
THIRD SERIES, VOL. 8, NO. uly 1973

Possible Improvements of Gravitational Antennas
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The optimization of a gravitational antenna is studied in this paper. It is shown that the gravitational

cross section of a conical antenna is 20% larger than that of a cylindrical one. A conical antenna is

less suitable for use with ceramic transducers; however, when capacitative detectors are employed, its

sensitivity can be improved by a factor of about S with respect to cylindrical antennas.

I. INTRODUCTION

Many authors have studied gravitational anten-
nas. Historically, the first antenna was the class-
ical cylinder used by Weber. ' A dumbbell was
proposed by Tyson' for. low frequencies and its
properties were compared to Weber's antenna by
Rasband et al. ' Braginskii suggested that a double
pendulum be used to detect gravitational radiation
emitted by the Crab nebula pulsar. ' In this paper,
we shall find what shape the antenna must be in
order to have the highest sensitivity.

II. OPTIMIZATION OF THE ANTENNA SHAPE

in a straightforward way.
Let 4(Z) be a deformation of the antenna. The

elastic energy due to the deformation is

c= —', f z(—)zv,
where V is the volume of the antenna and E the
elastic coefficient. By virtue of hypotheses (4) and

(5), this reduces to

y*(z)(—) zz,

where L is the length of the antenna. The kinetic
energy T is obtained in the same way:

We shall start from the following assumptions:
(l) All dependence of the elastic oscillations on

directions perpendicular to the horizontal symme-
try axes of the antenna is ignored. This is equiv-
alent to setting the Poisson ratio equal to zero,
and is quite reasonable for thin antennas.

(2) The center of mass remains stationary.
(3) The stress vanishes at the ends of the anten-

na.
(4) The antenna is axially symmetric and is sym-

metric with respect to a plane.
(5) The antenna is homogeneous.
Let y =y(Z) be the shape of the antenna (Z being

the symmetry axis). Using assumption (l), the
equation for longitudinal oscillations can be found

T= 2mp

where p is the density. Then, the Lagrangian is

L=T-e
and the equation of motion is written as

BC B4 B4
Py'(Z)sf , -Ey'(Z) sz,——2Ey'y sz = 0,

where y'=dy/dZ.
If we include a dissipative term g, this equation

becomes
B 4 2 BC 2 B4,~4py'(Z), + qy'(Z) ——Ey'(Z), —2Eyy'
Bg Bt BZ BZ

whence
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8C 8C 8@ 2y'84
Vs 8t 8t 8Z' y 8Z

where Vs' = E/p, b = 7i/E.
In the presence of a gravitational wave, we have

1 8'C 8C 8'C 2y' 8C

Vs 8t et 8Z 8Z ~go (2)

Let us put

0&..0= A((u)e' 'd(u,

e=(e, +ie,)e' '

Equation (1) can be written in the form

2 ~ ez —bwe2 — 2
— = c Re(A)Z,

with the boundary conditions

(&e,/»), =,g, =(&e./&z), =,(.= o . (4)

III. OPTIMIZATION OF THE SINGAL- TO-NOISE RATIO

at the center of the antenna due to a gravitational
wave.

Consider the functional N(y(Z)) = e,(0)/e„(0).
We must find a value of y(Z) which maximizes N
for given A',„, mass, and frequency. This prob-
lem has no simple analytic solutions, and so we

have chosen to solve it numerically by approximat-
ing y(Z) with the following functions:

y1 = ap —a1Z —a2Z —a3Z —a4Z —a,Z2 4 6 8 10

y2 = do(1 —Qgz —Q2Z —Q3Z —(X4Z )

In these expansions,

sy, I

8Z g 0

(5a)

(5b)

Let V(Z, f}= V(Z}e' 0' be a solution of Eq. (1) for
the fundamental mode. Using the equipartition
theorem, we can compute the mean stress

"'p' = (E,', v(z))'

due to thermal noise fluctuations at a given tem-
perature T. In the same way, we can compute the
maximum stress

FIG. 1. Longitudinal sections through the symmetry
axis Z, showing one quadrant of the antenna profiles:
(1), (2), and (3) represent, respectively, Weber's
antenna, the antenna described by Eq. (5a), and the one
described by Eq. (5b).

It is useful to calculate the N(antenna): N(cylin-
der) ratio I':

N(y (Z)),„,
N(y(Z) ).,h.a.

[e,(0)/e„(0)],
[e, (o)/C «(0}].,~d.,

For the classes of functions (5a) and (5b), it was
found that I', =1.09 and I", = 1.11, respective-
ly. In the latter case, the values of the coeffici-
ents were n, = —,', z2=0.0083, n, =n, =0, y=1.04,
which corresponds to an approximately conical
antenna.

Our antenna is taken to be initially at rest.
Therefore, it is reasonable to apply to its inter-
action with a gravitational wave the notion of
cross section (Braginskii's criticisms would not
seem to apply here), and the cross section of the
conical antenna is seen to be 22/ohigher than that
of the cylindrical. Note that for both cases (Fig.
1), the central stress in the cone is 35% lower
than in the cylinder, while the end displacement
e(—,'1.} is twice as large.

IV. CONCLUSION

Weber's cylindrical antenna is quite a good com-
promise insofar as the cross section is concerned.
In fact, a conical antenna would be more expensive
because its vacuum chamber would have to be
twice as large and its lower stress at the center
would inhibit the effective use of detectors based
on piezoelectric transducers. On the other hand,
when the end displacement of the antenna is used
to activate a capacitative detection device, a coni-
cal antenna would seem to be optimal.

In fact, in a Weber-type device, the sensitivity
is limited by the noise of the piezoelectric trans-
ducers, "and by the low Q of the antenna due to
mechanical losses in the ceramics.

Now, a capacitative device is more effective in
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the detection of small deformations of the antenna.
The sensitivity is then limited by the noise of the
electronics [phase noise of the high-frequency
generator in the active method of detection, 7 am-
plifier noise in the passive method (in prepara-
tion)] .

In conclusion, it would appear that a conical
antenna can improve the sensitivity of gravitation-
al energy detection by a factor 4.8. The fourfold
contribution arises from the square dependence on
end displacement, while an improvement of 1.2 is
obtained as a consequence of larger cross section.
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A solution for the geodesic motions in the gravitational field of a rotating body due to Tomimatsu

and Sato is studied.

p = (r' —2mr+m'q')' ' sins,

z =(r -m) cos8.
(2)

Recently a new solution for the gravitational
field of a rotating body according to general rela-
tivity has been found by Tomimatsu and Sato. ' In
this note we study the geodesic motions appropri-
ate to this solution. Our investigation is restrict-
ed to the equatorial plane. After obtaining the
first integrals of the equation of motion, we con-
struct the equations for radial and angular veloc-
ities of test bodies and light rays. We then dis-
cuss a number of applications. These include cir-
cular orbits in two selected cases, the gravita-
tional deflection of light, and the motion of a test
body which, at infinity, is nonrelativistic and has
zero angular momentum.

We start with the metric given by Tomimatsu
and Sato:

d T'= f(dt —~dQ)' f '[e'~(d&'+dp')—+ p'dQ'].

(1)

The functions f, y, and &o depend on the variables
p and z only, and are given in Ref. 1. The cylin-
drical coordinates, p, z, and Q, are related to
the Schwarzschild polar coordinates, r, 0, and P,
as follows:

when

A = [P'(x' —1)'+q']' —4P'q'(x' —1)x ',
B= (P'x '+ 2Px' —2Px —1)',

C = —P'(x' —1)[4x' —x'+ 1)

—P'x(x' —1)[2x'+ x'+ 1]+q' (1+Px),

(4)

(5)

x = (4p'+m'p')'~'.1
mP

In the above P'+q'=1, and q is related to the an-
gular momentum J of the rotating body as q= J/m2;
m is the mass energy of the body.

Let us now consider the geodesic motions on the
~ = 0 plane. We are not interested in the equations
of motion as such, but only in their first integrals.
Applying a standard argument' to the metric given

by Eq. (1), two of these can be immediately writ-
ten down:

The equatorial plane, to which we will confine our
attention throughout this paper, is defined by 6)

= ~w, x=0. The metric functions, f, y, and &u, on

the a=0 plane, are given by the following:C,y
A

(d = 2 sl q — g ~ = 4~


