unravel the unitarity equation from
their analysis, and indeed we disagree with their
statements about the AFS cancellation.

We carry out the calculation in the s channel for
I

two reasons. First, we wish to check our tech-
nique, and, second, we wish to stress the identical
nature of this calculation and the inclusive-sum-
rule calculations of Sec. VI.

To calculate the imaginary part for s& 0 of the
diagram of Fig. 4, we have two options open. Ei-
ther we can use the unitarity equation ImT= 2TT
or we can use the Cutkosky prescription. This lat-
ter technique involving multiple cuts in the s chan-
nel is necessarily more complicated so we use the
unitarity equation.

The contribution from Fig. 5(a) is calculated us-
ing the unitarity equation:

q)o r r
qqmq= P ( )„, , ] [d'q,.q (q —m')]q„q,",I!' p, q, —Q q,). (3.1)

The r! in (3.1) comes from the identity of the ('
particles in the intermediate state. This will al-
ways be canceled in our calculations by the fact
that there are also always xl Feynman diagrams
corresponding to the different ways of labeling the
final-state particles. Thus we drop it and only
draw one of the x! diagrams.

In general we also do not calculate Im T but only
the various terms corresponding to the discontinu-
ities across the individual normal thresholds.
Thus we label the left-hand sides by (1/i)(), , T.

We shall always label the on-shell intermediate-
state particles by 1, . . . , r. For the contribution of
Fig. 5(a) we have

—.q, q= ), f d'q, d'q, q+(q, ' —m')q'(q, ' —m')

Thus (3.2) becomes

1 2 du, dP,
; ~~ T=

(2~)2 2u 2p
5(u(+ u2

x5(p, +(8, —1)TT*d'((,d'((,

x 5((((+K2) . (3.6)

Now the momentum transfer down the left ladder
is given by

t~= -(1 —u, )i],s+((,'.
For this to remain finite as s-~ implies P, -1/s
and therefore a, -constant. Thus p2-1, therefore
u, -l/s, andsou, -1. Therefore

x 5~(q, + q, —p, p, )T' T„'*,—

(3 2)

1 1T= TT *O'K
i ' Sn2s „ 1

with T' given by E(l. (2.1) since the external parti-
cles of the ladder are all on-shell.

We shall use Sudakov' variables throughout.
Thus we write

q, = u, [p, —( m'/s) p, ]+p,.[p, —( m'/s) p, ]+ ((, ,

K P,. =0 (3.3)

and, as usual,

4
! K(t ) K(t )"(lns) '"d'((

n2 rnfn't s'

(3.7)

where t, = -I ((, I
', and if p,' has Sudakov parame-

ters (1, 0, p~) then ts =-I (p~ —(()I2 and t=-I p, 'I.
Now turn to Fig. 5(b). We have a three-particle

intermediate state. The two T matrices for the
left and right portions of the diagram are

d 'q(6'(q( ' —m') = 2 I
s I du, dP( d '((,.5(u()6, s —p( '),

(3.4)
2 ~2 K

2
5 5

where K,. is purely spacelike. Finally

5'(p, +p, —Q q ) =5(Q u, —1) 5( Q p( —1)

i(—i g)
"(n '-m') '

y

i(-ig)
n-(

(t( 2 m2) q

(3.8)

2
(3 5)

where the ladders in T' have external masses off
shell and the right-hand ladder has lost a rung:



I. G. HALLIDAY AND C. T. SACHRA JDA

X d K1d »25(P1+ tl 2+ P3 —1)

)& ZI TB+ (3.9)

1 2 dn, dn, dP3 1 1
b s2(22.)54

[ln(n, s)J '" '
(p.2'/n2)(-t1 5')(n, s) (3.12)

In order that the momentum transfers down the
ladders remain finite, it is clear that n, -0, P,
+ p2-0. Therefore, using p, -1,

1 1
i ' s(2z)54

n, dn '&(n, + n, —1)d'K, d'K,
1 2

1
m n 1(k 2 m2}(k 2 m2)

The amplitudes T' are given by
-g' K' [ln(s/M „')j

s(m!)
K" '(lns')" '

Tn-1 = R'
sr (& 1))

(3.10)

(3.11)

—A S2

2 2

My —(QQ)(+- — +(K+K)
1 2

As it stands, the integrand of (3.10) contains one
power of lns less than (3.7). Thus, for any signifi-
cant cancellation to occur, we must regain the
power of lns. This comes from a nonuniformity in
the n integrals. Consider the region where z,» n, . Then (3.10) becomes

since Mz' —!122/n2- ~, and

kb'= -(1 —n, ))3,s+ (K, —p, )'

Notice in particular the fact that M '- so that
we must use (2.5} for T1'. The limits on the n, in-
tegral are set by the two criteria s' ~ M ' and ~ '
-ill, ', where Mo' is a large positive mass squared
which sets the asymptotic scale of our theory.
Thus we integrate n, from M,'/s to p, 22/M, '. This
integral can be performed, and we find the leading
term

-g d K,d »2(lns)
K(t )mK(t )n-1

(2~)'4s3 p.22p, ,2m!(n —1)!(m+n)

(3.13)

The combination 1/y. 22p. z2 is, of course, just cor-
rect to produce an extra K(ts}. Therefore

1 g' (lns) '"
—.

tabb T 328 ( )
—

!( ])) d KK(tl) K(ts)

(3.14)

i '" 8w's'mt vI
(3.15)

where K = K, + K, and t, = —
j K j ', ts = -

j (P, —K) I
'.

The diagram of Fig. 5(c) clearly gives a symmetric
answer, and if we add them we obtain

I

I

I

I

I

!

I

!

I

I

(b)

(c)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
(d)

I

I

!

1

I

I

I

I

FIG. 6. The other intermediate states at the bottom of the diagram.
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12
3

!

!

!

!

14

(a) (b)

I

t

FIG. 9. Two mass cuts.

FIG. 7. Two nonleading intermediate states.

It is a straightforward matter to check that no
other parts of the allowed n„n, region give rise
to this enhanced lns behavior. Notice that the use
of the off-shell behavior for T~ was crucial, oth-
erwise we would not have obtained cancellation. It
is also clear that if the large M' limit for s/M'-~ had been zero, then we would not have in-
creased the power of lns in performing the n, in-
tegral.

The further cuts of Fig. 6(a) and Fig. 6(b) each
give an identical contribu. ion to (3.15), which are
of course canceled against the cuts of Fig. 6(c) and

Fig. 6(d). Notice that this implies that the cancel-
lation takes place at either end, regardless of what
is happening at the other end. This is presumably
the statement that, for cuts to occur, we need
fixed poles at both ends.

Notice that since n, + e, & 1 we have M&' + s and
never greater. The Cauchy theorem proof of this
cancellation' for given fixed large s relies on ef-
fectively moving a contour in the M ' plane off to
infinity. Thus, necessarily, it must consider
! Mz'!» s for the contour at infinity and the ampli-
tudes axe zero in that region.

There are of course other cuts of the AFS dia-
gram. First, one may chop two rungs off the lad-
der in Fig. 7(a). However we then lose two powers
of lns since the right-hand ladder has lost two

rungs. Since 1, 2, and 3 are on-shell and there-
fore timelike, if we let the energy s» get large as
in (3.12}, then both the n, y propagators tend to
zero. This eliminates the possibility of building up
the two powers of lns. Second, one may cut the
ladder as in Fig. 7(b). This is automatically down
one power in ins since the leading term in (2.1) is
real and the right-hand side of Fig. 7(b} contains
the imaginary part of T'. In fact, one can easily
show in general by the arguments of Ref. 4 that
Fig. 7(b) gives rise to no cut.

IV. THE MANDELSTAM CUT

We wish to show which s-channel cuts of the
diagrams of Fig. 8 give rise to the dominant as-
ymptotic behavior and in particular how the minus
sign arises. We stress that the minus sign only
arises when we consider signatuxed amplitudes.
In the language of Feynman diagrams, crossed and
uncrossed ladders must be added. Indeed we shall
show that the simple diagram of Fig. 8(a) with only
planar ladders is positive definite at large s.

There are, of course, rather a, large number of
allowed intermediate states in the s channel which
we must study. To simplify things initially we
consider only Fig. 8(a} and check the result ob-
tained by Cicuta and Sugar. " Let us try to system-
atize these intermediate states. Clearly any inter-
mediate state which cuts one of the lines 1-8 is
naturally associated with cuts in that variable of

lz

(a) (b) (c) (d)

FIG. 8. The signatured Mandelstam diagrams.
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I
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I

I

I 5
I

I

I —rn

m
I

I
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I—
I—

I

m

(b) (c)

FIG. 10. Counting the Mandelstam cuts.

the ladder. Thus we think of the cuts a, b of Fig.
9 simultaneously. Then we write all possible cuts
of Fig. 8(a) in Fig. 10. These may be systematized
by considering diagrams where the ladders are
and are not cut in the s channel as in Figs. 10(a),
10(b), and 10(c). We would stress that for crossed
ladders the appropriate diagrams of Figs. 10(a)
and 10(b) are missing.

We would now like to go through the calculations
of the various contributions. First, let us calcu-
late the cut of Fig. 11. We find

1 1 d g] d g2 d Q3 d Q4

i (2m)' 2E~ 2E, 2E, 2E~

XS' Zs; PP,)T'T-', , (4.y-)
1

Thus we obtain

1 1
23 (2 )8

dn~ dn2,
)

dpqdpq
Q/Qj + Q2 —1

Qg Q2 psp4
n

x6(p, +p, —1) g d'v,
1

x 5(gsc, 1)T~Ts .- (4.3)

sL (@2 $3) n2pss nas &

ss =hi+0 ) =P s

As in AFS case, the only place that the integral
can enhance the logarithm is at the end points.
Assume Qj» Q2 p3» p4'.

~L, N g ~a
2 k2 2 mP

'Y

g
kg —m k, —rn2 2 2 2 g ~

(4 2)

To obtain large subenergies in the ladders we
must have Q, » Q, and Qy» Q4 For finite momen-
tum transfers down the ladders Qy+ Q2» Qg+ Q4.

k~ —(1 —ng) pis + Ki

kg' = -(1 —n, )p, s = —p, ,'/n, -~,

k,'=-(1 —p, )n, s+ s,' = g,'.
ku'= —(1 —P.»4s = —V.'/p,

Thus this contribution gives

(4.4)

1 8

23 (2 )8

8s(2m)'

dn, dP, [K(t~) in(s~/k„')] [K(ts) ln(ss/k, ')]"
n, p, m!S, nt s~ ~~~~~u".

dn, dp, 1 1 [K(t ) ln(n, p, s)] [K(t ) ln(n, p, s)]"
na P4 (-9„)( p. ) (g, /—n, ) (p,,'/p, ) n, sm! p, sn!

(4.5)

We now integrate this, insisting that Q, » Q4.'

1 4
grT g

i 8m2s'
d'~ [K(t, ) ]-"[K(t,)]"'"

m! n! (m +n+ 1) (m+n+ 2)
x (lns)m+ n+2 (4.6)

where t~ = —
I
a'I, t„=—

I
v —P, I', and t = —IP& I'

Notice that again the IL(,
's just arrange themselves

into the forms required to write them as K(ts) and
K(t~). We get three further terms from picking
the other orderings of (n„n, ) and (p„p,). We
would like to stress at this point that these terms
are the dominant contribution to the uncrossed
ladder Mandelstam diagram. This result agrees
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m+]

I

I

l

I

I

I

)

n+1

FIG. 11. The unsignatured dominant cut.

2
I

f-
f

I

n+]

f

I

with the result of Cicuta and Sugar. "
We must obviously, in the light of the AFS can-

cellation, also calculate the cut shown for example
in Fig. 12".

FIG. 12. A nonleading cut.

ky'-m'= —' P3'

1 „1 dnz da2 dn2 dP4 dP2

2
2 2 &3kp-m =—

&3

I —n2pgs k

SR —P2 S ~ (4 9)

x 6(n, + n2+ n, —1)

x 5(p, + p, —1)T~Tg, (4.'7)

3 1
T = ~ T

(k 2 m2)(k 2 m2) m -1
(k 2 m2) k

8 &n

(k '-m')(k„'-m')(k' -m') '

In order for the AFS trick to work, we need to
integrate over the region z2» a3. Then:

ky' —m'= (a,/n, ) p,,',
k,'m' = —(1 —n2)(p2)S+ (R2+ R2 —p, )',

k),
' —m' = —(1 —n, )P,s+ R,

' —m',

k,'- m' = —(1 —n, —n, )(P, + P,)s+ (~, + ~2) .

(4.8)

The two alternatives now are n, » n2 or e,» o,
The first gives:

k& -m = —p~,2 2 2

kv —m — p'v
2 2 ~ 2

The z integrals then have the form

dn, dn, [In(n, P,s)] ' [In(n, P,s)]"
n, ' (m —I)!p,s p, s (4.10)

This clearly does not pick up the requisite 2 pow-
ers of lns to compare with the leading term (4.6).
One can check the other orderings. This same
deboosting occurs in all the external mass cuts
in the Mandelstam diagram as is easily, if te-
diously, checked.

We now turn to the intermediate state of Fig.
13(a) which will ultimately provide us with our
negative two-Reggeon cuts. In the uncrossed lad-
der case they are always at least one power of
lns down on (4.6). Let us discuss this in some
detail. The first thing to notice is that the lines
a, 5 are not on-shell and the Sudakov parameters
are integrated from -~ to +~ rather than 0 to 1.
Thus we consider

1 1
i (2w)'

d'q, d q25'(q, 2 —m2)5'(q2' —m')d'k, d k25 (q, +q, +k, +k2 —p, —p, )

where

2+ 3m -1
-m+ 1 NL+ g

d'k, . l!'(k,' —m') k' k. +k, — Q k,)I T,T,',
-f=l 1

(4.11)

(k '-m') (k ' ')™
—1

I (km)'(k ' — ') (k
' — ') ) I(kg —m') (k ' —m')I

(4.12)

where T(m) is the T matrix for the diagram of Fig. 14. In (4.11) we have separated the phase space so
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q

FIG. 13. The Beggeon cuts.
(b)

that we obtain from the 4» integrations simply the right-hand side of the unitarity equation for the ladders
evaluated with s =(k, +k,)'. Thus, finally, we obtain

2g d qgd q2 1 d4u, d4k, 4

(2 )" 2E, 2g, (k ' — ')(k ' — ') (k,' — ') (k,' — ')

i g' dn, dp, 5(n, +n, —1)&(p, + p, —1)
(2 )"8 p (k ' — 3)(k ' — ')(k ' — 2)(k 2 — a) ~sdn, dp, dn, dpi' (5(Zz) II d'K;]™a~(T„')*.

n~ p2 ~
—m

p
—m, —m g

—m

(4.13)

We have assumed in the above equation that the energies across the ladders must remain large, there-
fore n, » n, and P, » P, . The subenergies are then given by

sL =(k, +k,)'= n, P,s,

sR = (4'i+Vs) = ni&2 ~no

Now consider the integration in the P, plane. The singularities in P, only occur at

(a) n,p.s =m' —x.', 4m' —a,', etc. ,

corresponding to the pole in the a propagator and the mass cuts of the ladder.

(b) k „'= —(1 —n, )p,s + g,' = m', 4m', etc. ,

(4.14)

(4.15)

corresponding to the poles in the 5 propagator and the appropriate mass cuts of the ladder. In order that
these cuts lie on opposite sides of the p, cut, we must have 0 & n, &1. The p, integration is now performed
by pulling the contour into the upper half-plane (these poles are in T*) when we pick up the poles and cuts
of (4.15). This pole, with the corresponding pole from the n, integration, gives us, finally,

1 -zg
i (2m)'

dq, dQ dQ dq
2Z 2Z 2Z 2Za b 2

x (2ImT' T' *.1
(k 2 m2)(k 2 m2)(k 2 m2)(k 2 m2) m)( n) (4.16)

This is now identical to (4.1), except that we have
a (—i ) and T'„-2ImT'„. Thus we obtain one power
less than the leading term again. Since this term
is purely imaginary to leading order, it is of

course canceled to leading order by the cut shown
in Fig. 13(b), where the uncut ladder is now in T
rather than 7.'*.

The terms in the contour integral involving the
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m+1

FIG. 14. A Feynman diagram.

mass cuts give terms of lower order. This is the
same result as that contained in (4.10), so we
shall not go through the proof.

The cut through both ladders may be handled in
an identical manner and turns out to be two powers
of Ins down on the leading term.

Now what happens when we turn to the sum of
crossed and uncrossed ladders? The leading
contributions now have a quite different structure.
Thus we must use (2.3) for the amplitude which
is purely imaginary now in leading power of lns.
This means that unlike the planar case when we
cut a ladder in the s channel, we do not lose a
power of lns as in (4.16). On the other hand,
when we add crossed and uncrossed ladders we
obtain i ImT'„. Moreover in (4.16) to leading
order (T„')*-(T„'+T'„)*,which is purely imag-
inary so that (4.16) gives a real, negative con-
tribution to the cut, no longer canceled by real-
ity arguments.

Thus the two cuts of Fig. 11(c) give rise to a
contribution:

(+2)
i ' 8s'(m-1)! (n-1)! (m+n)(m+n-1)

FIG. 16. The two-H, eggeon cut.

The four cuts of Fig. 15, when the uncut ladders
are replaced by the sum of crossed and uncrossed
ladders, gives (4/i)-&, T Fina. lly the cut down
both ladders shown in Fig. 16 may also be easily
computed and gives +(2/i )&,T. We have only one
unitary integral unlike Fig. 15, but the amplitude
is four times as big as it involves (2i ImT„') twice.

Thus we finally obtain exactly minus Eq. (4.17).
In all of this, one must finally check again that
the external mass cuts of the ladder are at least
one power of lns down on our leading term.

Since real analyticity implies that B„in (2.1) is
real„ it is clear that the correction terms to T'
and T" always remain at least one power of lns
down on our terms.

The cut shown in Fig. 13 is also rather unfor-
tunate for one's hopes of constructing a linear
integral equation for the cut discontinuity from
s-channel unitarity, since even in the pure multi-
Regge region of (m+1) particle phase space it does
not factorize.

We would like to stress again that the unitary
intermediate states which give the minus sign are
exactly those states corresponding to cutting a
Reggeon in half. The usual way of drawing
Reggeons, as in Fig. 1V, is misleading with its

li li

n n

lL r
FIG. 15. All the one-Reggeon cuts.
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FIG. 17. A Heggeon.

Feynman diagram implication of having no s-
channel cuts.

V. THE CUT SIGN

On the basis of the calculation of Sec. IV we wish
to state our disagreements with Abarbanel's
ansatz. " In our view the crucial assumption,
which we disagree with, is that if we order our
particles by rapidity, whenever we have a large
rapidity gap we must have a simple Regge pole ex-
change as in Fig. 18. These diagrams for produc-
tion processes must be supplemented by diagrams
like Fig. 19. When the sum of Fig. 18 and Fig. 19
are introduced into the unitarity equation, we ob-
tain Fig. 20. Term (a) is the Abarbanel ansatz
and is clearly positive, however, if (a) also con-
tains the Regge pole output [cf. Ref. 1], then (b)
clearly contains two Reggeon cuts of indeterminate
sign. This is exactly what we have proved in the
Mandelstam diagram. Notice Fig. 19 is by no
means exhaustive of these possibilities.

Although we agree with almost all of Chew's
strictures on perturbation theory models, we would
point out that in p' theory the trajectory computed
from the ladder diagrams o(t) = —1+K(t)+O(g ) is
believed to be an exact calculation to order g'.
Thus this trajectory is not renormalized in the
approximation by the exchange of itself. These ex-
changes give rise to a lower trajectory [cf. Ref. 7].

FIG. 18. Abarbanel's ansatz.

FIG. 19. A correction to Abarbanel's ansatz.

Although one may not like our Feynman diagram-
like way of drawing Fig. 19, it is hard to see on
what grounds these diagrams or at the very least
their s-channel discontinuities can be eliminated
from the amplitudes for production processes.

VI. THE INCLUSIVE SUM RULE

DeTar and Weis' show that if we take the inclu-
sive sum rule for energy:

(6.1)

and integrate over only the triple-Regge region,
then since f is positive

(6.2)

Then in this region, we write f as the diagram in

Fig. 21 with Pomeron exchange everywhere we
prove dividing by (—,'s)' '

const ~ (lnlns) g z(0). (6.3)

Hence we find the canonical zero in g»~. Now the
(ln lns) in (6.2) comes from effectively calculating
the AFS cut with two Pomerons connected by c.
However it is clear that this is canceled by the
contribution from diagrams such as Fig. 22. In
other words, we are saying there is no cut in the
integral of Fig. 21 because there is no fixed pole
in the top vertex. Previous examinations of such
diagrams" have essentially concentrated on the
existence of fixed poles in the central vertex. We
could prove this cancellation in our weak coupling
model. However the result (6.3) is totally depen-
dent on the Pomeron having o.(0) =1. We shall
therefore calculate the diagram of Fig. 22 with
the Reggeons taken to be Pomerons. We put 2 on-
shell and therefore are only computing part of A~2.
At the bottom of the diagram, we simply put in a
nonzero coupling of the three Pomerons.

Now if we believe that the Regge formalism
works for any subenergy ~ M,' then the triple-
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(b)

FIG. 20. The unitary contributions.

Regge region corresponds to the n parameter of c
lying in the range 1-M,'/s & n, &1-m'/M, ', where
m' is our particle mass. This ensures that in Fig.
21 the energies appropriate to all three Pomerons
& M,'.

We use the Sudakov variables:

(q.'-m') '=(P.s) '

(qs'- m') ' = - (V s') " .
Thus, finally we end up with

(6.6)

(nil Plt Kl)

q2 =(n2 &2 Kz) ~

(6.4)

1J= ——
S

dQ» dc'
n. (V s')(V, '/n. )

These are both on-shell momenta. Then the miss-
ing mass we use is given by

X (M')"'" G (6.7)

M' = (q, + q„—q, —q, )'

= (1 —n, —n, )(1 —P, —P,)s (6.5)

The energy across the y Reggeon is then given
essentially by s&—-m' s/M', while across the 5 Heg-
geon we have sq —-m 's»/M'. It is technically con-
venient to define 1 —n, —n, =+ n, . Thus M'= n (1
—P, —P,)s ~M,'. Also s»—- (n,s) ~M,'. Now, as in
our AFS integral, the dominant contribution comes
from n, «u». This is also clearly necessmy for
us to be looking at the triple-Regge region for
particle c.

The two propagators then give

J=-— » de d

X G( K1 ~ K2 ) ~ (6.8)

where M~'=mass squared in the u line which will
be large so we have used the large s and M' form
valid for the ladder diagrams. G contains all the
appropriate coupling functions. Now insert the
forms given above for the energies and use M„'

b b

FIG. 21. Triple-Regge contribution. FIG. 22. Another contribution.
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where we integrate n, from Mo»/m's to p, '/Mo' to
stay inside the appropriate Regge regions and n,
from M, '/s to n,m'/M, ' for the same reason. This
means that 1 —p, '/M, ' & n, &1 -M,»/m's. This is
uithin the triple-Regge region which is defined by
1 —p, '/Mo' & n, &1-M,'/s in our notation. The
upper limit is clearly changed by the kinematic
necessity of having three large subenergies in

Fig. 22. This change does not affect any of the
(lnlns) terms as is easily checked.

The kinematics of Fig. 22 also makes sure that
z&'= aq', and we may switch to zq and K8 as inde-
pendent integration variables. Now if we have
n(0) = 1, it is easy to check that the n„a~ integrals
give rise to a term -(lnlns)A, where A is a finite
integral as s- ~. We do not get exact cancellation
with the right-hand side of (6.3) except in the weak
coupling limit. This is because even with the same
c, there are many other 4~2 cuts of Fig. 22 which
are equally important in general.

Thus we see that there are other equally large
contributions to the sum rule from the same region
of phase space as well as that of Fig. 21. Again
these are due to the structure of the Reggeon.
Because of these additional contributions, we can
no longer obvzously deduce in this way that the
triple-Pomeron coupling vanishes. Thus we are
forced back to the t-channel proofs given in Ref. 6.

VII. CONCLUSIONS

The results of this paper stress repeatedly that
if one attempts to calculate two-Reggeon cuts by
using the s-channel unitarity equation, an absolute
prerequisite is the knowledge of how the Pomeron
itself is reconstructed using s-channel unitarity.
This knowledge we do not have at present.
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APPENDIX

We shall derive the off-shell asymptotic be-
havior as s- ~ as well as one or more masses.
The momentum transfer t is at all times kept
finite. In order to avoid the normal thresholds in
s and M' we shall always take the limits where the
asymptotic variables tend to -~.

The Feynman amplitude of Fig. (3a), with Feyn-
man parameters as shown, gives a T matrix given
by Ref. 7:

after performing the symmetric integrations.
Let us first study the limit where s-~ with one

M', say, M, '-~. We then write'

D =fs+ gM'+d,

where, using the rules of Ref. 7,

(A2)

A(p, , v)= o "
0

( " 'dad)A( —a, P),-(A4)

where A(S,M, ') = T(S,M, ', M, ', M, ', M»', f ) with the
nonexplicit variables held fixed. Then by trivial
integration,

A(p. , v) = r(-p, )r(—u)g'
16m'

oo e4/C

P (d n, d y, d5, )f"g".

(A5)

We must now enumerate all the singularities in
p, , v of the integral. It is clear by inspection that
c&0.

The singularities all come from divergences of
the integral due to f or g vanishing. By inspection
of (A3) we find the following singularities:

(1) simple pole at p, +v= —1 due to n;0;
(2) m-fold pole at p. = -1 due to n„n„.. . , n„+,-0

separately;
(3) simple pole at p, + v= —2 due to u, and 5, si-

multaneously vanishing,
(4) simple pole at v= —m—1 due to 5„5„.. . , 6„

simultaneously vanishing.
There are obviously further poles lying further

to the left caused by carrying out further integra-
tions by parts. There are also poles caused by
scaling further larger sets of Feynman param-
eters. These also lie further to the left in a sense
that we will clarify during our calculation.

It may be worth stressing at this point that some
scalings which apparently give different types of
singularity must be treated with caution. Thus,
apparently, if we scale u„n2 by p, we obtain the
integral

f = uzu2' ''urn+a ~

g = u, 5, C(m) + u, n, 5, C(m-l) +

+ nZCV2n3' ' 'O. m&m 1

where C(i) is the determinant C for the lower i
loops. Now let s=-a, M, '= -g so that we consider
0; p. '-+ . Then we define

f
oe 0/c

pdp 5(u, +u, -l)(u, u, )"a. ,' „„,„du,du, p"'"
0 C

2 tl D/C
T=g' —, gdn, dy, d5. . . (Al).

0 C

where D, C are the usual determinants which occur (A6)
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&(v, )= .[&(t)1(u+ v+1) (V+1)"

We now invert (A7) using the formula

(A7)

a(p. , v
A(s, M')= (-s)'"(-M')+" '

.', dp, dv.(2' )'

(A8)

Since we are interested in S»M', we first of
all carry out the v integration. Using (A7) we find

A(s, M') = P u
g2K

(2vi) (p, + 1)"(-s)"

x I'(-p. )i'(y, +I)(-M') " '. (A9)

Since
~ s/M '~-~, we see that the right-most pole

which apparently has a singularity at 2p. + v= -2
due to the p integration. However the two jnte-
grals over n, -O and n, -O, respectively, give rise
to a factor

1 1
p. +v+1 p. +1 '

which cancels the 2p. +v = -2 singularity.
The coefficient of the multiple poles given by

singularities (1) and (2) is equal to the usual
Regge-limit coefficient since we have integrated
by parts the same variables as in the Regge limit:

in p gives the dominant contribution. Notice that
I'(p, + 1) also has a pole at p, = -1, so that we end up
with an (m+I)-fold pole at p, = —1. This is caused,
in general, in (A5) by the v contour being pinched
between the v=0 pole of the 1 function lying to the
right of the v contour and the p. +v=-1 pole lying
to the left at p. =-1.

Moving the p, contour to the left now gives

a(s, M') = -g'K tin(-s/-M ')]
mfs

(A10)

This is the result assumed in (2.5). We claim
that none of the extra singularities coming from
larger sets of scalings interferes with these re-
sults. We leave this as a straightforward but
rather tedious check for the reader.

The results of Eqs. (2.6) and (2.7) are obtained
in the same way be defining triple Mellin trans-
forms with respect to s and the two masses. The
singularities are then essentially identical to those
found above, and the required results (2.6) and
(2.7) are easily verified.

The only tricky point is to always make sure
that the Mellin inversion is performed on the
smallest variables first.

If s/M'- 0, then in (A8) the integrations must
be performed in the opposite order. This leads
to quite different results which we hope to ex-
amine later.
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