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Previously derived Galilei-group expansions for the four-particle nonrelativistic scattering amplitude are

applied to potential scattering and the expansion coefficients (or Galilei amplitudes) are related in the

first Born approximation to the potential. For the spherical partial-wave expansion the coefficients

require a knowledge of the Clebsch-Gordan coefficients of E(3), and for the cylindrical eikonal

expansion they are simply related to the usual eikonal function. A model amplitude containing

Breit-Wigner resonances and other k-plane singularities, having correct threshold and reasonable

asymptotic behavior, is analyzed in detail. It is shown that poles of partial-wave amplitudes a, (k) in

the k plane correspond to exponential-type asymptotics in the Galilei amplitudes. Specific models, in

particular the Bargmann and separable potentials, are examined and their Galilei amplitudes calculated.

A Schwinger-type variational principle is given for the Galilei amplitudes.

I. INTRODVCTION

In a previous article, ' hereafter quoted as I, we
have presented two-variable expansions of nonrel-
ativistic scattering amplitudes. The expansions
are written in terms of basis functions of the ho-
mogeneous Galilei groups, isomorphic to the
three-dimensional Euclidean group E(3), and they
are the nonrelativistic limits (obtained when the
velocity of light c-~) of Lorentz-group two-vari-

able expansions of relativistic amplitudes, consid-
ered previously. ' ' The essential property of both
the relativistic and nonrelativistic expansions is
that for reactions of the type 1+2- 3+4 (and also
1-2+3+4) they completely display the dependence
on both kinematic variables (e.g. , energy and scat-
tering angle). These variables are contained only
in known special functions, provided by the repre-
sentation theory of the Lorentz group, or the Gali-
lei group, and thus reflect some of the kinematic
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symmetries of the problem (or at least of the
space-time framework in which the reaction oc-
curs). The dynamics is completely represented
by the expansion coefficients, which we call the
"Lorentz amplitudes" in the relativistic case or
the "Galilei amplitudes" in the nonrelativistic one.
The expansion coefficients themselves can be in-
vestigated by using the general principles of scat-
tering theory, by performing phenomenological
fits to experimental data, or by considering spe-
cific models. This last approach is particularly
straightforward in the nonrelativistic case, where
a ready-made model exists, namely, potential
scattering. The purpose of this article is to inves-
tigate some general properties of the Galilei am-
plitudes for potential scattering and their relation
to the potential.

The actual form of the expansion depends not on-
ly on the group under consideration, but also on
the choice of a specific basis for the representa-
tion theory of the group and also on the choice of a
frame of reference for scattering. In I we have
considered all bases, corresponding to the reduc-
tion of E(3) to subgroups (it should be mentioned
that nonsubgroup type bases are also of inter-
est"') and have noted that expansions of scatter-
ing amplitudes in terms of two of these bases are
of direct physical interest. These are the following.

(i) The partial-wave type, or spherical expansion,
corresponding to the reduction E(3)&O(3) &0(2):

F(k, cos8)= g (2l+1) r'drB, (r)(, (kr)
l=p 8-i ~

creases as k "' ', c )0 for k- ~, we can expand
in terms of unitary representations, i.e. , take p- 0 in (1). The expansion then takes a more famil-
iar form, involving spherical Bessel functions:

r()r, sass) = P (2(r() J r's(r r(, (r) j(2r)
l=p 0

x P, (cos8),

A, (.) =B (-ir)e-""'""-B,(ir)"'"'"" (2b)

(ii) The eikonal type or cylindrical expansion,
corresponding to the group reduction E(3)a E(2)
xT, [where E(2) is the Euclidean group of a plane
and T, are translations perpendicular to that
plane]:

8+i~ + $00

F(k„k „)= bdb dzB(b, z) I,(bk), )e"i',
8 joo Jp

p&O, r&O (3a)

OO

B(b z) = —(27)' ) k ((dk (( dk F(k 2k2(()
p dp

x K,(bk, ))e '~'
7

(3b)

where I,(z) and K,(z) are again cylindrical func-
tions and B(b, z) is the Galilei amplitude. The
variables ki and k

ii
are two orthogonal components

of the momentum of one of the scattering particles
(in the scattering plane). In particular, if we con-
sider the scattering of equal-mass particles in the
brick-wall (or Breit) frame of reference, we have

x P, (cos8), k
ii

=2k sin —,'6I, k, =k cos—,'6I. (4)
p&o (»)

B, (r) =())'i) '
I k'dk sin8d8F(k, cos8)
p Jp

x ~, (kr)P, (cos8),

(lb)

&)(z) =(&/ ) 2 2j2( )

K ( )(=z(7T/2 )zK) + 2 j2 (z )

[I,(z) and K,(z) are cylindrical functions of an
imaginary argument, ' P, (z) is a Legendre polyno-
mial]. B,(r) is the Galilei amplitude of interest.
The scattering amplitude F(k, cos8) is given as a
function of the energy and scattering angle in the
center-of-mass frame. Expansion (1) is written
in terms of nonunitary infinite-dimensional repre-
sentations of E(3) and converges for a very large
class of scattering amplitudes (they may increase
as exponentials es" for k- ~ with p& p). If the
function F(k, 8) is square-integrable, i.e., de-

OO

F(k ir k()) f bdb'
4 p

dz A (b, z)e'" '
Jo(bk „),

(5a)

with

A(b, z) = i[B(ib, iz) -B(-ib, —iz)] -. (5b)

The expansion (5) is readily recognized as the ei-
konal, or impact-parameter expansion, " " supple-
mented by a Fourier transform of the eikonal am-
plitude

a(b, k, ) =
J[ dz A(b, z)e"~'. (6)

Expansion (3a) is again written in terms of nonuni-
tary representations of E(3), which makes it pos-
sible to expand exponentially increasing functions.
If the scattering amplitude decreases as k, —~
and/or k ()- ~ fast enough for F(k„k „) to be
square-integrable, then we can expand in terms
of unitary representations, taking P- 0 and y- 0
in (3). We obtain
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Expansion (5) can thus be viewed as a far-going
generalization of.the usual eikonal expansion, be-
ing applicable for arbitrary directions (not only
close to forward scattering), for square-integrable
and non-square-integrable amplitudes (exponen-
tially bounded amplitudes) and being a two-variable
expansion rather than a single variable one.

The rest of this article is devoted to an investi-
gation of the Galilei amplitudes (1b) and (3b). In
Sec. II we relate these Galilei amplitudes to the
potential in the first Born approximation. For the
spherical amplitude (1b) this relation involves the
Clebsch-Gordan coefficients of O(3); the cylindri-
cal amplitude (3b) is shown to be related to the
usual eikonal function. In Sec. III we study a mod-
el partial-wave amplitude, having correct thresh-
old behavior and containing a finite number of res-
onances and bound states. The corresponding
spherical Galilei amplitude B,(r) is calculated ex-
plicitly and its characteristic features are ana-
lyzed. In particular, poles in the partial-wave
amplitude a, (k) are related to exponential-type as-
ymptotics of B,(r) for Imr- a~. In Sec. IV we

discuss the Galilei amplitudes for specific solv-
able potentials, in particular the Bargmann poten-
tials, "for which a, (k) has a finite number of sin-
gularities in the k plane, and other potentials, for
which a, (k) has infinitely many singularities. Cer-
tain nonlocal separable potentials, for which A, (r}
can be calculated explicitly, are also considered.
In Sec. V we derive a variational principle for the
Galilei amplitude, analogous to the Schwinger
variational principle" for the usual partial-wave
amplitude a, (k). In Sec. VI we discuss our results
and their possible further development.

where

Qo I

7 J p

(9)

/ I OO

k'dkj, (kr')j, (kr')j, (kr) . (10)
0

The integral (10) is directly related to the Clebsch-
Gordan coefficients of E(3) and has been calculated
explicitly in I (at least for l even). In particular
the integral is zero unless

0 &r &2r'.

Expressions (9) and (10) throw some light on the
physical meaning of A, (r) Fir.st of all, the con-
nection with the potential is quite straightforward
and simple. The selection rule (11) shows that for
a given value of r the Galilei amplitude A, (r) re-
ceives contributions only from that part of the po-
tential for which r' ~ —,'r, where r' is the distance
from the scattering center. Thus, A, (0) is sensi-
tive to the entire potential; A, (r) for r- ~ is only
sensitive to the asymptotic tail of the potential. In
particular if the potential has a finite range 8, we
can write

rfl
A, (r) =m ' k dk sin8d8F(k, cos8)j, (kr)

p Jp

x P, (cos 8) .

We now substitute the first Born approximation (7)
for E(k, cos8) and assume that the potential is
spherically symmetric: V(r) = V(r} E. xpanding
the exponentials in terms of spherical harmonics
and performing the angular integrations, we find

II. GALILEI AMPLITUDES IN BORN

APPROXIMATION

The nonrelativistic scattering amplitude can be
expressed in terms of a local potential V(r) in
first Born approximation as

R I I

A, (r)= —, r''dr'V(r')
f'/ 2

so that
I

A, (r) =0 for r ~ 2R .

(12)

(13)

E(k, cos8) =—,
J

e'"( "&' 'V(r)dr, (7)

A. The Spherical Galilei Amplitudes

For simplicity, let us limit ourselves to an ex-
pansion in terms of unitary representations of
E(3). The Galilei amplitude A, (r) of (2) is

where (((. is the particle mass (or the reduced mass
for two-body scattering); k' =2pE/h', where E is
the energy of the relative motion; k& and kf are
the initial and final relative momenta; and 8 is the
c.m. scattering angle. " We shall now use formula
(7) to calculate the Galilei amplitudes.

The above results are only valid in the first Born
approximation and apply only to square-integrable
amplitudes. We do however expect the Born ap-
proximation to reproduce some of the essential
features of the problem, in particular the connec-
tion between the finite range of a potential and the
amplitudes A, (r) [see (13)]. The case of non-
square-integrable amplitudes can be treated anal-
ogously, starting from formula (2) for B,(r). We
obtain a formula analogous to (9), but j, (kr) in (10)
must be replaced by z, (kr) Agroup .theoretic
treatment of this integral involves a study of non-
unitary representations of E(3) and will not be
presented here.
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B. The Cylindrical Galilei Amplitudes

Let us now consider scattering in the brick-wall
frame of Fig. 1. First we consider the case of
square-integrable amplitudes, so that the cylindri-
cal Galilei amplitude of (5) is

r
A(b, z) = k iidk p dkiF(k» k p)

7T Q OO

x J,(k~~b)e
' ~'. (14)

In the first Born approximation the scattering am-
plitude F(k, k

~, ) is given by formula (7). We sub-
stitute (7) into (14), interchange the order of inte-
gration, put r ' = (p' co sf ', p' sing ', z ') and k; - k~
= (k „,0, 0), with k „=2k sin —,'8 and use the expansion

-ikJe"x"~'" -l]=2k'(k»b) =-p I V(b, z)dz.

Comparing (16) and (19), we obtain the Born ap-
proximation relation between the cylindrical Gali-
lei amplitude and the usual eikonal, namely,

A(b, z) = —,5(z))t(k„b)
2k

(20)

(note that in this approximation kx(k, b) depends
only on the impact parameter b).

Following I we can also write a "backward eiko-
nal expansion" which coincides with (5) except that
k, and k

~I
are replaced by

e@i -ky)'I' P i n i@4 g (k pP)
q =k sin —,'0, qII =2k cos20.

This time we find that the Galilei amplitude is

(21)

Finally we obtain

A(b, z) = ——5(z) V((b2+z'2) ~2)dz'.52 (16)

F(k» k „)=-ik bdb(e 'x "~' —1)40(2kb sin26),
0

(17)

Formula (16) is to be compared to standard ex-
pressions used in the eikonal approximation" ":

A. (b, z) =-—, pdp V(p, z).p 5(b)
0

(22)

III. MODEL AMPLITUDES

Thus we again have a very simple relation between
the Galilei amplitudes and the potential. The gen-
eralization to non-square-integrable amplitudes is
quite straightforward in this case, but we shall not
dwell upon it here.

)t(k» b ) = —— V(b, z)dz .

For large E we put

(18) In paper I we have investigated some general
features of the two-variable expansions, in partic-
ular the appearance of bound states and reso-
nances, threshold behavior, asymptotic behavior,
etc. In particular it was shown that simple poles
of the partial-wave amplitudes a, (k) in the complex
k plane are generated by exponential-type asymp-
totic behavior of the Galilei amplitudes A, (r) and
B, (r) (for ~r ~- ~). Let us now construct some
physically reasonable partial-wave amplitudes
a, (k) and calculate the corresponding unitary and
nonunitary spherical Galilei amplitudes.

A. Square-Integrable Partial-Wave Amplitudes

II

2

For square-integrable partial-wave amplitudes
we use the unitary expansion (2a) and have

A, (r) = —
~

k'a, (k)j, (kr)dk,
2 f"

0

and in particular for the s wave

A, (k) = — kao(k) sinkrdk .
2

0

(23)

FIG. 1. Brick-wall frame for potential scattering.

Let us first consider some simple models for the
s wave.

(i) Simple resonance or bound state.
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A.
a,(k) = k, + (25)

where A and k, are complex constants; the Gali-
lei amplitude is (see Ref. 9)

A, (r) =b(i)""'2'"1(l+1)I(n+2)
rl

X
(r 2 + 2)l +n/2+3/2

x C 1+ )(~ (~2 +r 2)-1/2) (34)

A, (r) =—e ""(), Rek, & 0 .

(ii) Smooth back-ground term exponentially
damped for k-~.

a,(k) =bk" e 2, Reo(&0.

We have

(26) where C„",I(z) is a Gegenbauer polynomial.
We see that for the unitary expansions a pole of

a, (k) in the complex plane at k =+ ik, corresponds
directly and simply to an exponential term of the
type (26) in the Galilei amplitude A, (r) (note that
we have the behavior

A (r)- —k ' —e
A ) 321

2 0

A, (r) = —
2 2 „„„sin (n+2)arctan-2b I'(n+2) r

11 r o.'+r' """
Ck for large r)

(iii) Resonance or bound state damped exponen

tially for k-~.

a3(k) =, , K2((x[k'+k, ']'"),
+ 0

n &0, RekQ&0
(29)

A exp[ k, (o.2+-r ')"']
l n2 k 0

(30)

where A and k, are complex and n is real. For k
—~, the Macdonald function K2(n[k'+k, ']"')be-
haves like exp[ —o. (k'+k, ')"']. This function was
inserted in (29), rather than an exponential, sim-
ply to facilitate the integration. The Galilei am-
plitude is (see Ref. 9, formula 6.596.7)

B, Non-Square-Integrable Partial-Wave Amplitudes

We use expansion (1) in terms of non-unitary
representations of E(3) and write the Galilei am-
plitude as

B, (r) =, . k'a, (k)~, (kr)dk,
2

7T 2 Q

r=P+iq, P&0,

which for the s wave reduces to

(35)

B,(r) = . ka, (k)e '"dk.
7TW 0

(36)

Let us again first consider specific models for the
s wave.

(i) A. resonance or bound-state term.

Let us now consider general partial waves.
(a) Resonance or hound state term, dam-ped ex

ponentially for k-~ and having "reasonable"
threshold behavior.

Ak'
k2 +k02

Ae
a, (k) =

2 2, Re(x & -P.
+ Q

Using formula 3.354.2 of Ref. 9, we find that

B,(r) = — . I ci((x +r)k, cos(n+r)k,
7TW'

+ si(n +r)k, sin((x +r) )k,

(37)

(38)

cy &0, RekQo 0;

we find that

x Z„, , (k,[n'+r']"'). (32)

(b) Smooth exponentially damped background
term.

a, (k) =bk""' e, o. &0. (33)

The Galilei amplitude can, after some manipula-
tions of the integral, be written as

where ci(x) and si(x) are the cosine and sine inte-
grals, respectively. '

In the determination of the asymptotic behavior
of (38) we proceed as follows: It is known that the
upper half of the complex k plane corresponds to
the physical sheet of the scattering amplitude and
that the dynamically significant singularities such
as resonances, virtual, and antibound states occur
on the second sheet, i.e., the lower half of the
complex k plane. " (Note: This is not true for
bound states, which we exclude from our consider-
ations here )The conditi. on that (37) have a "dy-
namical pole" at k =ik, is then that

3
—,'~ & argk, & —,m.
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si(ye ' ) =-m —sip,

ci(ge ")= i7/+ci-y. (39)

We have, for sufficiently large q,

e-(n+ r) ao

B,(r) =—

1 fci[e "(n +r)k, ] cos[e '"(n+r)k, ]

+si[e "(n +r)k, ]

where now

xsin[e "(n +r)k,]], (4o)

-7/&arg[e "(n +r)k, ] & 7/.

We now obtain the exponential term we expect with
the remaining term in the expression (40) having
the asymptotic behavior i[ mr(n +r)'k, '] ' for large
q.

(ii) A smooth background term of tyPe (27) with

Ben & -P. This gives

b r(n+ 2)B, r =
7/tr (r+n)"" ' (4l)

Let us now consider general partial waves: a res-
onance or bound state with reasonable threshold
behavior

a, (k) = k, +
O

The Galilei amplitude is then

(42)

B,(r) = [~r] '/' —.2'"I-(I+-.')k, '"/3
ATE

+ S-) -3/2, l + 1/2(kor)

So we see that asymptotically

arg(n +r)k, - —3m+argk, & w

for q-~. Thus, for q sufficiently large we cannot
use the conventional asymptotic expansions for (38)
which are valid only in the region

~
arg(n +r)k, ~& 3/.

In order to apply the asymptotic formulas correctly
we make use of the formulas'

C. Comments on the Galilei Amplitudes

)()
B,(r). (45)

where B;, C&, and k; are complex constants. An
ansatz like (45) would then seem to be a reasonable
starting point for a phenomenological analysis of
scattering data, simultaneously for all energies
0+A&~ and all angles 0 &0 &~. We shall return
to this prob'em of energy-dependent partial-wave
analysis separately in the context of relativistic
two-variable expansions.

Finally, let us note that an infinite number of
resonances or bound states in a given partial wave
can be incorporated by letting t)t- ~ in (45). Alter-
natively, we can construct model Galilei ampli-
tudes, generating infinitely many poles of a, (k) in
the k plane. A class of examples that springs to
mind is provided by the generalized hypergeomet-
ric functions"'":

The main point that we wish to abstract both from
the general consideration of I and from the exam-
ples discussed at length above is the following: A

physically "reasonable" partial-wave amplitude,
containing a finite number of resonances (and/or
bound states) and a smooth background, behaving
reasonably at the threshold and at asymptotic en-
ergies, can be written as

a, (k)=k' Q, ', e ""+Qb, . )."e "') .
j=o

(44)

We have shown above that the corresponding
spherical Galilei amplitudes A, (r) and B,(r) can
be readily computed. The important thing to real-
ize is that a, resonance term of the type (k'+k, ') '

in a, (k) corresponds to a term of the type e '0'/r
in the Galilei amplitudes. Similarly, a background
term behaving as k" in a, (k) corresponds to a term
like r " ' in the Galilei amplitudes. This in turn
suggests a method of parametrizing the Galilei
amplitudes A, (r) and B,(r), that is quite simple
and does reproduce the essential features of the
partial-wave a.mplitude (44), namely,

where S„,(a) is a I ommel function. '" In particu-
lar for l=0, we have

1
S 3/3 $/3(k, r) = — „,[ sin(k, r)si(k, r)

Or

1B(r)= — F (n n P . P. e'o")

IV. EXAMPLES OF SOLVABLE POTENTIALS

(48)

+cos(k,r)ci(k3r)],
i.e. , the s-wave result (38). By considerations ex-
actly analogous to those used in the analysis of the
s wave we can asymptotically obtain the required
exponential term.

In this section we shall investigate the Galilei
amplitudes for specific local and nonlocal solvable
potentials, for which the partial-wave amplitudes
a, (k) can be obtained explicitly. These can then be
substituted into expression (23) for A, (r) or (35)
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for B,(r), as the case may be.
Let us note that for k-0 we have

j,(kr) —,'v ~, „(-,'kr)'
I'(l+-,'j '

2
&g(r) =

( )2,
e-Xr

V, (r) = -2P~'
(52)

x 1—,(~kr) + ~ ~ ~2
3 2 (47)

-kr
~, (kr) vw2'-'1(I+-.') „,(1+k + ~ ~ ~ ).kr '+'

(43)

For k- ~, on the other hand, we have

[for the connection between the constants in (51)
and (52), see the original article"].

Unless +=0 or ~ =0, the integral for the unitary
Galilei amplitude Ao(r) will diverge. The nonuni-
tary one is obtained by substituting (51) into (36).
Performing the integration we find

B,(r) = [Ze ""'Ei(-,'iver)
i(Z+ v)

wr(Z —v)

j,(kr) ~ —sin(kr ——,ml)
1

„kx —ve ""~'Ei(-,'ivr)]. (53)

1
+ I(l+ 1)cos(kr ——,'ml ) + ~ ~ ~

2kr

v, „ I(I+ I)
~, (kr) ~ e '" 1+ + ~ ~ ~

„2kr 2k'

Equations (47)-(50) show that the expression (23)
for the unitary Galilei amplitude A, (r) will con-
verge at k = 0, as long as a, (k) is not too singular
for k- 0. The corresponding integral will diverge
for k- ~, unless a, (k) vanishes at least as I/k.
The integral (35) for the nonunitary amplitude
B,(r) will, on the other hand, diverge at k -0 un-
less the partial wave vanishes at least as a, (k)
"k' "', e &0 for k- 0. For k- ~ the integral (35)
will converge even if a, (k) increases exponentially.

Let us now consider specific examples.

A. Local Solvable Potentials

Let us first consider a class of potentials, in-
troduced by Bargmann, "of such a nature that the
corresponding Jost functions" for the s-wave par-
tial-wave amplitude can be written explicitly, it
has a finite number of simple poles in the complex
k plane, and the corresponding Galilei amplitudes
can readily be computed. Indeed, Bargmann has
proposed many different potentials, or classes of
potentials, for which the s-wave partial-wave am-
plitude can be written as

( )
2(x+ v)

(2k- iv)(2k- iZ)

J„,g, (kB)
ikH~"

g (kA)
' (55)

The expressions for the general Galilei amplitudes
are quite complicated, so let us again just consider
l =0. We have

1 ~

a, (k) = -—sinkR e '~ ", (55)

so that

Thus, the Galilei amplitude again involves expo-
nential integrals and the asymptotic exponential be-
havior for (r (- ~ can be extracted as in Sec. III
[see Eq. (38) and below].

Of obvious interest are those potentials for which
the partial-wave amplitude a, (k) can be calculated
for all values of l, namely the Coulomb potential '

1jr, the square-well potential, ""the delta" "
potential g5(r —a) and the repulsive core.""

The threshold and asymptotic behavior of the
Coulomb partial-wave amplitude is such that the
integrals for both A, (r) and B,(r) diverge. All the
other potentials mentioned above give amplitudes
a, (k) that can be expanded in terms of nonunitary
representations, since the correct threshold be-
havior k" ensures the convergence of the integral
(35) for k-0. For the 5-function potential the in-
tegral (23) for the unitary amplitude A, (r) will also
converge. The simplest example to consider is that
of the repulsive core, so let us concentrate on it:

«'"'=I 0' (54)
p

, [this can be considered to be the limit of the po-
tential V(r) =g6(r —B) for g-~]. The partial-wave
amplitude is

. 3+v 1 1
A. - v 2k-iv 2k-iA. (51)

B,(r) =— 1 goo

7Tgf p p

sink@ e "r+

Examples of such potentials are, e.g. ,
iR

'(r r2ix+)
'
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To conclude this subsection, let us make a few
comments on the Galilei amplitudes for the 6-shell
potential. For

V(~) =-g5(r- a)

aalu

~B( )
g ill

k'dkj, '(ka)j, (kr) .
0

(58)

we have

k 1-ivgM„„i,(ka)H", ,'„,(ka)
' (58)

Putting k' = p = 1 in (12) we find that in the Born
approximation for the 5 shell we have

The exact Galilei amplitude is, however, obtained
by substituting (58) into (23). Let us split the cor-
responding integral into two parts —from 0 to K,
and from K to ~. If K» 2g, then the second term
in the denominator of (58) can be dropped in the
second integral and we obtain

2w ' ' J,+,i,'(ka)J;+, i, (kr)Wkdk J, +,i,'(ka)J, „,i, (kr)v k dk (60)

Afte~ trivial transformations we can rewrite (60) as
&/2 K OO

A, (t)=in'g'a' — J,„,i, (ka)Z, „,i, (kx)H, ',i, i, (ka)v k dk+ t j,'(ka)j, (kr)k2dk
'V

0 71 gp

Thus, we have written &,(r) as an integral over a, finite region, p]us the Born term.

(61)

B. Nonlocal Separable Potentials

Separable potentials are of interest, because the
corresponding Schrodinger equation can be solved
explicitly" "and they have been used with some
success in the treatment of low-energy nucleon-
nucleon scattering. ""

A separable potential is nonlocal, i.e., nondiag-
onal in the position representation. Its simplicity
derives from the fact that its position-matrix ele-
ments have the factored form (r'I V Ir) = V(r') V(r);
its momentum-matrix elements factor in a similar
way. We will consider a potential which is a rota-
tionally invariant sum of such terms:

u, (k) =k, —,
' &n &z'.

This corresponds to a spatial "potential"

v, (~) =C/~' ",

(2f+ )1'" '2-"
(1-,'i —,'n+ —,')-

vr( 'l+ 'n)— —

(67)

(68)

For A. &0 there is a bound state in the lth partial
wave at E=k~'/2 mwhere

Let us consider a few simple examples. For
simplicity we suppress l as a subscript on ~ and
other parameters of the potential.

Example 2.

(r'IVIr) =-Q
2 '1 v, (~')v, (~)P, (r' ~). (62)

In the momentum representation the potential is

(k'I VIk) =-2,g ~,u, (k')u, (k)e, (k' k), (63)
l

where

k~ = i(-t secvtn)'i('

The partial-wave amplitude is

a, (k) = A.

k(k' '+ Xtann'n —ix)
'

(69)

(70)

4~
u, (k) = dr r'j, (kr)v, (r) .

+ p
(64)

We examine this for two particular values of n.
(a) n = l.

Then the lth partial-wave scattering amplitude can
be shown to be

a, (k) = A. ,u, (k)' 1+ ' dq, ',~ . . (65)
p k —q +iE

There is a (single) bound state in the lth wave if

k(k —'
)

The unitary Galilei amplitude is

( )
&A.

"
kj, (kr)

n p k —iA.

(71)

(72)

The integral can be evaluated with the help of a
'

formula given by Watson" together with some re-
arrangement of terms; the required formula is

A.
g dq+) q )2'�.

0
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r(2p+ ll+ 2) 2r(-,'p+ —,'l+ 1)
-P +1/2, 1+1/2( ~) / 1 1 ~ 1 i -P -1/2, 1 +1/2( (73)

2r (-,' l+ —,')'„,' S,/, „,/, (—jl'X)
K2 I

(74)

It is of interest to consider the limit of A, (r) as r
According to Watson, S„,(z)- z" '. The first

term of (74) dominates and we have

(vs)

1

where S„,(z) is a Lommel function. "" Thus, our
Galilei amplitude is

// 2~3 /2

Al(+) 1/2 1/2
1r

, r(-,'I+1)s
T /1 z+ 11 1/2, 1+1/2(

- A.e "and multiplying by e'"~. It is evident that
the continuation A. -)).e "of the integral in (73) is
equivalent to substituting A. —A.e" and adding

2&ei(1-p) w/2gp () ~e-im/2)re (vs)

whose asymptotic value as r- ~ is

&ei( 1-P -t) vf/2~P -xr-z r ~

e-ilr/2 2gr-1erx (vs)

Note that the pole of the partial-wave amplitude at
k = i)). appears as the exponent in (78) (since e"~

=e '" '~)) in the usual manner.
(b) o. = —,'.

The asymptotic form of A, ( )2for r ~ e "is thus

We wish to examine the behavior of A, (r) when r
is continued to negative values by passing below
the origin, r-re "; this necessitates passing
through the cut in Sp „(z) which lies along the nega-
tive z axis. The continuation can be accomplished
by noticing that the integral in (73), apart from a
factor r, depends on r and A. only through rA. .
So we can achieve the continuation by letting A.

A.

k[k'" - ~(1+i)]

)).[k' '+2 e" 'A. ]
k(k —2i) ') (79)

The Galilei amplitude can be evaluated in the same
way as before with the result

A, (&) = 1/2 1/2 rI1l 1y S,/2, +,/2(-2ir)1') i2 ' '(2l-+ 1)S, „,/ ( 22m')) -—1'„,' S,/»+, /2( 2ir)).')-I'(2 l+ —
)

+i2 '/'(2l —1)(2l+3)S, „,/2( 2ir)i2)-. (80)

For r ~ the first term in (80) dominates and we
find that

Write

„,e""r(-,'l+ 1)
v'/2r( 'I+ ')r2--

For r -~ e '" we find that

(2-) 4eil n. /2y22. -1+2r 1.

Exam/le 2.

(sl)
Then if n &P„as we suppose, there is a bound
state at

k, =i(n-P) .
The scattering amplitude is

(84)

(85)

u, (k) =(k'+P')-' . (s2)
a, (k)=, (as)

(k —2P)'[k+ 1 (~+ P)] [k —i(n —P)]

e-Hr
1/, (r) = (4)i) '/' (83)

The spatial "potential" can be evaluated and is ex-
pressible in terms of Lommel functions. For l =0
it is of Yukawa type

To evaluate the Galilei amplitude we break (86)
into partial fractions and use Eq. (73) to determine
the contribution of each term. In the case of the
(k —iP)' term it is necessary to differentiate Eq.
(73) with respect to ))..

The Galilei amplitude works out to be
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e-i37f /4
& (&) = /, ,/; & 8"'~'(l2+ p)'i'F(ir(c. + p))

+ a(a —P)"i2F(-i2.(o.—P))

+ CP'i'F( irP-)

A.

(k - ip)[k —i(x -p)]

and the Galilei amplitude is

e-'"'44~
Al(2) =, l/2(~ 2p)

(94)

where

—iD [P'—"F( i2.P)]- (87) ~ [ P"'F( i~-P) —() —P)"'F (-i~(~ —P))],

(95)

A=- i 4ip
»(cl+2P)' ' (n+2P)'(o'-2P)' 'C=

where F(z) is defined by Eq. (89). The asymptotic
form of (95) for r ~ is

B= Z 1
»(l2-2P)" (n+2P)(o'-2P) 'D=

F I y2l

2T'( 2'l+ 2)—
(,', )

s,(, „,g, (z) .

(88)

(89)

4I'(-2' i + 2)
"'P()) - P) 'r(-,'f) '

except for the s wave when

-z4X'
0( ) p2(g p)2 4

For r -~e '" the asymptotic form is
-il fr/2g

A, (r) - [pe'"-(z- p)e" ""].

(96)

(97)

(98)

I 40 (90)

and

1 A B C 2iD'
( p)' ( -p)' p' (91)

Forr- e '

( )
—ll 7I'/22 ( P) (a. —8) r Dp2 87

For r-~ the S 3/2 g g/2 terms dominate, except
for l = 0, where its coefficient vanishes. Asymp-

toticallyy,

4if" (,'l+ —,')—2 B C iD
'( ) ~'/2-r(-2'f)~' n+p ~-p p p'

These few simple examples of separable poten-
tials could be augmented by many more. In none
of the examples does a nonunitary Galilei ampli-
tude exist, since the scattering amplitudes do not
vanish strongly enough, or even at all, for k- 0;
hence we deal with unitary Galilei amplitudes.

The presence of a bound state at k~ = in, say, is
reflected in each of the preceding examples by a
term in the Galilei amplitude which grows like e"
for r-~e ". For an antibound state, a pole in
a, (k) on the negative imaginary axis, there is no
such growing exponential for r- ~e " (but there
is one for r ~e"').

C. Comments on Partial Waves with Infinitely Many Poles

(92)

Example 3.

u, (k) =(k'+ p') "' (98)

In order that various integrals be well-defined,
a convergence factor lim, ,e '" or lim, ,k '
should be included on the right-hand side of Eq.
(72). The spatial "potential" v(2) is expressible in
terms of hypergeometric functions.

If, as we suppose, A. &P, there is a bound state
at ks =i()l. —P). The scattering amplitude is

In all examples for which the Galilei amplitudes
were calculated explicitly, the partial-wave ampli-
tude had a finite number of singularities, which
correspond to resonances, bound states, and vir-
tual states. There are, however, many well-known
examples for which the number of such singulari-
ties is infinite (e.g. , the s-wave Hulthdn potential
as well as the square-well and 5-function potentials
mentioned above). These amplitudes can be readily
incorporated in our scheme by using the Mittag-
Leffler expansion" of the S matrix:

IN N
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where -~x„are the positions of the N' virtual
states, ik„of the N bound states and k„(Bek„&0)
of the resonance states; P(k) is an entire function
of k, and g„', g„, and g„are the corresponding
residues. From this representation we see that
we can, in principle, treat any partial-wave ampli-
tude corresponding to a potential with finite range
by the methods we have already outlined. One ex-
ample for which the singularities in the k plane are
known, is the s-wave Hulthdn potential amplitude, '"
which for a repulsive potential has infinitely many
integer-spaced virtual states at the points

gn

Q

where the potential is

v,e "'
V(r)=, ', „..

A, (r) = dkk'j, (kr) dr'r" V(r')[g, (k, r')]'
0 0

dk k'j, (kr) Cr "r"' V(r")g, (k, r")
Jp 0

(103)

Then the expression A, '/A, is also a correct for-
mula for the Galilei amplitude and, moreover, is
stationary with respect to variations of the wave
functions g, (k, r) considered as a function of k and

The functional derivative which is asserted to
vanish is

The s-wave Galilei amplitude is then a semi-infi-
nite series in the variable e ""plus a background
term

Now

A,(r) = g a„e """+g b r
g=g m

(100) = k'r 'V(r)j, (kA)j,(kr)5, k, r
Generally speaking, the positions of the singulari-
ties of a, (k) are only implicitly known as is the en-
tire function P(k). From the phenomenological
point of view, however, this does not matter.

and

= 2k'r 2V(r)j, (kR)g, (k, r)
5P) k, r

—2k'r ' V(r )j,(kA)

V. VARIATIONAL PRINCIPLE FOR GALILEI
AMPLiTUDES It follows easily that

dr'r"g', (r, r')V(r')(, (k, r') .

It is possible to construct a stationary expres-
sion for the Galilei amplitude in potential scatter-
ing analogous to that given by Schwinger for the
usual partial-wave amplitude. "

The Galilei amplitude may be written as

A, (r) = dk k'j, (kr) dr'r "j,(kr')V(r')
0 0

x y, (k, r')
= A, f y, (k, r')}, (101)

g, (k, r) = j, (kr)+ dr'r"g, (r, r')V(r')
0

x y, (k, r'); (102)

g, (r, r') is the radial Green's function. Solving
(102) for j,(kr) and substituting for j,(kr) in (101)
gives a second expression for the Galilei ampli-
tude:

where g, (k, r) is the radial wave function and satis-
fies

A,
5(, (k, r) A,

provided that g, (k, r) satisfies the wave equation
(102).

VI. CONCLUSIONS

The main purpose of this article was to investi-
gate the relation between Galilei amplitudes, par-
tial-wave amplitudes, eikonals, and potentials for
specific models. We have shown that in the Born
approximation the Galilei amplitudes are related
to the potential in a simple manner that has a clear
physical and group-theoretical meaning. We have
calculated the Galilei amplitudes in the E(3)&O(3)
aO(2) expansions explicitly for numerous exam-
ples and established their main features. In par-
ticular, simple poles of partial-wave amplitudes
a, (k) in the complex k plane are generated by
terms in the Galilei amplitudes A, (r) that behave
as e ""o/r for r-~ (or r- e"'~). Similar terms
appear in the nonunitary amplitudes B,(r) for lmr
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—+~ and generate k-plane singularities in a, (k).
The difficulties associated with the generalization

of the concept of a potential to a relativistic theory
are well known. The concept of a Galilei ampli-
tude, on the other hand, has its direct relativistic
counterpart, namely the Lorentz amplitudes, fig-
uring in O(3, 1) expansions. ' ' It may be argued
that our examples show that the Galilei amplitudes
are much more complicated than the potentials
themselves. They are, however, not more com-
plicated than the corresponding partial-wave am-

plitudes a, (k), which are generally used to de-
scribe relativistic reactions. The Galilei ampli-
tudes, or the Lorentz ones, in a relativistic theo-
ry, go far beyond the partial-wave amplitudes, in
that they describe both the angular and energy de-
pendence of a reaction. In other words, these Ga-
lilei and I orentz expansions provide parametriza-
tions of scattering amplitudes that can be used for
performing energy-dependent partial-wave analy-
sis.
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