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Weinberg has shown in general unified gauge theories that if (1) the strong interactions are described
by a neutral-vector-gluon model, and (2) all quark masses are much smaller than all
intermediate-massive-vector-boson masses, then the order-a effects of weak and electromagnetic
corrections to the strong-interaction symmetries are just the conventional electromagnetic corrections
plus corrections to the quark mass matrix which preserve parity, strangeness, charm, etc. In this paper
we use his method to further show that if quark masses are also much smaller than Higgs scalar-boson
masses, and some technical conditions stated in the text are satisfied, then to order 6~m' (m = a
typical quark mass), only a certain part of vector-boson exchanges induces the dominant contribution to
"proper" nonleptonic weak interactions which violate parity or strangeness or charm, etc., while the
remaining part of vector-boson exchanges, all of scalar-boson exchanges, and all of tadpole diagrams
can only produce corrections to the quark mass matrix, which preserve the quantum numbers of strong
interactions. We also offer speculation on possible mechanisms to obtain the AI = rule of
nonleptonic decays.

I. INTRODUCTION

The problem of nonleptonic weak interactions in
renormalizable gauge theories has been discussed
by many people, ' most of whom have tried to obtain
or incorporate the AI= 2 rule into various specific
models without, however, taking the strong-inter-
action dynamics into consideration. In this paper
we use Weinberg's recent method' to study this
problem, assuming for convenience the strong
interactions to be described by a neutral-vector-
gluon model. Our purpose is to investigate non-
leptonic weak interactions in a gauge-model-in-
dependent way, and with the strong interactions
fully taken into account. We are able to show that
if all quark masses are much smaller than all
intermediate-heavy-vector-boson masses and all
Higgs scalar-boson masses and certain other con-
ditions discussed in Sec. II are satisfied, then the
lowest-order "proper" nonleptonic weak inter-
actions can be induced to a reasonable approxima-
tion only from vector-boson exchanges in uni-

fied gauge theories. In such a ease vector-boson
exchanges would, of course, be primarily re-
sponsible for the d I = —,

' property of nonleptonic
decays.

However, if quark masses are much smaller than
intermediate-vector-boson masses, but compar-
able to or even larger than scalar-boson masses,
then both vector-boson exchanges and scalar-boson
exchanges can contribute to the lowest-order non-
leptonic decays, and in general it is not clear that
either of the two would dominate over the other.
In this connection, Lee and Treiman' have given
in the Georgi-Glashgw 8-quark model a possible
explanation of the ~I = ~ rule, based on the as-
sumption that scalar-boson exchanges dominate
over vector-boson exchanges for nonleptonie de-
cays. They have argued that this assumption
might be valid provided the Higgs scalar mass is
small compared to some quark masses. Our anal-
ysis sheds no light on the validity of their argu-
ment, and the situation for this case seems rather
inconclusive to us.

II. VfEAK CORRECTIONS OF ORDER G~m

Weinberg' has shown that the weak and electromagnetic corrections to the S matrix for a transition from
a general hadron "in" state I to a general hadron "out" state I", to all orders in the gluon coupling but only
to second order in the gauge coupling e, can be expressed as

where
FI en FI + ~A?' FI ~ 4I ~FI ~AC Fl ~AT ~FI + ~TJ. ~FI

S. S,=(2w)'ll'(P -P, )f d'SPICA (2)[(2') '-(2'+S') '],

ll„, S, = (2~)'2'(P P, )f ' "d"
2/2„, P( )( l-+22) ' Pl,

(4)
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5„~S,=(2m) 5 (P„P-)(o„A.), (esz),. d'k&;,'(k)(k') '(k'+lj, ') '„8,

S„,S„,= (2~)'d(P, -P, ) P, '(O, e„~), d 'k (k') '(k'+q') '„,,

5 S =-2i(2m)'5 (P P)-&, M '„.—

Here E, I (k) is the matrix element of the time-
ordered product of two electromagnetic currents;
E„I„&„(k)and E„~(k) are the corresponding quan-
tities for the hadronic vector and scalar currents,
respectively; && is the matrix element of a sin-
gle scalar current; V, (A) is the "one-loop poten-
tial" of the tadpole diagrams. (See Ref. 2 for their
exact definitions and for other notations appearing
in the above equations. )

We note that among the six terms in Eq. (1),
5, 8» and 5„@S»are finite by themselves, but the
rest are all divergent. However, Weinberg' has
shown that the divergent part of each of the latter
is of the same form as wmld be produced by ad-
ding G-invariant, gluon-gauge-invariant, Lorentz-
invariant, Hermitian, and renormalizable terms
to the original Lagrangian, and therefore such
divergences can always be absorbed by a renor-
malization of the parameters in the original La-
grangian; they have no contribution to the correc-
tions to "natural" zeroth-order symmetries of
strong interactions. Since we are interested in
only the corrections to such symmetries, we may
remove the divergent part from each of the above
terms in Eq. (1), so that each of them becomes a
finite quantity of order e'.

Now we will assume that in the present theory
all quark masses' are much smaller than all in-
termediate-massive-vector-boson masses, so
that we have another small parameter of the the-
ory (m/j, ~)' in addition to e'. To analyze the con-
tents of ASSAI we will dissect each term of Eq. (1)
into pieces with different power dependence on
(m/p, ~)'. Generally each piece would behave like
(m/p~)'" times a certain power of ln(m/p. ~)'. We
will in the following refer to such a piece simply
as of nth order in (I/p, ~)', with the understanding
that it may also contain a factor of powers of
1n(m/p, ~)'. We proceed to classify all terms in Eq.
(1) into those of zeroth order in (m/p. ~)', those of
first order in (m/g~)', and those of higher orders
in (m/p, ~)'. Terms of order e'(m/p, ~)' have the
order of magnitude of electromagnetic corrections
and will be denoted as "of order n" in the follow-
ing; terms of order e'(m/p. &) have the order of
magnitude of the conventional weak corrections
and will be denoted as "of order G~m'"; terms of
higher orders in (m/p ~)' are much weaker than
the conventional weak corrections and will be ne-

glected because we are looking for the lowest-
order weak interactions only. So we would like to
pick out terms of order n and G~m' in each of the
terms in Eq. (1).

Before we set out to do this term by term, we
wish to make some general observations regard-
ing the relevance of the asymptotic behavior of the
matrix elements involved particularly in Eqs. (3),
(4), and (5), which provide a useful way of sorting
out terms of order n and of order G„m'. For this
purpose, consider as an example the type of inte-
gral occurring in the A. l' term, which we may
write as

I= d'kP(k')(k'+ p.~') '

with P(k') behaving asymptotically as

a(k) b(k) c(k)
k'

where the numerators a(k), b(k), c(k), . .. are either
constants or at most powers of ln O'. From Wein-
berg's "bridge" theorem, ' the matrix element in
Eq. (3) indeed possesses such an a.symptotic be-
havior. Because of the leading term a(k)/k', the
integral J has an ultraviolet divergence. As men-
tioned before the divergent part can be isolated
and absorbed by suitable renormalization proce-
cure, and shall not concern us here. The remain-
ing finite part of I can be dissected into pieces with
different power dependence on (m/p. m, )'.

fnfl jfc 0

where I„contains all terms of order (m/p, „,)'"
times any power of in(m'/p. ~'). Thus I, contrib-
utes to the order-nterm and I, to the order-G~rn'.

Now, it can easily be shown that I, receives con-
tributions solely from the leading term a(k)/k' in
the asymptotic expansion of E(k'). Therefore the
order-n term can be extracted from the leading
term in the asymptotic expansion of the matrix
element. This is an important feature, since only
the simplest of the bridges contribute to I, and
therefore to the order-n term. As shown by %'ein-
berg, these simple bridge contributions provide
only a correction to the fermion mass matrix, and
for the neutral-vector-gluon theory of strong inter-
actions an immediate consequence is that parity,
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strangeness, charm, etc. are automatically con-
served in order a. In deriving this result we
would like to emphasize the role of the assump-
tion p, ~»m, which leads to the fact that [apart
from the em term in Eq. (2)] the order-o. contri-
butions arise only from the leading term in the
asymptotic expansion of the matrix elements.

One might expect that to order G~m', it would
be sufficient to consider the next leading term in
the asymptotic expansion of F(k'). However, as
shown in the Appendix, I, receives contributions
from not only the next leading term b(k)/k, but
also all the other terms in the expansion. ~ It would
then appear that the order-G~rn' term cannot be
extracted by merely looking at the b(k)/k' term in
the asymptotic expansion of F(k'). Fortunately,
however, there exists a circumstance under which
the relevance of the b(k)/k' term can be reas-
serted. The analysis given in the Appendix shows
that I, consists of two parts:

I,= (m/p, ~)' [powers of 1n(m/p. ~)'j

+ (m/p, ~)'(constant),

where the first part receives contributions solely
from the b(k)/k term. The highest power of the
logarithm in this term is l+ 1 if b(k) -(ink )'. Now

if t~ 0 and if we assume that (p. ~/m) is sufficient-
ly large so that powers of ln (m/p, ~)' in the first
part of i, overwhelm the constant of the second
part, I, may be well approximated by the contrib-
utions from the b(k)/k term alone. ' In principle,
of course, / may be negative. We consider this
unlikely, since specific calculations based on
perturbation theory do not bear this out. Further-
more, arguments based on scaling suggest that
b(k) may in fact be a constant. ' Above all, we
feel there is a great deal of simplicity and appeal
in the fact that the dominant contribution to order
Gzm' is controlled by the next to leading asymp-

totic term in the expansion of F(k'), since a,s we
shall see, the bridges that contribute to b(k) are
also reasonably simple and may well account for
the AI = —,

' rule. Accordingly, we will keep only
the 1/k4 term in the asymptotic expansion of F(k')
to obtain terms of order G~m'. This we will do
specifically for the A1' term. The AQ term also
requires a similar analysis. It is easy to see
that in the rest of the terms, however, this ap-
proximation is not required. Note, in particular,
that the Pl term is already of order G~m' and
can be evaluated to this order by the leading as-
ymptotic term in F"„(k), assuming only that the

P mass M is much larger than the quark mass m,
and not requiring the stronger assumption discus-
sed above. For purposes of clarity, however, by
order 6~m', we will hereafter refer to terms of
this orde r containing only the dominant logarith-
mic factor.

We shall now discuss the various terms in Eq.
(1) separately.

(a) em teem. 5, S» is finite and of order u.
This is the conventional lowest-order electromag-
netic corrections but with an ultraviolet cutoff A.

(b) A. l' term. It is easy to see from Eq. (3) that
the terms of order n in the finite part of 5» 8»
are determined by the leading asymptotic terms
of q""F„„B„(k)in the limit of large k. According
to Weinberg's "bridge" theorem, ' we have an
asymptotic expansion of the following form':

dC, q"'F."„„(k),&FIQ„', (Z)lf&
g~ce

+~. (F IQ.', POII&+O(I/A'),

where K is the Euclidean magnitude of the four-
vector k, and Q„"8 (K) behave asymptotically at
most like powers of lnK. Weinberg' has found the
leading asymptotic term to be

—,&F I Cg (ff) lf &
= &F I [-y 8'8' (ff')g -y w" U'28' (&)(8„+&asIi„)g --'ft'8' (Z)G„G"'11'&

Thus the term of zeroth order in (m/p, ~)' in the
finite part of 5» S» is given by

by Weinberg is just the same as a term in the
Lagrangian of the form

(»)'b'(P I', )J[ ««F IQ.' -(A)I»
0

x[(EC'+p") '„, -(K'+A') 'b„,J,

(10)

where the divergent part of 5».S» has been ex-
plicitly subtracted out (see Ref. 2 for details).
The term in Eq (10) is of o. rder n, and as shown

That is, the Al' term gives rise to a correction
D»m of order n in the quark mass matrix m.
Since one can always use a unitary transformation'
on the quark fields to reduce the total quark mass
matrix m +6»rn to a diagonal matrix free of y,
terms, without changing the remainder of the
strong-interaction Lagrangian (which is described
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in terms of a neutral vector gluon in the present
theory), the net effect of this order-o. correction
is just a pure quark mass shift —it preserves
parity, strangeness, charm, etc. This is a key
point of the analysis: In the present theory when-
ever a correction of the form bL =-)S)5 mP arises,
its only net effect on strong-interaction symme-
tries is a pure quark mass shift, which would not
induce any violation of parity, strangeness, charm,
etc.

Now consider the next leading term in 6».S»,
which is given by

x(K'+p, ") '„8.
As discussed before this gives the dominant con-
tribution to order G~m', and can be shown not to
be equivalent to a term of the form 6, 2 =-(Rng
in the Lagrangian. To see this we observe that by
Weinberg's "bridge" theorem Q„B'(K) must contain
four-fermion interaction terms, among others,
which clearly are not of the mass correction type.
Thus Eq. (11) will give rise to some "proper"
hadronic weak interactions which would in general
violate parity, strangeness, and other quantum
numbers of strong interactions. It turns out that
this is the dominant term in Eq. (1) that can pro-
duce "proper" hadronic weak interactions to order
Gp m'.

(c) g I term. The basic structure of the &f& 1 term
is quite similar to that of the Al' term. However,
since F,, (k) of Eq. (4) contains the factor 1, r, and
since I" -e(m/p, ~) in magnitude, ' it is easy to see
that I"";&'(k) is intrinsically smaller in magnitude
than E '„B„bya factor of (m/p, ~)' This ma. kes
6» 8» smaller than 5».S~ by the same factor.
Again Weinberg's "bridge" theorem leads to the
asymptotic expansion

KdK (I' lR,', (z.) lf)

&& [(K'+M') '„-(K')-'6,, ] .

(14)

Notice that we are taking here only the leading
term in the expansion (12) because the contribu-
tions from the higher terms would be smaller than
(14) by at least a factor of (m/M)', which is as-
sumed to be very small in the present discussion.
Without this last assumption (14) would not be a
sensible approximation to the finite part of 5@I.S».
Equation (14) in itself is of order G~m' because
R,', (K) contains the factor I', I', Identical argu-
ments used by Weinberg in the discussion of the
order-n term in 5» S» can be used here to show
that Eq. (14) gives rise to only a correction 5@,m
of order G„m' to the quark mass matrix. This
means that to order Gzm' the )I)1 term does not
lead to any hadronic weak interactions that violate
parity or strangeness conservation. As mentioned
before, in the analysis of the $1 term, we do not
need the stronger assumption [ln (M/m)']" » 1
(n ~ 1).

(d) Ap teem. This term is very similar to the
Q 1 term, and a similar analysis shows that the
leading term in 6„~,SFI is given by

(2~)4d(I, Z, )(O-~),. (0,~),.

KdK(EIR,', (K) li) (Z') '(K'+l') )'„„
(15)

which gives the dominant contribution to order
G~m' and leads only to a quark mass correction
6~pm.

(e) A T term It is obvi.ous from Eq. (6) that the
finite part of the AT term gives rise to only a
quark-mass correction 5»m:

dQE Q ~ EA K I

+, (+IR;, (K) II)+O(1/K'),
K

where R,&(K) behave asymptotically at most like
powers of lnK, and the leading term is given by'

1
K, (+ IR &; (K) lf &

= (z
I [-q v,~&)(K)p

y~~ v g&(K)(a-„+ ig, a„)y

--,'-v~&,'.&(K)G„,G "] lI).

Assuming M» m, the term of the lowest order in
(m/M)' in the finite part of 5&,Szz is given by

5„zm=(16m') 'I"; (OSO„X),

Kd K[(K'+ l), ') -'.,-(K'+cH)-'6. ,] .

(16)

Notice that this term is of order n exactly.I Tl teem. To all orders of (m/p~)', the fi-
nite part of the Tl term gives rise to only a quark
mass correction 5»m:

This term actually contains a piece of order e and
a piece of order C~m', but in any case the net
effect of all these pieces is only a quark mass
shift.
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In summary, we see that the weak and electro-
magnetic corrections to S», to second order in
the gauge coupling e, are given by the following:

(1) To order n, CSEE& consists of the conven-
tional electromagnetic corrections 5, S» and
weak corrections to the quark mass matrix re-
sulting from theA1', AT, and Tl terms, which
preserve parity, strangeness, charm, etc.—this
was the main result of Weinberg's paper. '

(2) To order Gzm', 5Szz consists of weak cor-
rections to the quark mass matrix resulting from
the $1, AQ, and T1 terms which preserve parity,
strangeness, charm, etc., and some "proper" ha-
dronic weak interactions resulting from the A. 1'
term which violate these quantum numbers.

Thus our conclusion is that if

tin�

(p~/m)']" » 1
for some n ~ 1, and m&&M, then to order G~m'
"proper" nonleptonie weak interactions arise only
from vector-boson exchanges (the Al' term), and
furthermore, they are given by the second leading
term in the asymptotic expansion of q""F„&z, (k)
[see Eqs. (8) and (11)], provided Q„8'(K) behaves
asymptotically as a non-negative power of lnK.

III. POSSIBLE MECHANISMS FOR DI= 1/z RULE

To discuss problems like the ~I= —,
' rule or the

octet dominance of nonleptonic weak decays, we
would have to study the SU(2) or SU(3) structure
of the matrix element (F~Q„s'(K) jI) in the theory
This requires the use of Weinberg's bridge theo-
rem and the study of bridge graphs of asymptotic
pomer eN=-3 or -4. With Wilson's operator-
product expansion, one can show that Q„&'(g con-
tains three different types of terms': (1) 4-fer-
mion bridges, (2) 2-fermion and gluon bridges,
and (3) pure gluon bridges. Terms of the third
type can be ignored for our discussion, since they
do not involve any quark fields and hence are not
relevant to the conventional strangeness-changing
decays of hadrons. Terms of the second type have
the natural octet SU(3) structure or the I=-,' isospin
structure for the strangeness-changing decays of
the ordinary hadrons, since they involve only bi-
linear products of the quark fields. The first-type
terms, however, contain in general the 27-piet as
well as the octet components. Thus we mould be
able to obtain the octet dominance rule or the
41=~ rule if there is a mechanism that would sup-
press the first-type against the second-type terms.

We will now discuss two possible mechanisms
that can lead to the validity of the 4I=-,' rule.

(1) It may happen that the contribution to
(F

~
Q„8'(K) ~I) from the 4-fermion bridges has a

weaker logarithmic K dependence than the cor-
responding contribution from the 2-fermion
bridges. In such a case, the dominant contribution

to terms of order GJ; rn' will satisfy the 4I'= -,'
rule, with ~I 4-2 contribution suppressed by some
power of the logarithmic factor 1n(p. ~/m)'.

(2) A second possibility is based on the follow-
ing considerations. So far we have used a neutral-
vector-gluon model to describe the strong inter-
actions. However, if we use instead a non-Abelian
gauge model for the strong interactions, as re-
cently discussed, ' we expect the main results pre-
sented above in this paper to remain true. Now
Gross and Wilczek, ' and Politzer' have indicated
that non-Abelian gauge theories may be asymp-
totically free. But in the free-field limit the first-
type terms can be easily shown to vanish, while
some of the second-type terms would survive in
this limit. " Therefore, if the limit of vanishing
strong-interaction coupling constants is relevant
to us here, then the second-type terms will dom
inate and we would have the octet rule or the 4I = —,

'

rule for nonleptonic decays.

IV THE CASE m o

Finally, we briefly discuss the case in which
quark masses are not necessarily small as com-
pared to scalar-boson masses but are small com-
pared to the vector-boson masses. In this case
the asymptotic expansion of F", '(k), Eq. (12), is
useless in the discussion of the Q1 term. Although

5@,S» is still of order G~m', its effects will not
be just a correction to the quark mass matrix, but
also contain some proper nonleptonic weak inter-
actions. Therefore, both 5Ax'SFr and 6&

induce nonleptonic decays in order G„m' if quark
masses are not all much smaller than scalar-
boson masses. In general we would not be able
to say anything about the relative importance of
these two sources of nonleptonic weak interactions.
Furthermore, the possible mechanisms described
above for obtaining the octet-dominance rule would
not apply to 5&,S» here, because these mecha-
nisms would only deal with the asymptotic be-
havior of F„.(k), which however is no longer rel-
evant in the case of small scalar-boson masses.
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APPENDIX

In this appendix we want to analyze integrals of
the form

I= d4k G(k)(k'+q ')-'

where G(k) behaves asymptotically at most like
1/k2 times non-negative powers of ink'. First we
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do a. Wick rotation in the k plane and call the angu-
lar integration of G(k) as -iE(k2), where k is from
now on the Euclidean momentum. Then

k'dkl(k')(k'+l(, ~') ' .

Suppose the asymptotic expansion of F(k2) is given
by

a(k) b(k) c(k)
k' k k'

where a(k), b(k), c(k), . . . may be constants or
powers of ink'. Subtracting out the divergence
that arises from the leading asymptotic term. , we
may write

I-I„:—In„,.„= 0 + ~+ 2+ ~ ~ ~

where I„contains all terms of order (I/l(, ~2)"

times power of lnp. ~'. Only I0 and I, are relevant
to our discussion here. Now the leading term
a(k)/k' in the expansion of &(k') will in general
contribute to all I„(n=0, 1,2, . . . ), but fortunately
in the present theory the contributions from this
leading term always correspond only to quark-
mass correcting effects, which have nothing to do
with the "proper" nonleptonic weak interactions.
(See Ref. 2 and Sec. II of this paper. ) Therefore,
insofar as we are interested only in obtaining the

Jl
n k'dk[ln(k'/A. ')]' (k'+p. ') '(k') "

where n ~ 2 is an integer, ~ is an arbitrary in-
frared cutoff, and we have assumed that l~ 0. J'„
represents the contribution to I from a typical
piece of the 1/(k')" term in the expansion of F(k').
Introducing new variables v = X'/k2 and P= A.'/p, ~2,
we rewrite J„' as"

Jl
n 2(y2)n -1

j, n-2
dv [ln(l/v)]' .

Using the identity

Vn-2
( 1)npn 2

v+p
+ v" '-pv" '+ ~ ~ ~ +(-p)" ',

we obtain

"proper" nonleptonic weak interactions, we can
always ignore the contributions to I from the
a(k)/k' term.

Now we want to show that (1) the b(k)/k' term or
any higher term does not contribute to Io, and (2)
I, receives contributions from the b(k)/k term as
well as all the higher terms in the expansion, but
the contributions from the b(k)/k term are larger
than those from the higher terms by at least a
factor of lnp, ~2.

To see this consider the integral

(—1)" P
" ' '

d
[ln(l/v)]' P

v+P 2(X2)n ' ~0 2=0

dvv" ' "[ln(1/v)]' .

In the limit of large p, 2,', or P-0, we can prove that"

d [ln(1/v)] ' 1
[ln(1/p)v+P l+ 1

Then J„' can be written as

(-1)" P I"(l+ 1)
l +1 [ln(l/p)]"'+ ~ ~

+2(&2)n ( g (-p)
(~ 2 k), +~

k=o

From this equation we see immediately that for
n~ 2, J„' is at most of order (ln(u~')"'/p~2.
Therefore the ( b)/kkterm and. all the higher
terms in the expansion of E(k') cannot contribute
to I,. Furthermore, the contribution of J„' to I,
is given by

1 1 2 l+1
1V,(, „D,, ) (Drn~,

1 I'(l + 1)
'(~')" '

( -2)"'

Since l ~ 0, the contribution from the m = 2 term is
at least of order (in', n,')/p, 2,

'. From this we con--
clude that I, can be divided into two parts:

1 2 1I,=, (powers of lnlL((,')+, (constant),
p. ~



NONL EPTONIC WEAK INT ERACTIONS IN UNIFIED GAUGE. . . 3575

where the first part (which receives contributions
solely from the n = 2 term) is larger by at least a,

factor of lnp, ~' than the second part. If we as-
sume the first part of I, dominates over the second

part, then we can approximate I, by the contribu-
tions from the b(k)/k' term only. We have used
this approximation in the analysis of the A1' term
and the AQ term in Sec. II.
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about 20/g. However, this ratio may well in fact be a

higher power of ln(p+2/m ). For a ratio of [ln(p& /m )],
our approximation could be correct to within 5%.

60dd-power terms are left out in the expansion because
of symmetric integration over k. This is also the rea-
son for the nonappearance in OS' of terms of order

(m/pg) with odd n.
See footnote 8 of Weinberg's paper, Ref. 2.
The details of these terms are not relevant to us here.
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This can be verified also by using the Bjorken- Johnson-
Low expansion of g&~F+~

8 (k) to calculate Q &(k),
which is essentially given by

de [J „(x),[[[J„(0),H],a],H]];

cf. Mohapatra ef;al. , Ref. 9.
J„' is essentially the generalized zeta function 4(—1/P,
l + 1, n —1). See K. Mitchell, Phil. Mag. 40, 351
(1949); Higher Transcendental Functions (Bateman
Manuscript Project}, edited by A. Erdelyi (McGraw-
Hill, New York, 1953), Vol. 1, p. 27.


