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An attempt is made to give a physical interpretation to the phenomenological wave function of Yukawa,
which gives a correct nucleon form factor in the symmetric quark model. This wave function is first

compared with the Bethe-Salpeter wave function. It is shown that they have similar Lorentz-contraction
properties in the high-momentum limit. A hyperplane harmonic oscillator is then introduced. It is shown

that the Yukawa wave function, which is defined over the entire four-dimensional Euclidean space, can be

interpreted in terms of the three-dimensional hyperplane oscillators. It is shown further that this wave

function satisfies a Lorentz-invariant differential equation from which excited harmonic-oscillator states can
be constructed, and from which a gauge-invariant electromagnetic interaction can be generated.

I. INTRODUCTION

The quark, "which was originally introduced to
explain SU(3) symmetry and its consequences, has
gained considerable ground as a fundamental con-
stituent particle in hadrons. The inventors of the
quark did not make any commitment to its exis-
tence. ' In spite of this and other well-known dif-
ficulties, model calculations based on this con-
stituent particle are producing increasingly en-
couraging results. 3

In both the successful and the disappointing
features of the quark model, there seems to be
one crucial question: What "forces" are respon-
sible for making quarks stay together in hadrons?'
In the early days of the quark model, quarks were
put into an infinite potential purely for conve-
nience, "and no attempts were made to assert
that these simplified forces were of fundamental
importance. In the symmetric quark model, for
instance, Greenberg used the harmonic-oscillator
potential in order to borrow the well-known for-
malism from the nuclear shell model.

As the resonance spectrum became richer, the
search for quantum numbers that correspond to
binding forces continued. ' It was Kim and Noz'
who established the existence of harmonic-oscil-
lator-like radial modes for nonstrange baryon
resonances for which there is barely enough ex-
perimental data to test the linearity of the three
lowest energy levels.

There are numerous calculations of decay rates
in the harmonic-oscillator model. ' A more im-
portant analysis seems to be that of elastic form
factors. The first objection to the use of the har-
monic oscillator, that is the Gaussian, wave func-
tion is that the form factor decreases exponentially
for large t values. This discrepancy with the real

world together with our field-theoretic common
sense once led us to conclude that the harmonic-
oscillator potential, which is manifestly analytic
at the origin, cannot be the fundamental force be-
tween the quarks. However, an encouraging de-
velopment was that the relativistic effect suitably
applied on the Gaussian wave function eliminates
this unwanted exponential decrease and gives the
desired dipole effect. '

The above-mentioned relativistic models are
essentially one or another form of the Gaussian
wave function multiplied by a Lorentz contraction
factor, and they do not necessarily represent a
completely consistent picture of the relativistic
bound state. The important fact, however, is that
all those "wrong" models give a correct form fac-
tor. We are thus led to believe that there is some
truth in the Lorentz contraction of quantum-me-
chanical wave functions. "

We realize that there are no completely con-
sistent relativistic measurement theories and that
we are not going to solve this difficult problem in
this paper. For this reason, we can give relativ-

'istic interpretations only in terms of the existing
languages that have been developed to answer this
ultimate question. One commonly used language
is the Bethe-Salpeter equation. "" This equation
is well known to us and has been used extensively
in both low- and high-energy physics. "

Another important language developed for the
same purpose is the hyperplane generalization of
the Schrodinger equation. The concept of a space-
like hyperplane played a crucial role in the early
days of quantum field theory. ' This hyperplane
technique was used recently by Fleming to under-
stand the Newton-Wigner localization problem. ""
We shall use this hyperplane language in order to
understand Lorentz-contracted Gaussian wave
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functions.
We are specifically interested in the covariant

oscillator wave function first introduced by
Yukawa' and used by Fujimura et p~."" in their
successful calculation of the nucleon form factor
in the symmetric quark model. In spite of their
numerical success, there does not seem to be
any physical basis for the covariant differential
equation from which the wave function is derived.
Thus it is fair to say that the Yukawa wave func-
tion has been a purely phenomenological entity.
The purpose of this paper is to give a physical
meaning to this wave function in terms of the ac-
cepted relativistic languages.

In Sec. II, we compare the Yukawa wave function
with the Bethe-Salpeter wave function. It is
pointed out that both wave functions are to be in-
tegrated over the four-dimensional Euclidean
space in the low-momentum region. We note that
both the Yukawa and the Bethe-Salpeter wave
functions have the same Lorentz contraction prop-
erties in the large-momentum limit. Since the
Bethe-Salpeter equation is a field-theoretic model,
we believe that this is the point where Yukawa's
nonlocal theory makes contact with local field
theory.

In Sec. III, we introduce the hyperplane tech-
nique. The nonrelativistic harmonic oscillator
can be generalized to covariant hyperplanes. We
present a hyperplane interpretation of the Yukawa
wave function which is consistent with the Lorentz-
invariant probability and the observed nucleon
form factor.

In Sec. IV, we discuss a Lorentz-invariant dif-
ferential equation which the Yukawa wave function
satisfies. This equation can generate a gauge-
invariant electromagnetic interaction. It is shown
that this harmonic-oscillator differential equation
can be separated in the normal coordinate vari-
ables which are Lorentz transformations of the
space-time variables, and that the excited states
can be constructed in this normal coordinate sys-
tem. A Lorentz-invariant mass eigenvalue is
given.

In Sec. V, we discuss briefly the experimental
basis upon which the harmonic-oscillator quark
model is built.

II. PROPERTIES OF THE YUKAWA AND THE
BETHE- SALPETER WA VE FUNCTIONS

In this section, we compare the covariance prop-
erties of the Bethe-Salpeter and the Yukawa wave
functions. In the early days of nonrelativistic
quantum mechanics, the standing-wave properties
for the square well, the harmonic oscillator, and
the other bound-state potentials were described

by different mathematical techniques. However,
the inherent similarities enabled the creators of
quantum mechanics to formulate a new concept of
bound states in terms of the quantum superposition
principle. By studying the properties that are
common to the Bethe-Salpeter and the Yukawa
wave functions, which have different mathematical
forms, we expect to work toward finding a possible
new form of relativistic dynamics.

Since the Bethe-Salpeter equation and its wave
functions are well known, "me mill only describe
here how Yukawa arrived at his covariant har-
monic-oscillator model. Yukawa noticed that
Born's reciprocity relation" gives an oscillator-
like Hamiltonian and attempted to write down a
normalizable wave function in terms of the rela-
tive internal coordinates. The covariance re-
quirement, however, forced him to introduce
time-like excitations with negative energies. As
a consequence, the energy levels mere infinitely
degenerate. In order to eliminate this undesir-
able feature, Yukawa introduced a coupling with
an external momentum. His wave function takes
the form

@(x,p) =exp{--,'(u[ x'+2(p x)'/m'J),

where x is the relative space-time four-vector
and P is the total four-momentum of the bound
state. Throughout this paper we use the space-
favored metric where x' = (x)' —x,'.

The bound-state Bethe-Salpeter Green's function
takes the form" "

2 1

G(x, p) = — decos( —,'o. p x)
4n o

&CHICO(
'(x')"'[4M— '-(1-n')m J'")

(2)

This Green's function is seen to be a function of
x and p as in Yukawa's function above [Eq. (1)J.
The mass of the bound state is given by m. We
consider here the bound state of two equal-mass
particles whose individual mass is M. This
Green's function is not the solution of the equation
but contains most of the features of the exact wave
function. "

We are now ready to discuss the covariance
properties that are common to Eq. (1) and Eq. (2) .
We start from the rest frame where p=0. In this
system, Eq. (1) becomes a harmonic-oscillator
wave function in the four-dimensional Euclidean
space of x and t, and is manifestly normalizable.
We can make the Bethe-Salpeter Green's function
of Eq. (2) normalizable in the four-dimensional
Euclidean space of (x, t ) by making the Wick rota-
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tion. "
As we increase

~ p~, this property holds for
Eq. (2) until the kinetic energy becomes larger
than the binding energy. '~ For

~ p ~

larger than the
binding energy, the Bethe-Salpeter wave function
is no longer normalizable in the above-mentioned
four-dimensional Euclidean space. The harmonic-
oscillator wave function of Eq. (I) does not suffer
from this effect and remains normalizable for
large values of

~ p ~
. This is expected because

particles bound by an oscillator potential have in-
finite binding energy.

Let us rewrite the oscillator wave function as-
suming that p is in the z direction. We use E for
P, andP forP, . Then

t=- z t=z

e(x,P) = exp[- —,'~(x'+y')]

xexp{(- (u/4m')[(E —P)'(t+z)'

+(&+P)'(t —~)']) .
For large p,

(u(E-P)' (u m
4m' 16 p

~(&+P)' „P '
4m m

Thus

4 (x,P) -exp[ ——,'~(x '+ y')]
x exp[- ~l(u(m/P)'(t + z)']

x exp[—&u(P/m)'(t —z)'] .

(4)

FlG. 1. Lorentz-contracted wave functions with two
equal and opposite momenta. The form-factor integral
of Fujimura etal. receives contributions primarily from
the small overlapping region.

shrinkage is responsible for the nonexponential
decrease of the form factor.

In Eq. (6), the integral is performed over Eu-
clidean space-time. We know clearly the physical
meaning of the probability distribution over the
three-dimensional space, but we do not know what

physics, if any, the timelike probability distribu-
tion corresponds to. We shall discuss this problem
in Sec. III.

The last factor becomes (Wm/&u)(m/P)5(t —z) for
large P, and the dependence on the variable (t+z)
becomes insensitive by the factor (m/P)'. This
contraction behavior is strikingly similar to that
of the Bethe-Salpeter equation. " The Bethe-
Salpeter wave function is a model derivable from
field theory. The oscillator function is a phenom-
enological wave function giving correct form fac-
tors. It is interesting to note that these two wave
functions have the same Lorentz contraction prop-
erties in the large-p limit.

We now restrict ourselves to the Yukawa wave
function. Let us analyze the form factor calcula-
tion of Fujimura et a/. "in the Breit system. We
can sketch the initial and final "Lorentz-con-
tracted" wive functions as in Fig. 1. The form-
factor integral

III. HYPERPLANE FORMALISM OF
HARMONIC OSCILLATOR

Here we study Yukawa's phenomenological wave
function from the point of view of the nonrelativis-
tic-harmonic-oscillator wave function, generalized
to covariant hype rplanes.

Let us start with the nonrelativistic harmonic
oscillator. The Hamiltonian is separable and the
wave function is Gaussian multiplied by the ap-
propriate polynomials corresponding to excited
energy levels. Because the ground-state wave
function depends only on (x)' in the exponent, we
can Lorentz-generalize x to the three-vector on
the hyperplane which is perpendicular to the total
four-momentum of the system. We follow the
standard method of constructing this three-vector
and

F(q') = )Id'x P~(x)g, (x) exp(iq x), (6) gp 5p +

where qis the momentum transfer, receives con-
tributions only from the small overlapping region
indicated in Fig. 1. This region shrinks as the
momentum transfer increases, and this coherent

When the momentum p is zero, x„becomes x.
For nonzero p,
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p p P X
~ (8)

~, y, and (1-P')-'"( z-P~). (10)

The hyperplane ground-state oscillator wave
function then takes the form

P(x, P ) = exp [——,
'

&u [x' + (1- P ') '(t —Pz )'] j . (11)

There are two important differences between
the above wave function and that of Eq. (1). First,
the coefficients of (P x/m)' are different. In Eq.
(1), it is 2, while it is 1 in Eq. (11). Next, Eq. (1)
is integrated over the entire four-space while
Eq. (11) is integrated only over the three-dimen-
sional hyperplane. The purpose of this section is
to point out that we can indeed give a hyperplane
interpretation to the Yukawa wave function of Eq.
(1).

The wave function given in Eq. (11), which de-
pends explicitly on )3, is the ground-state wave
function. We can excite the harmonic oscillator
just as in the nonrelativistic case. If we multiply
Q or its excited form by exp[--,'&u(1- P') '(t —Pz)'],
it does not change the hyperplane oscillator be-
cause the variable -(1-P') '"(t —Pz) is perpen-
dicular to the three hyperplane variables given in
Eq. (9). If we perform the integration over the
variable -(1-P') "(t—Pz) after this multiplica-
tion, this certainly leaves the hyperplane oscil-
lator intact. Therefore we can write the inner
product of two wave functions belonging to the
same hyperplane as

(q , p.) = J e-xp([.-x))'p() - ()e))'
x (t*(~, p)y (x, p)d'~.

The integration measure d4x is invariant under
Lorentz transformation. Because of this the above
quantity does not depend on the hyperplane pa-
rameter P. Hence, we have introduced a multi-
plication factor, exp(- —,&u[ —,(P.x)]'j, and an inner
product of the form of Eq. (12), while leaving the
hyperplane oscillator intact. By doing this we
have been able to show that the hyperplane proba-
bility is Lorentz-invariant.

Let us consider next the inner product between
wave functions belonging to two different hyper-
planes. " Since nonrelativistic quantum mechanics
does not say anything about Lorentz transforma-

Assume now that p is in the z direction. Using
P for P, and P for v/c, Eq. (8) becomes

x "x„=x"x„+(1—P') '(t —Pz)'.
The three independent hyperplane coordinate vari-
ables are

tion, it cannot give the transition probability be-
tween two such wave functions. We believe that
this is one of the most pressing problems of our
time and that we can solve this problem only by
building models that can produce the observed ex-
perimental data.

In order to build such a model, we go back to
our original rule that exp[--,'v(P x/m)'] multiply
each wave function and that the integral be per-
formed over the entire four-space. Then the in-
ner product becomes

x 4, (~, P, )~P. (~, P, )d'~

Here again the integration measure d'x is hyper-
plane-independent and is good for both the P, and
the P, plane. The above expression becomes
Eq. (12) when P, and P, are equal.

The next and most crucial question is whether
the above inner product produces experimentally
measurable effects. The answer is contained in
the fact that because of the additional exponential
factor, the form factor calculation with this inner
product becomes exactly the phenomenologieal
form of Fujimura et al. which we discussed in
Sec. II. The single-oscillator ground-state form
factor becomes in the Breit system

p'(q')= Jd'xexp[it) x) exp[ —te(x'eq'))

x exp ——,(m'+ 2(q(')((,"+z')

For large q', the time integral is like a 5-function
integral, and hence this form becomes that of
Licht and Pagnamenta" who proposed the instant
((,

' =0) probability integral.
We have thus generalized the time-independent

harmonic oscillator to eovariant hyperplanes, and
then introduced a covariant inner product. This
operation leaves the hyperplane oscillator intact,
produces the Lorentz-invariant probability for
the states belonging to the same hyperplane and
gives the correct nucleon form factor.

At this point, we may mention that the mathe-
matics of the covariant harmonic oscillator is
very similar to that of the quantization of the
electromagnetic field. There are two well-known
approaches to the electromagnetic field quantiza-
tion. One uses the Lorentz gauge, and the other
uses the Coulomb gauge. The Coulomb-gauge
method is not manifestly covariant, but its main
advantage is that we do not introduce unphysical
photons and thus we can make quick references to
the real world.

There have been many previous attempts to
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understand the covariant harmonic oscillator. "
In this paper, we used the hyperplane coordinates
to avoid timelike excitations. The advantages
are similar to those in the Coulomb gauge case.
By eliminating completely the burden of handling
those unphysical excitations, we have been able to
separate clearly what can be done and what can-
not be done in the framework of nonrel"tivistic
quantum mechanics. We emphasize here that a
relativistic measurement theory has yet to be con-
structed. '4

(~(y}=H„(y,)H„(y,)H„(y,)H„(yo)

xexp[ —,'~(y +y. )],
where

(19)

the y variables which contain the P dependence.
Thus we have to use Eq. (17}to construct excited
states. Because of the Lorentz invariance of the
harmonic-oscillator operator, the excited- state
wave functions also satisfy the differential equa-
tion of Eq. (18).

We now write the excited-state solution as

IV. COVARIANT DIFFERENTIAL EQUATION

AND EXCITED STATES
}(.= ~ (n, + n, + n, —n, + 1) . (20)

In the preceding sections, we studied a possible
physical interpretation of the Gaussian factor
which corresponds to a ground-state harmonic
oscillator. In order to construct excited states,
we use the Lorentz-invariant differential equation
which is needed in generating a gauge-invariant
electromagnetic interaction of the harmonic-oscil-
lator quarks. "

We rewrite here the ground-state solution

2 x'p
(t(,(x, P) = exp ——x'+2

The above solution is possible because the start-
ing differential equation of Eq. (17) is separable
and remains separable as we change the value of
the total four-momentum P. The quantum numbers
n, are separation constants. Our Lorentz trans-
formation therefore preserves this separability.
Because of the minus sign in front of n„ the eigen-
values of Eq. (20) are infinitely degenerate. In
order to remove this ambiguity, we set np 0;
the physics of this procedure has been discussed
in Sec. III. Thus

4.(~,P) = 4.(y)

where

N=n, +n, +n, .
(21)

where

yl lu

= exp[- —,'&u(y, '+y, '+y, '+y, ')J, Since the separability is preserved, the np=0
condition is invariant under a Lorentz transforma-
tion. The covariant harmonic oscillator now has
three normal excitation variables, namely, y»
y„and y„and they are precisely the hyperplane

The above linear transformation is a homoge-
neous Lorentz transformation of the original co-
ordinate variables. Thus (C(o(x, P) satisfies the
equation

2

-v, '+, +~'[(y}'-y,']~4,(y) =~4,(y}. (»}

Since the transformation of Eq. (16) is a Lorentz
transformation, we also have

2-v'+ —,+sP((xi' —f'j)q. (xpl =&(.(xP). (18(

Eq. (17) and Eq. (18) represent the same equation.
The form of Eq. (18}has been discussed in the
literature and is used in constructing a gauge-in-
variant electromagnetic interaction.

The Gaussian form of Eq. (16) is not separable
in the x-coordinate variables. It is separable in

variables mentioned in Sec. 1II. They are O(3)—
invariant within the hyperplane and generate co-
variant excited-state wave functions in exactly the
same way as in the nonrelativistic oscillator.

The eigenvalue A. can serve as the mass of the
covariant harmonic oscillator or as its mass
squared. There have been many previous attempts
to express the bound-state mass as an eigenvalue
of a differential equation. '"""In all these at-
tempts, except possibly that of Lipes, "the x vari-
ables are used to excite the harmonic oscillator.
Since the Gaussian factor is separable in the x
variables only in the rest frame, the mass quan-
turn numbers are good only in that frame, and an
attempt to boost will bring in an infinite number of
unphysical wave functions.

It has been twenty years since Yukawa intro-
duced the Gaussian factor corresponding to the
Lorentz contraction. ' The concept of quark did
not exist at that time. It was stated in Yukawa's
paper that the differential equation representing
the coupling of the total momentum to the internal
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oscillation is so complicated that the study of the
interaction of the internal mode with the external
field is very difficult. We have shown in this pa-
per that the differential equation is similar to the
Klein-Gordon equation, and that the interaction
can be manufactured in the usual way.

Radial

quantum

numbers

Bar yons IVIe sons

non-
strange

non-
strange st Q e strangestrange

V. CONCLUDING REMARKS A A

In this paper, we discussed, first, Lorentz
contraction properties of the covarient Gaussian
factor. We then proposed the use of the hyper-
plane technique to study possible relativistic in-
gredients in quantum mechanics. Finally, we in-
troduced the normal-coordinate method in solving
the covariant harmonic-oscillator equation, and
showed that this method is technically equivalent
to the hyperplane method.

The normal-coordinate method is the most pow-
erful weapon in attacking harmonic-oscillator
problems. It is a convenient way of describing
covariantly the orbital and radial quantum num-
bers. Therefore we have studied in this paper a
possible theoretical tool which can link the basic
concepts of quantum mechanics to quantities that
can be measured experimentally.

The most widely available numbers that can be
both calculated and measured are decay rates. '
Since the decay rate calculations are not sensitive
to the exact shape of the wave function, the decay
rate alone does not force us to accept the harmonic-
oscillator model.

The form factor study such as the one discussed
in this paper strengthens our assertion on the
harmonic oscillator and enables us to relate the
observed curve to Lorentz contractions. "

The most important characteristic of the har-
monic oscillator is, of course, the linearity of
its eigenvalues. In order to study the linearity in
the observed mass spectra, we need at least three
radial modes. For nonstrange baryons, we barely
have these three levels, and the present authors
studied this linearity. '

n=l A A

FIG. 2. Summary of the present status of the multiplet
scheme in the symmetric quark model. A means "ex-
cellent", B means "good", etc.
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Previously derived Galilei-group expansions for the four-particle nonrelativistic scattering amplitude are

applied to potential scattering and the expansion coefficients (or Galilei amplitudes) are related in the

first Born approximation to the potential. For the spherical partial-wave expansion the coefficients

require a knowledge of the Clebsch-Gordan coefficients of E(3), and for the cylindrical eikonal

expansion they are simply related to the usual eikonal function. A model amplitude containing

Breit-Wigner resonances and other k-plane singularities, having correct threshold and reasonable

asymptotic behavior, is analyzed in detail. It is shown that poles of partial-wave amplitudes a, (k) in

the k plane correspond to exponential-type asymptotics in the Galilei amplitudes. Specific models, in

particular the Bargmann and separable potentials, are examined and their Galilei amplitudes calculated.

A Schwinger-type variational principle is given for the Galilei amplitudes.

I. INTRODVCTION

In a previous article, ' hereafter quoted as I, we
have presented two-variable expansions of nonrel-
ativistic scattering amplitudes. The expansions
are written in terms of basis functions of the ho-
mogeneous Galilei groups, isomorphic to the
three-dimensional Euclidean group E(3), and they
are the nonrelativistic limits (obtained when the
velocity of light c-~) of Lorentz-group two-vari-

able expansions of relativistic amplitudes, consid-
ered previously. ' ' The essential property of both
the relativistic and nonrelativistic expansions is
that for reactions of the type 1+2- 3+4 (and also
1-2+3+4) they completely display the dependence
on both kinematic variables (e.g. , energy and scat-
tering angle). These variables are contained only
in known special functions, provided by the repre-
sentation theory of the Lorentz group, or the Gali-
lei group, and thus reflect some of the kinematic


