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The off-shell behavior of the current amplitude is studied in the framework of a field-theoretical

model of vector-meson dominance based on a spontaneously broken gauge theory. We discuss mainly

the effects of the Higgs scalar mesons, in particular the implications of a straightforward modification

of the ordinary algebra of fields. The Schwinger term, which depends on the Higgs scalars, and some

of the Schwinger-term sum rules are briefly discussed. The ratio R in the deep-inelastic process and

the Callan-Gross relation are discussed in detail based on a simple model. Our result suggests that the

longitudinal component is still logarithmically enhanced relative to the transverse component. The

renormalizability and the enhancement of the longitudinal component are therefore independent proper-

ties. It is also emphasized that the ratio R, given by the dispersive approach of vector dominance,

is logically independent of the large ratio R required by the algebra of fields. The effects of the Higgs

scalars on electron-positron annihilation are also compared with those of the dilaton; the annihilation

cross section scales up to logarithmic factors. We note that the naive scale dimension of the current

and Bjorken scaling (or scaling in the annihilation process) have very little to do with each other in the
present approach. We also note that in the ordinary perturbative sense the lepton current couples to
a nonconserved piece of the hadron source current. The implication of this property for the con-

struction of the dual current amplitude is discussed. The extension of the model to include many

vector mesons is also commented on.

I. INTRODUCTION

The notion of vector-meson dominance' and its
field-theoretical implementation via. the current
field identity' and field algebra. "has provided
a convenient means to study low-energy electro-
magnetic and weak phenomena. A recent develop-
ment in the gauge theory' ' allows us to construct
a renormalizable (and therefore more well-de-
fined} theory of massive vector particles. The
gauge theory of vector dominance was first dis-
cussed by 't Hooft' and later generalized by
Bardakci and Halpern. " In the unified model of
strong and weak interactions by Bars, Halpern,
and Yoshimura, ' the idea of vector dominance was
utilized to resolve some of the "mismatches" of
hadronic and leptonic symmetries. The existence
of the so-called Higgs scalars plays an essential
role in the ordinary treatment of the spontaneously
broken gauge theory. These Higgs scalars some-
how suppress the longitudinal component of the
massive vector mesons. They also modify the
ordinary algebra of fields. "'"

In this paper we study the effects of these new
scalar mesons. In particular we are interested in
the off-shell behavior of the current amplitude.
This off-shell behavior is important even though
these models are primarily intended for use in the
low-energy region. One such example where the
off-shell behavior has some relevance is the
electromagnetic mass difference. The knowledge

of the off-shell behavior is essential when one
estimates the physical plausibility of the finite
mass difference'" given by the gauge theory.
Also, a recent study" indicates that the low-lying
scalar and vector mesons may be important in
determining the asymptotic behavior of the scaling
functions in the deep-inelastic process. It is
therefore desirable to know the detailed properties
of the low-lying vector mesons and their inter-
action with currents. In the model which we
discuss below, the form factor of the vector-
dominant type is already built in; it could there-
fore be valid up to fairly large momentum trans-
fers.

To study the dynamical aspects of the gauge
theory we use mainly the simplest model possible,
namely, an Abelian model. This model is cer-
tainly too simple to be realistic. However one
can learn certain characteristic aspects of the
gauge theory based on this model. We learn, for
example, that the renormalizability of the under-
lying Lagrangian as such does not imply the fi-
niteness of the ratio R in deep-inelastic electro-
production. Some other aspects are more depen-
dent on the detailed algebraic structure of the
model. In such cases we use a simple non-Abelian
model to discuss the necessary modifications.

The recent discovery" that the zero-slope limit
of the dual resonance model corresponds to a
spontaneously broken gauge theory also makes the
dynamical study of the gauge theory more appro-
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priate. W'e try to compare some of the relevant
properties of the gauge theory with those of the
dual resonance model.

The Lagrangian can now be written as

2=yiy" (a„-ieA.„)p, —m„g p,

II. ABELIAN MODEL

We now turn to a simple Abelian model to study
the effects of the Higgs scalars in the deep-inelas-
tic process" and related processes. The ordinary
vector-gluon model has been widely used to inves-
tigate the scaling property in the framework of a
Lagrangian field theory. " The Lagrangian we
discuss below is very close to the conventional
one, but it also incorporates the idea of vector-
meson dominance. The major difference between
the ordinary vector-gluon model and the present
vector-dominant one is the following: The non-
Abelian extension of the former is rather straight-
forward, and it does not alter the basic structure
of the currents as far as one includes only the
neutral vector gluons. On the other hand, the
extension of the latter to the non-Abelian case
substantially modifies the algebraic structure of
the currents.

Some of the algebraic properties of the non-
Abelian model are summarized in the Appendix.
In spite of this limitation of the Abelian version
of vector-meson dominance, we use it mainly in
the following discussions because it is simple and
also allows us to see what is going on in a more
transparent way. When we come to properties
which depend in an essential way on the Abelian
nature of the model, we discuss the necessary
modifications based on the non-Abelian model
given in the Appendix.

+piy" (a„i—gv„+ieA&) p —mpp

--,'(a„A„-a,A„)' ——,'(a„B,—a„B„)'

+-,'(a„y(x))'+-,'g'y(x)'V„V& --,'~(y' v'),

where

(2.5)

y(x) -=v + y(x). (2.6)

and

a, (a"A"- a "A")=egy"p. +eJ"(x) (2.7)

g'p'V" (x) -gZ" (x) =0,

where the hadron current is given by

(2.8)

J ~(x) = —a, (at'B"- a'B~) - pygmy. (2 9)

Equation (2.8) also gives (current-field identity)

Z„(x)= —[gy(x)]' V„(x). (2.10)

The quantization proceeds as usual; in particular,

[II„(x), y(y)]„o=,o= —ia'(x —y) (2.11)

In this Lagrangian the mass of the "photon" field
A.„ is not quite zero because of the mixing of fields
in the term (a„B, a„B„)'—. We can now write the
equations of motion from Eq. (2.5):

A. Algebra

We start with the Lagrangian:

[II,.(t, x), B'(t, y)] =-ia'(x-y),
where

(2.12)

4(x) = [rp(x)+i It(x)+v].
1

2
(2.2)

The unitary gauge indicates (the gauge-compensa-
ting effective action should also be added; see
Appendix) that

g = p, 1y" (a~ —ted~) p —m~ p g

+ piy~ (a „igBq)p —mp(-
——,'(a g, —a„A„)'——,'(a„B„-a,B„)'
+I(a„-igB„—ieA. „)CI'-x(ICI' ——,'v')'. (2.l)

After spontaneous breaking we have

II~(x) =- jo(x) (2.13)

11,. (x) -=Z„(x) = a,B,(x) —a, B,.(x). (2.14)

[Jo(t, x), &0(t, y)]=0, (2.15)

The quantization of the electromagnetic field is
the same as in the ordinary treatment. A rather
detailed discussion of this together with a general
discussion of the renormalization program is
found in Ref. 4. See also Ref. 7.

The algebraic properties a,re given by

It(x) -=0.

We also define

V„(x)-=B„(x)+ —A„(x).

(2.3)

(2.4)

[J'(t, x), J~(t, y)]=i, a'6'(x —y),
. [g (y)]'

(2.16)
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[a,J'(t, x), J '(t, y)] = -4i, » J'(t, x)J'(t, x) 6'(x - y)
[Q x]

2- ig'[ p{x)@(y)]'6"'6'(x —y) -i a„' [y(x)] 'a'a'{ x —y)y(x)

+i[&(y)1'a"a'6'(x —y) + quantum-electrodynamic corrections. (2.17)

It should be noted that the effects of the Higgs scalar field on the algebraic properties are not sensitive
to the group structure of the model (see Appendix). Equation (2.16) shows that the Schwinger term" de-
pends on the Higgs scalars. In the limit of large A., Eq. (2.17) becomes

[a,J'(t, x), J'(t, y)] = 4i —,J-'(t, x)J'(t, y) 6'(x —y)

—ig'v'6 '6'(x —y) +iv'a'a'a'(x —y) +@ED corrections. (2.18)

Actually this is valid for m ' =2Am'» rn~' =g v'. lf one starts with the limit A. =~, we obtain instead

[a,J (t, x), J'(t, y)] =iv'a"a'6'(x —y) —ig'v'6 '6'(x —y) +@ED corrections. (2.19)

2

[J'(t, x), J'(t, y)]=i, 'a6( x-y). (2.20)

Equations (2.19}and (2.20) correspond to the ordinary algebra of fields. " The existence of the Higgs
scalar gives rise to the difference between Eq. (2.18) and Eq. (2.19); these equations also show that the
limit A.- and the algebraic manipulation do not commute.

B. Callan-Gross Relation

At this stage we quote the main result of Callan and Gross. " They derived the following relation (as-
suming scaling):

where

'd '
[+,($) (&&; p;p, )-+ (()-p;p, ]=»m, &;,(p),

go~ 00 po

l

and

(2.21)

G„.(p)=-- d'x6( )(pl[a.J(.), J, (0)lip&

( it' )/(Vp-) =- 2/~.-
The structure functions are defined by'

(2.22)

(2.23}

E~(g) is unspecified.

Equation (2.19) similarly suggests

&,(&) =&, (h)

=0.

C. Perturbation Calculation

(2.29)

(2.30)

and

&r(h) = P;(h)

&1.($) =& ($) —Ãi($).

Equation (2.17) [or (2.18)] gives rise to

(2.24)

(2.25)

In the following we examine Eq. (2.28)-Eq. (2.30)
based on perturbation calculations. Our approach
is akin to the effective-Lagrangian approach";
we limit ourselves to tree diagrams. For this
purpose we further rewrite the Lagrangian in
Eq. (2.5) as

dx 6(x') (pl[a, J,.(x), J',.(0)] l p)

=A(p') p, p,'B(p') 6,, (2.26)

A2
. eZ=p, iy" 8 -ieA -i —B p, -m p. p,V ]I g ]I V

On the other hand, Eq. (2.19}gives

dxg xo p oo~ x, &-0 p =0.

Therefore Eq. (2.17) suggests that

Er($) =0

(2.27)

(2.28)

+giy" (a„iGB~+ieA„)g —mpg-
--.'(a„A.,—a„A„)'--,'(a„B„-a„B„}'+-,'I'B„B
+-,'(a„y)' 'g'B+„B~y'+M gB B"y ——,'A (y'+2')',

(2.31)
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where we redefined the fields by

A. ,= (gA.„-eB„)/g

and

(2.32)

(2.33)B~= (gB„+eA&)/g.

The photon field A„ in (2.32) is massless in con-
trast to A~ in Eq. (2.5).

The coupling constants are defined by
(a)

g -(g2 e2y&2

& =g'/g,

e =ge/g,

(2.34)

s„(s"A. '- O'4") = eely" p, —eely" p, (2.36)

&.(&"B'-&'B') =G(~"0+(e'/~) V r" I

+g'[(p(x) +u]2B"(x). (2.37)

Note that Eq. (2.36) and Eq. (2.37) do not satisfy
the current field identity. This kind of arbitr3ri-
ness in defining the fields is well known. Equa-
tion (2.37) can also be written as

s, (aj'B'- s "B") M'B' =Gl-r" 0+(e /G)ur I
+g'[(p (x)'+2' (x)]B~ (x)

(2.36)

This suggests that the hadron source current to
which the massive vector field couples is not

conserved:

(2.35)

This Lagrangian gives rise to the equations of
motion:

(b)

FIG. 1. The lowest-order diagrams for lepton-hadron
scattering.

of the ordinary vector-gluon model except for the
interaction

(e'/G)Pr" B„u (2.41)

(2.42)

This term simulates vector -meson dominance. '"
This can be seen by considering the lowest-order
process shown in Fig. 1. The amplitude for Fig. 1.
is given by

g" ' g" '-q "q'/M'
P q2 qg M2 v

I
=i e'j„-;

q q —M

s[g'(y' 2+np) B"(x)] w 0.

Equation (2.39) vanishes only for the Landau

gauge

a„B"(x) =0.

(2.39)

(2.40)

where

jp=VYppp

4„=hadron current in the ordinary
vector-gluon model.

(2.43)

In the Landau gauge, however, the Goldstone ex-
citation remains in the Lagrangian. This is one
of the aspects of the Nambu-Goldstone mechanism;
nonconserved currents can be made conserved if
one adds Goldstone bosons to the Lagrangian.
Equation (2.39) and its implications will be dis-
cussed later.

We now discuss two distinct cases depending
on the mass of the Higgs scalar meson.

m '=2k.v'=~

In our simple Abelian model renormalizability
is still maintained in this limit. In this limit the
Lagrangian in Eq. (2.31) becomes identical to that

It is also easy to see that Eq. (2.42) is exact up to
all orders in G and to second order in e. There-
fore the "scaling function" in the present model
is given by

M~
W, (&u) = -, , W, (&u),

(2.44)
M

v W, (~}=, , vW, (~},q'-M"

where W, and v%; are given by the ordinary vector-
gluon model. A perturbative study of the vector-
gluon model indicates that 8', and v W scales up
to logarithmic factors. " Equation (2.44) therefore
indicates that W, and vR', vanish in the scaling
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limit, in accordance with the Callan-Gross rela-
tion. These equations also suggest that we can
obtain scaling laws if we have vector mesons with
mass (a sort of Yukawa relation):

1
M '-(-q')-—

V (2.45)

This is the basic assumption of generalized vector-
meson dominance. " The physical meaning of this
is that the hadronic system has no scale by itself;
its scale is determined by the scale of the detector
(-q'). In this case the ratio R is similar to that in
the ordinary vector-gluon model. It is therefore
expected to be rather small. This conclusion is
not, however, maintained if one goes to the non-
Abelian model. Because of the highly nonlinear
self-coupling of the Yang-Mills fields, the alge-
braic structure is greatly modified. The longi-
tudinal component of the scaling functions is en-
hanced by this nonlinear self-coupling. In this
case the ratio R becomes large. This can be
remedied to some extent by incorporating more
vector fields with large masses. In any case, the
infinitely many vector-meson excitation operators
in the dual resonance model" indicate that we
may, after all, have to introduce infinitely many
"elementary" vector excitation operators into the
model. This procedure seems to be necessary
even if the single vector field already incorporates
certain effects of higher vector states, as one can
easily see by writing a spectral representation
for the vector field.

Equations (2.44) also suggests that the large
ratio R is not an inherent property of the vector-
meson dominance model. It is rather the property
of the detailed coupling scheme in the field-theo-
retical model (see, e.g. , Ref. 21), and it is also
the property of analyticity in the virtual photon
amplitude in the dispersive approach. This analy-
ticity assumption in the dispersive approach com-
bined with the simplest implementation of the
gauge condition gives rise to the large ratio R
independently of the algebraic structure of the
model. " A different analyticity assumption there-
fore gives rise to a different ratio R. This prob-
lem of the gauge condition also appears explicitly
when we include the effects of the Higgs scalar
mesons. We now turn to this problem.

2. Einite m 2

For finite m ', Eq. (2.29) indicates that the
ratio R is expected to be large if E~(ur) scales.
The direct exchange of the vector meson between
the quark and the lepton is still suppressed by a
factor M'/(q' —M') as in Eq. (2.44). The lowest-
order term which survives in the scaling limit is

FIG. 2. The lowest-order nonvanishing diagram for
the deep-inelastic process.

given by the diagram in Fig. 2. The amplitude
for this diagram is given by

r„=i Gu(b')y„u( b)(-i), ,— (2igM) gs„
g "8—Q~/M'

After a simple calculation we get

(2.46)

W, =O,

(2Gg)' a —1
4'll' (d

(2.47)

J' = = [M'+2gMy(x) +g'y(x)'] V„(x).
g

(2.48)

The second term has scale dimension 2 instead of
3, which is necessary to get scaling based on a
naive dimensional argument. (We use the term
"scale dimension'" in a very naive way. The di-
mension" of the time component is actually more
complicated. ) More about this will be discussed
later.

We next examine the contribution from the last
term in Eq. (2.48), which has scale dimension 3.
The lowest-order process which depends on this
coupling is represented by diagrams i.n Fig. 3.
Figures 3(a)-3 (c) are similar to those of pion-
pair creation via two photon exchange in electron-
electron scattering. The diagram in Fig. 3(d) is
a special diagram for the Higgs mechanism. The
entire amplitude for Figs. 3(a)-3(d) is given
by

The lowest-order contribution thus exactly satis-
fies the Callan-Gross relation. It should be noted
that we have no logarithmic factors which violate
scaling laws. This is due to the fact that the cur-
rent operator which appears in Fig. 2 corresponds
to the second term in [see Eq. (2.10)]
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(b)

FIG. 3. The lowest-order process which depends on the current with scale dimension 3.

2

&, -=(»g'G)M((')r'u((), M, I(z, @). M, »8—

2M'
(k-Q)2-M'

(k' -Q)„(k' -Q)8
M

(k -Q)))(k -Q)8 3m~'
M' (k+k'}' —m '+ j. +

(2.49)

This amplitude is considerably simplified if one takes the special choice m ' =I', the vector-meson mass.
We perform the calculation for this choice in the following. In this case T„ is written as

1 (q —2k)„(2k' -Q)8 (q —2k')„(2k -Q)8
}q2-M' (k'-q)2-M2 (k -q)'-M'

3W' 2M' 2m'
(k k')' M' (k-'-q)'-M' (k-q)'-M'

(2.50)

The first group in Eq. (2.50) is the same as the
charged pion-pair creation amplitude. The re-
maining is the extra contribution. The last term
in Eq. (2.50} gives a vanishing contribution to the
scattering process when combined with the con-
served leptonic current. It is, however, inter-
esting to see that T„ in Eq. (2.50) Iand also T„ in
Eq. (2.46)] explicitly violates the gauge condition
in the sense that

q" T„c0. (2.51)

However the amplitude T„ lacks the photon pole
when combined with the lepton current. Therefore
the entire amplitude contains the following factor:

q'
q'-M' q' q'-M' (2.52)

The extra factor q'/(q' —M') can be included in the
hadronic amplitude when we define structure func-
tions. Thus the hadronic amplitude vanishes at
q' =0. In this sense the amplitude satisfies the
gauge condition. In fact this is the way the gauge
condition is implemented for the longitudinal com-

W, =O,

vW, =4, (in~ +const).
(g'G)' (u —1

2v (d

(2.53)

The interference between the first group and the
second group in Eq. (2.50) gives

W, =O,

( )
(gG) (() —1

(2)) )'

(2.54)

The Callan-Gross relation is satisfied by those

ponent of the amplitude in the analytic approach of
vector-meson dominance. In the present model
Eq. (2.50} shows that a part of the transverse
component also picks up this extra kinematical
zero. The amplitude therefore shows rather rap-
idly changing behavior around —q' = rn ~'. This
effect may be observable above the threshold of
Higgs scalar-meson pair creation.

The second group in Eq. (2.50) gives rise to the
structure functions in the diffractive region
(4)» 1):
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parts of the amplitude. Finally the first group in
Eq. (2.50) gives rise to (for ~»1)

(g2G )2 q2 2

6 (2g)2

(2.55)

This result shows that the ratio R becomes large
at least logarithmically. In this sense the Callan-
Gross relation is still satisfied. Equation (2.55)
can be compared with the scaling functions of
muon-pair creation in the y -y collision. "

When m ' is large compa, red with M2, our con-
clusion is still expected to be valid. Equation
(2.53)—Eq. (2.55) thus can be regarded as a check
of the Callan-Gross re1ation for the field algebra
and the current-field identity. The perturbative
treatment of the ordinary vector-gluon model"'
suggests that the property of the lower-order
diagrams is maintained when one sums the leading
terms up to all orders. Therefore the ratio R is
still expected to be large in the present simple
vector-dominance model. At this point we em-
phasize that the main content of field algebra would
have been missed if one had looked at only the
lowest-order diagram.

The present calculation shows that renormal-
izability and the enhancement of R are independent
properties. It also suggests that the cancellation
of the longitudinal component of the scaling func-
tions in the spontaneously broken gauge theory is
highly unlikely. In the following we discuss briefly
this problem based on the non-Abelian model given
in the Appendix. It is not difficult to see that the
diagrams in Fig. 2 and Fig. 3 are also present in
this non-Abelian model. The different final states
in the deep-inelastic process do not interfere with
each other. Certain final states with Higgs scalars
already strongly enhance the longitudinal com-
ponent relative to the transverse component as we
see in Eq. (2.47) and Eq. (2.55). In particular,
the enhancement of the longitudinal component by
[In(-q2j3f')] factor as indicated in Eq. (2.55) is
the maximum enhancement we expect from the dia-
grams with the structure in Fig. 3. It is, therefore,
not sufficient to suppress the longitudinal compo-
nent in the non-Abelian model to get the finite R,
but rather we have to enhance the transverse com-
ponent. It is, however, rather unlikely that we
can enhance the transverse component by just
adding scalar mesons to the Lagrangian, although
it is known that certain longitudinal components
are suppressed by the scalar mesons. A naive
algebraic manipulation indicates this also [see
Eq. (A12)]. The ratio R therefore seems to stay
large in the spontaneously broken gauge theory at

Another characteristic prediction of the ordinary
field algebra is found in the electron-positron
annihilation process. As is mell known, the ordi-
nary field algebra predicts"

1

( 2)2 (2.56)

This is in sharp contrast to the parton-model
prediction" '"

0'
q2 (2.57)

The prediction (2.53) is greatly modified if one
includes the sca.lar-meson "dressing" of the
vector current. This has been discussed by
Friedman et al. '2 They used the following had-
ronic current:

(2.58)

where cp(x) is the dilaton field. It is amusing to
see that the gauge theory automatically gives rise
to the form indicated in Eq. (2.58) [see Eq. (2.48)].
Therefore the discussion given by Friedman et al.
can also be applied to the present case. In par-
ticular, the term 2M@(x)V&(x) in Eq. (2.48) may be
important in the medium energy if the Higg scalar
has a rather small mass [this is the case if one
identifies y(x) with the e meson]. The contribu-
tion from this term to the annihilation process is
given in Fig. 2 if one looks at the diagram from
the t- channel direction (with some adjustment of
the coupling constants). It is easy to see that this
contribution again scales

10- —for e +e B +p,
q

2 (2.59)

The first term in Eq. (2.48) gives the t-channel
version of Fig. 1 and it satisfies Eq. (2.56);
o -1jq'. The most singular term in Eq. (2.48)
gives rise to the t-channel version of Fig. 3(a)-
Fig. 3(d) in the annihilation process. After some
calculation, one can confirm that these diagrams
violate scaling and give the result

1v-—ln — for e +e —8 +y+y.q +
q' M'

(2.60)

We note that there are only two parameters among

least in perturbative calculations, where renor-
malizability is best defined. We also note that
Eq. (2.55) can be removed if the mass m ' is taken
at sufficiently large values. But we cannot regulate
the enhanced longitudinal component in the "bare"
non-Abelian Yang-Mills coupling in this limit of
large m '.

D. Electron-Positron Annihilation
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three terms in Eq. (2.48) and Eq. (2.58); this is
necessary to preserve "unitarity, " namely, to
prevent the total annihilation cross section from
approaching a constant. Incidentally Eq. (2.50)
exemplifies how unitarity is preserved in the
spontaneously broken gauge theory. The ampli-
tude can be split into two parts; one of them is con-
served and the other nonconserved piec picks up
a mass factor in the numerator. Thus the "bad"
behavior of the vector-meson projection operator
is regulated. A similar example has been recently
discussed by Schechter and Ueda. " Their exam-
ple, however, depends only on the Yang-Mills
coupling. The present example is more intrinsic
to the spontaneously broken gauge theory.

In the present approach the scaling behavior and
the scale dimension of current operators are
virtually independent. The current operator with
scale dimension 2 is sufficient to ensure scaling.
In the ordinary parton model the cutoff procedure
(or softening)" is required to avoid logarithmic
factors. This is also true in the present case if
one uses the current with scale dimension 3. The
only difference is that the scaling law in the anni-
hilation process is already violated at the lowest-
order tree level in the present approach if one
uses the current with scale dimension 3; in the
naive muon-parton analogy, "scaling in the anni-
hilation process is exact. It is however inter-
esting to observe that the softening procedure in
the parton model' could also be understood as a
reduction of the scale dimension of the currents
invo1. ved.

We also note that the correspondence between
the deep-inelastic process and the total anni-
hilation cross sections in Eqs. (2.4'7), (2.55),
(2.59}, and (2.60) is one of the characteristic
features of the vector-dominance approach. '

E. Schwinger-Term Sum Rules

The scaling behavior in Eq. (2.57) is fairly in-
dependent of details of the underlying dynamics.
In fact it can be regarded as a consequence of the
structure of the Schwinger term. It is well known
that the annihilation cross section is related to
the Schwinger term. "'"'" More specifically,

(0([J'(0, x), J'(0)] (0)=is'6(x)

rise to the scaling law in Eq. (2.57). The vector-
dominance model based on gauge theories gives
rise to the Schwinger term in (2.16); this still
remains true for more complicated real.'istic mod-
els. A detailed discussion of this is found in Bars
et al. '0 (See also the Appendix. ) Equation (2.16)
is almost identical to the Schwinger term based
on the elementary scalar fields. Following the
argument given by Gribov et a/. "we therefore
expect the relation (2.57). On the other hand, the
ordinary field algebra gives a c-number Schwinger
term and we get Eq. (2.56). This can be also seen
by taking the limit m '- in our simple model.
The annihilation process is a t-channel version of
Eq. (2.42). It should be noted, however, that a
perturbative treatment of the ordinary massive
non-Abelian Yang-Mills theory does not neces-
sarily give rise to Eq. (2.56) because unitarity
is not guaranteed.

%'e next briefly comment on the Sackiw-Van
Royen-West" sum rule in the deep-inelastic pro-
cess. They suggest the following sum rule:

d~F~(m)
1

(2.62)

Unfortunately this result is also highly divergent
in the gauge theory. Our conclusion in Eq. (2.55)
suggests that the right-hand side diverges linearly
in ~. This is, in some sense, consistent with the
argument similar to that given by Gribov et al. in
the case of electron-positron annihilation. In any
case, Eq. (2.62) is not valid if the ratio R stays
constant as the presently available data suggest. "
It is interesting to recall that the c-number
Schwinger term given by the ordinary algebra of
field gives rise to a vanishing result for the left-
hand side of Eq. (2.62). On the other hand, the
scalar part of the structure function in this case
is most likely constant (or divergent). The renor-
malizability of the massive vector-meson theory
based on the Higgs mechanism therefore makes
this Schwinger-term sum rule more sensible.
lOr it might be that Eq. (2.62) loses its meaning
when the right-hand side diverges, as suggested by
Jackiw et al."]

x dq' q'v (q').
0

(2.61) III. DISCUSSION AND CONCLUSION

A. Gauge Condition
Unfortunately both sides of Eq. (2.61) diverge.
Nevertheless a plausible argument was given for
the use of Eq. (2.61}to infer the asymptotic be-
havior of o(q'). An interesting argument is found
in Qribov et al." Their conclusion is that the
elementary charged fermion or scalar field gives

In Section IIA, we found that the gauge condition
in the ordinary algebraic sense,

is violated in the perturbative calculation. How-
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ever, we found that the amplitude which violates
Eq. (3.1) has a kinematical zero at q' =0 to ensure
the absence of the scalar ghost. This property
combined with the zero-slope limit of the dual
resonance model" suggests that the gauge condi-
tion in the dual resonance model might be imple-
mented by a kinematical zero rather than by
strictly imposing the condition in Eq. (3.1). Al-
though this is just a wild speculation, it would be
useful to keep this alternative possibility of the
gauge condition in mind when one discusses the
dual current amplitude.

In the following we briefly note that the current
operator given by (2.10}finds a very close counter-
part in the dual current amplitude discussed by
Nambu" and also by Manassah and Matsuda. '
The Nambu current operator is in its simplest
form

where

, dZ„
, e

5'
B (3.2)

Z& (v, o) =Z~, (v) + 5~ 2Z~ „(r)cosno
n=l

(3.3)

(3 4)

~m} and ~n) are arbitrary states in the dual model. "
The operators a„„are the ordinary vector ex-
citation operators in the dual model. The bar over
Z„ in Eq. (3.2) indicates that we regulate the di-
vergence induced by the straightforward applica-
tion of Eq. (3.3}. Equation (3.2} is essentially the
p-meson dominance of the hadron current as one
can see it by looking at the symmetric Sciuto

vertex" at the p-meson pole position. Manassah
and Matsuda'4 modified Eq. (3.2} as follows:

p(o, g)Z„(~, o)dv

with

=Z„o(T)+2 Z p„(&)Z„„(T),
n=1

(3.5)

2

p„(f) =e "~ ~', n=0, 1, 2. . . ,

B. Extension of the Model

We would like to briefly discuss the extension
of our model iu Eq. (2.1) to include more than one
vector meson. age of the simplest generalizations
is to take the follorvj. ng form:

where j (~) stands for the coordinate of the scalar
harmonic excitations. Equation (3.5) is very close
to the structure of the current in the gauge theory.
It is actually closer to the dilaton form discussed
by Friedman et al." The deep-inelastic process
based on Eq. (3.5) has been worked out by Manassah
and Matsuda. They found a scaling of v8» but
the ratio R turned out to be large. It is interesting
to see that a scalar meson dressing of the vector-
field operator in the dual amplitude gives rise to
a result very similar to ours. On the other hand,
Friedman et al."derived the same result as that
of the ordinary quark algebra"'" by modifying
the interactions between the vector mesons and
scalar mesons. (An arbitrary modification of
interactions does not guarantee unitarity, even in
the tree approximation, for all physical processes,
however. ) This may indicate that the dual dynam-
ics is closer to the Yang-Mills coupling.

8 = p.i y" (8 q
i e A q) p—, —m „pp+Pi y" (.8„-ig B q) P —mfa

+
~
[8„—i G, (sin8cosyA„+cos8 cosy B„—sing V„)]p, (x)j —X, (~ &p, ~

——,
'

v, ')'

+~[8„—i G(si n8si ynA„+cso 8sinpB +cosy V~)] Q, (x)) —X, (I P, (
——,

'
v, ')'

—4(B„A,—B,A„)2 —~(B„B,—B,B„)2—4(B„V, —B„Vq)' (3 6)

G, sin6 cosy =C, sin L9 sing =- e,

6, cos 0 cosy =G, cos0siny —= g,

where 6 and y are the "mixing angles. " To lowest
order in the coupling constants, Eq. (3.6) gives
rise to an expression similar to the diagonal ap-
proximation in the generalized vector-dominance
model. " Although we can satisfy a "current field
identity" and modify the high-energy behavior of
the current by this Lagrangian, the lack of the

universality of the V-meson charge in this model
makes it rather ad A,oc at best. In any case, it is
very difficult to incorporate more than one vector
meson, in particular, in non-Abelian models.

C. Conclusion

In this note we discussed some of the high-energy
properties of the field theoretical version of the
vector-dominance model ~ We found that the re-
normalizable field theory gives rise to results
more consistent with naive algebraic manipula-
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tions. The ratio R in the deep-inelastic process,
in particular, seems to stay large at least in
perturbative calculations. On the other hand, the
total electron-positron annihilation cross section
becomes more in line with the ordinary parton-
model predictions. The difficulty related to the
ratio R can be resolved if one succeeds in re-
placing the Higgs scalar field with a bilinear com-
bination of fermion fields.

The electromagnetic mass difference is another
interesting example of the test of algebraic rela-
tions. '" One can, however, easily see that the
lowest-order calculation of the mass difference
does not constitute a complete test of the under-
lying algebra. A more detailed discussion of this
problem will be given elsewhere. We, however,
note that the finite mass difference given by the
gauge theory may not be reliable if the off-shell
behavior of the current amplitude contradicts ex-
perimental indications.

Another problem of the vector-dominance ap-
proach is that of whether we should attach the
"correct" vector-dominant form factor to the
quarks. The model by Bars et al. ' should also
be examined from this point. Unless one is sure
that the binding force of the physical proton pre-
serves the electromagnetic properties of each
individual quark, the form factor of the physical
nucleon might well be quite different from that of
constituent quarks.

In conclusion the virtue of the renormalizability
of the hadronic Lagrangian is still to be examined,
especially when one does not trust the perturbative
approach to hadron physics.

also Ref. 9 and Ref. 10.
We start with the Lagrangian:

2 = ——,'(s qB„—B„B„-gB„xB„)'

+piy "(8, ieA-„) p, —m„p p,

+$iy "(s„—i gB„T)g —snap,

where we added a lepton singlet and a fermion
triplet to the Lagrangian:

(Al )

, (x)

P.(x)
(10 0)

and T'=~ 0 0 0 i, etc. (A2)

( 0 0 -I)

with K, and K, complex scalar fields.
In the following we work in the unitary gauge

(A4)

where P(x) is a real scalar field.
After the spontaneous breakdown of the vacuum

symmetry, we have

Note that g has nothing to do with the real hadrons.
(We can add a fermion doublet as well if we allow
nonintegral charges. )

We also defined

y(x) =v +(p(x}, (A6)
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APPENDIX

In this Appendix we briefly discuss the algebra
of fields based on the simplest non-Abelian model
discussed by 't Hooft. ' This Appendix exemplifies
what kind of properties of the Abelian model are
modified and which aspects of the Abelian model
are preserved. in the non-Abelian model. See

where v is a constant. The gauge-compensating
term is given by

S,, =(-i}26'(0) (A6)

Actually the unitary gauge is only well defined
after the spontaneous breaking; the gauge com-
pensating term is ill defined for v =0. The ad-
vantage of the unitary gauge lies in the fact that
the gauge compensating term does not depend on
gauge fields nor on the time derivative of the
Higgs scalar field. Because of this property we
work out the algebraic relations in the unitary
gauge, although the Green's functions are not
defined in this gauge.

The hadron currents are now given by

&'„(x}=——(6"s'-ge'"B")(s,B'„—B„B~ ge' 'B~B') —py-„T'p (AV)

(A8)
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Algebraic relations are given by

[J;(x), 4o'(y)]„o „o=ic"'J';(x)5'(x-y),
2

[J;(x), &;(y)]„o=,o =is"'JJ(x) b'(x -y)+i —, — 6„a~6'(x —y)+QED corrections.
g 2

(A9)

(A10)

The Schwinger term depends on the Higgs scalar field. " The space-space commutator with a time deriva-
tive becomes rather complicated:

[9 J;.(x), J (y)]5(xo —y )= —iM(x)V;. (x)V (y)g(x —y) — M(x)M(y)y, , g, g(x —y)

+, s M(x) [g~"'V;(x) e(x -y) + e., s, &(x -y)]i M(y)
g M(x

+, M(y) [-g'~""c'"'V,'. (x) V,' (x) g(x-y)

+ V., s,. 8, V(x -y) +@~'"a,. V;(x) t (x —y)

+g&' 'V;(x) &,. C(x -y)+ge"'V;. (x) 9, 5(x —y)]+QED corrections,

(A11)

with M(x) —= [gP(x)/2] . Finally we would like to make a comment on the algebraic relations, Eq. (2.11)
and Eq. (All). These equations have the form

[&&&~,(x), ~&(y)] 5(x'-y') = -&I2gp(x)] V (x) &&(x) 0'(x —y)

-i[gal(x)']'

5,; 6 (x -y) +Schwinger terms

(2.17')

[s.~,'(.), ~,'(y)l ~(x'- y') =- Z V;(.) V;(x) ~'( —y)
()

x)'
p~. tI'(x —y) + Schwinger terms.

4 kj (A12)

If one looks at the component j =k, the first two
terms in these equations are, in a naive sense,
positive semidefinite (at least for compact groups).
Therefore if we can neglect the Schwinger terms

or if they are c-numbers, these equations show
that the Higgs scalar meson and the vector mesons
do not cancel each other. They rather add up to
give an isoscalar contribution. '
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