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We discuss branch points in the complex angular momentum plane formed by two Regge poles on

trajectories with square-root branch points at t = 0. We find several new cuts which collide with the

expected Mandelstam cuts at t = 0. In the bootstrap of the Porneranchon pole, the collection of cuts has

the same effect as in the case of linear trajectories: The Pomeranchon can have n(0) = 1 only if certain

couplings vanish at t = 0.

I. INTRODUCTION

The structure of partial-wave scattering ampli-
tudes extended into the complex angular momen-
tum plane (j plane) has been of interest for over
a decade. In simple models it is known that the
amplitude has Regge poles of the form P(t)
x t j—n(t)] ' with the trajectory function n(t) ana-
lytic in the t plane except for branch points at
positive t values corresponding to physical thresh-
olds in that channel. ' There may be singularities
in the trajectories (branch points) at values of
E ( 0 if several trajectories coincide. Finally,
there are known to be branch points in the ampli-
tude, f(i, j ), that arise when two or more Regge
poles are exchanged by the scattering particles,
or, stated otherwise, when certain multiparticle
processes are taken into account.

In this paper we discuss what happens to the
structure of the scattering amplitude when two
Regge poles combine to lead to branch points in
the j plane, and the Regge-pole trajectories them-
selves have branch points in the t plane at t =0.
In particular, we shall study trajectories of the
form n, (t) = n+i Ad i+yi, called Schwa-rz tra. —

jectories. ' There are several motivations for
looking into this question. Such trajectories with
e = 1 appear in the Regge-eikonal model, ' in mod-
els of the violation of the Pomeranchuk theorem, "
in certain bootstrap models of the Pomeranchon„'

and in models of diffraction scattering in which
the diffraction pattern shrinks faster than (1ns) '.'
In connection with the bootstrap of the Pomeran-
chon pole, the Pomeranchon cannot have n(0) =1
if n'( )Ois finite and certain Regge couplings are
nonzero, and it is interesting to see if these argu-
ments are modified by the Pomeranchon's asso-
ciation with Schwarz trajectories. In addition,
one of the authors has given a discussion of the
branch points based on continuing t -channel uni-
tarity relations from t) 16m, ' to I (0.' This ap-
proach leads to predictions about the nature of
the two-Reggeon cuts located at o.„(t)=2n, (—,'i) —l.
However, we shall see that there are other, un-
expected cuts in the angular momentum plane
which are discovered only when one formulates
the dynamics in the scattering region from the
start. For this reason, the present paper con-
stitutes a correction to Ref. 7.

The first step in our study is to set up the dy-
namics, and for the reasons stated above we want
the formulation to be at t ( 0, with no continuation
required. To this end, we have studied the struc-
ture of the partial-wave amplitude in both the
multiperipheral model and Gribov's Reggeon cal-
culus. We present our results in Appendixes A
and B. These quite different formulations agree
that the analytic structure is given by the two-
Reggeon-cut integral

where the triangle function A(a, b, c) = a + b + c
—2ab —2ac —2bc and i, is some (irrelevant) con-
stant. It is not difficult to see, incidentally„ that
if the e's are monotonically increasing, the max-

imum value of A(t„ t, ) = n,.(t, ) + o.', (i, ) —1 (which
determines the rightmost singularity in the j
plane) occurs on the boundary of the integration
region, A(t, i,„ i, ) =0. This in turn is v'- i, +v'- t,
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=v-t. If the two trajectories are the same, by
symmetry the extreme value of A is 2o. (-,'t ) —1,
the familiar Mandelstam, Amati-Stanghellini-
Fubini (ASF) branch point. '

It is crucial that the four cut terms be added
with equal weights, as in Eq. (1.1). In particular,
the +, — terms are important, in contrast with
common belief and the statement made in Ref. 7.
We present two arguments. First, we use the
expansion'

( t)n 0 S2n
du u" „„g(t„t, )

n=p nt t1- t2-u

(1.2)

Applying this at t =0, we find that f„are sing. ular
at j = 2 n —1, with behaviors

f (0, j)-f (0, j)
1 , (j+1—2o) ln(j+1 —2n),

1———ln( j + 1 —2 o.) .
2y

Thus the +, —terms are singular and dominant at
t =0 and j =2@—1.

The second argument involves analyticity in the
energy variable. For Re j & 2n —1, the denomi-
nators in the f, , may be expressed

[j+1—o. , (t,) —o. . (t, )]
-'

grable at u =0 because both trajectories are pres-
ent, and f(t, j ) is analytic at t =0 for Re j & 2o. —1.
On the other hand, the partial sum f„+f has
the last factor in Eq. (1.5) replaced by

gn 2 gn
ego'+(u) + eye (u)

~u f)u

which behaves like u' '" at u=0. The second and
higher derivatives of f„,+f with respect to t
do not exist at t =0, and the partial sum has a
fixed branch point at t = 0 for large positive j .
From Eq. (1.1) it is evident that f„+f is real
for t& 0 and large positive j, so the partial sum
must be complex for't&0 and large positive j.
This is in disagreement with independently es-
tablished analyticity properties. Only when one
adds the four f, , 's with the same weight is the il-
legal branch point at t =0 removed.

II. GENERAL SINGULARITY ANALYSIS

The integral f (t, j ) has many singularities in
the j plane in addition to the Mandelstam cuts,
and we begin the study of f by listing all possible
singularities. We transform to the variables u, P:

t, = u+ ~ t + (u t )'i cos Q,

t, =u+-,' t —(ut )'"cosy.
When the four terms are added, the integral over
Q can be evaluated:

f =f +f.

(1.4)

f (t j ) =Q dy ve(i+~)( t)n

„,(22!)',

dy exp( —y[ j+1 —n,. (t, ) —o., (t, )]j .
0

Inserting this and Eq. (1.2) into Eq. (1.1) we find
a = P

' —4A'(u+,'- t ),
b =P' —4A u,

C= p2 —+2L

P=j+I —2o. —2yu —2yt .1

(2.2)

tp

Bn 2,(.) (.)
-c) u

(1.5)

f, and f2 have six linear factors under the square
roots; they are hyperelliptic integrals. These
factors can be exhibited:

The integrand of the u integral in Eq. (1.5) is inte- a=4y'(u-u. „)(u-u. ), etc. ,

u „= 2 (y(j + I —2 n —2 yt ) + A + A [2 y(j + 1 —2 o. —2 y t ) + y t + A' ]
'~ ],

u~, = 2[y(j+ I —2o.' —2 yt )+A +A [2 y(j + 1 —2n —2 yt )+A ]'~ (2.3)

u„=—[j + 1 —2 o.'——,
'

y t +i A(—t )"'] .2y
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n, (t) =2n —1+ ', yt . - (2 4)

n, (t ) coincides with the Mandelstam cut in the
linear limit A=0.

(3) u„=0. We again obtain the Mandelstam
cuts n„(t).

(b) Pinch singularities. These can occur when

u, , =u, , u~„=u, , or u, + =u, . The location
of these singularities can be read off from Eq.
(2.3).

(1) u, , =u, . The singularity is a fixed cut
at jo~

A
jo =2+ —1 ——.

2y

(2) u, , =u, . The singularity occurs at

(2.5)

The possible singularities of f are the following:
(a) End-Point sirsgulaxi ties. These occur when

one of u„, u„, and u„ is at u=0. (End-point
singularities at u= —to are spurious, and will be
ignored. ) Such singularities are easily located by
asking when the constant terms in the quadratic
forms a, b, and c vanish.

(1) u„=0. These singularities satisfy (j+1
—2n ——', yt)' —A't=0. These are the Mandelstam
cuts, which we denote n„(t ).

(2) u„=0. The singularity satisfies (j+1
—2n ——,'yt)'=0. We designate this as n, (t):

ducing j from large positive values along the real
j axis. As we do this, we must watch whether
the singularities of the integrands of f, and f2 ap-
proach the negative u axis and deform the inte-
gration contour. Clearly the branch points u„,
which are complex, cannot approach or deform
the integration contour. The motions of other
singularities of the integrands are illustrated in
Fig. 1. The only singularity that reaches u=0 is
u, at j=n, (t). However, because this curve is
tangent to u=0, the integration contours are only
deformed for j& n, (t ), and neither f, nor f, is
singular at n, (t). The deformations of the inte-
gration contours in Eq. (2.2) are illustrated in
Fig. 2. For either continuation around j = n, (t),
f, and f, acquire the same anomalous extension:

0 —
~

—1/2 u ~ ~
—1/2

f~ =2 du +4 du—&0 aC 0 ac
(3.1)

c 1/2 1/2c
f2 =2 du — +4 du

ab 0 ab

The anomalous branch point collides with u, ,
at j = n, (t }, producing a singularity of f. The
discontinuities across this cut in the j plane are

~ 1t,f,(t, j ) =——.[f,(t, j+ie) f,(t, j —ie)]—

n, (t) =2n —1-—+ —,
' yt .

2y (2.6)

Q g+ g ]/2
du

ac (3.2)

This, too, coincides with the Mandelstam cut in
the linear limit.

(3) u, , =u, . The singularity is at t=0. Fur-
ther pinches occur when two of the forms a, o,
and c vanish at the same value of u. The loca-
tions of singularities generated in this way can
be read off from Eqs. (2.2).

(4) a = b =0. Then t =0.
(5) a = c =0. Then u =0 and j = n„(t ).
(6) b=c=0. Then t=4p. , and the singularities

satisfy (j+1—2n —yt)' —A't=0. These singular-
ities coincide with the input pole trajectories
j= n, (t).

In summary, possible singularities occur at
j=n„(t), n, (t), n, (t), n, (t), j„and at t=0.
There are no non-Landau singularities because
u„, u„, and u„are finite for finite j and t.

~ Q+ 1/2cf, )), j)= ——.J d . —,j n, ())

For j & n, (t), u„and u, are complex conjugates.
The integrals in Eq. (3.2) run along the line

Re u= —(j+1—2y —
2 y t )+

1 1 A
2y 2y'

At Im u=0, the integrands are real and positive.
The discontinuities in Eq. (3.2) are themselves
hyperelliptic integrals, but for j close enough to
n, (t ) only the variation of the factor b is signifi-
cant. In this limit f, dominates, and f has a log-

U U U Ub- a- a+ b+

III. PHYSICAL-SHEET SINGULARITIES FOR t ~~0

We next determine which of the singularities
obtained in Sec. II are on the physical sheet of f
for t& 0, a,nd obta, in the threshold behavior of f
at singularities. It is clear from Eq. (1.1) that
for j large and real, f is real. We can examine
the points n„e„and jo, which are real, by re-

Po

CX
I

FIG. 1. Motion of singularities of integrands of f& and
f& as j is varied. Only the real branches are sho~.
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Re. ——-- Rej
Oc»

Imu

~ b-U

ReU I
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FIG. 2. Integration contours of f& and f& when j is
continued below 0.'& as shown,

arithmic singularity at n, (t). Near j=a, (t)

f(t,j)- --, In[j —n, (f)].
y -r't (3.3)

Imu
Ub- u b+
U C»««Ug»

UC)

Reu

Imj
o'c+

Rej

FIG. 3. Distribution of the singularities of integrands
of f& and f2 when j is continued under n,+.

As t -0, the neighborhood around j = n, (t) in
which Eq. (3.3) is adequate shrinks to zero.

The possible singularities n, „(t) and n, (t) can
be examined by setting j =i Av'- t + (, where $ is
real, and then reducing $ from large positive val-
ues. During this continuation, none of the singu-
larities of the integrands of f, and f, distort the
integration contours, u~0, until j reaches n„.
This can be seen by noting that, for u real and t
negative,

Ima=Imb=lmc=lmP'

=2A(- t)' ($+1 —2n —~zyt —2yu).
(3.4)

Since n„corresponds to $ =2n —1+-,'yt, these
imaginary parts are all positive for j to the right
of n„and u ~0. No singularity of the integrand
migrates across the integration contour.

When j passes under a„, the singularities of
the integrands of f, and f, are distributed as shown
in Fig. 3. For a continuation above n„, the inte-
gration contour passes under u, and u, . Since
u, has a finite negative imaginary part, the u
contour must be slightly distorted when one passes
above n„. The discontinuities of f, and f, are
given by expressions similar to Eq. (3.2), except
thelimitsareu, andu, . For j near n„, f,
dominates, and f has a logarithmic singularity at
j =Q

When we continue down to j = n„re = I+yt,
there is a possible singularity due to a pinch be-
tween u, and u, . Since u, approaches u, from
above, this pinch develops only when one passes

FIG. 4. Singularities of f for t &0. e+ is not a
singular point when approached along path P. This is
the approach relevant for the bootstrap of the Pomeran-
chon pole.

unde~ e„. As j passes below o.„down to n„
Eq. (3.4) shows that the imaginary parts of a, b,
and c are nonzero except at u, , which slides
along the negative u axis. Thus no deformation
of the u contour occurs, and the discontinuities of
f, and f, across branch lines drawn up to n, are
given by expressions similar to Eq. (3.2) with
limits u, and u, . Both f, and f, have thebehavior
near a,

f»-const»const'[j —n, (t)] ln[j —n, (t)] .
(3.5)

The function f is a real analytic function of j,
so it is singular at n, and o. , with discontinu-
ities at these singularities that are minus the
complex conjugates of the discontinuities at a„
and n, . The complete set of branch points of f
for t & 0 is shown in Fig. 4.

There is no problem in continuing Eq. (2.2) to
t & 0, because our discussion in Sec. I assures us
thatf is analytic at t =0 for large positive j. The
analysis we have just given can be repeated for
t &0, and is simplified because all possible sin-
gularities are real.

IV. BOOTSTRAPPING THE POMERANCHON

We have mentioned in the Introduction that when
the Pomeranchon is a pole on a linear trajectory,
and n'(0) is finite, the pole cannot have n(0) =1
unless certain couplings vanish. One way of
stating the matter is that the two-Pomeranchon
cut integral diverges for j = n(t) as i 0. How-
ever, the coefficient of the divergent term is pro-
portional to [n'(0)) ', so this unpleasant situa-
tion might be avoided if the Pomeranchon were a
pair of poles on Schwarz trajectories. Similarly,
in connection with single-particle inclusive cross
sections the question of the vanishing of the tri-
ple-Pomeranchon vertex involves the assumption
that a'(0) is finite. " Here we shall show that
choosing the Pomeranchon trajectory to be of the
Schwarz type does not help, and one must have
certain couplings vanish in appropriate limits,
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f'(t, o, (t)) --—In(t+ie).1
(4.1)

This result is half what one would obtain by first
setting A =0 (the limit of a linear trajectory).
Thus, the bootstrapping of Schwarz trajectories
encounters the same difficulty as the bootstrapping
of a linear trajectory.

as discussed in Ref. 7, in order to achieve n(0) = l.
Likewise, the triple-Pomeranchon coupling can-
not be made finite by choosing a Pomeranchon
trajectory of the Schwarz type.

When we set j = a, (t) in f(t, j), and t &0, we
must approach e, from above in Fig. 4. As stated
in Sec. III, when a, is approached in this manner,
u, and u, do not form a pinch, and f is regular.
In Eq. (2.2) the factors (u —u~ ) and (u —u, ) can-
cel between numerator and denominator in f, and

f, . It is now easy to see that as t -0, f, diverges
logarithmically at u =0 due to the motion of u,
and u„up to u=0. Because only these two factors
are involved, it is straightforward to calculate the
leading behavior as t -0:

multiperipheral model. The equation for the ab-
sorptive part of the nonforward elastic amplitude,
A, is

A(P, K, Q) = V(P, K, Q)

d P' V(P, P', @S(P',Q)A(P', K, Q),
(2 v)'

(Al)

which has the kinematic structure shown in Fig. 5.
In terms of scalar variables we have s = (P -K)',
t = Q', and on the mass shell P Q = K Q =0,
P'+ —,'Q' =K'+-,'Q' =M' for equal-mass external
particles. Here V(P, K, Q) is the absorptive part
of the basic blobs in the multiperipheral chain;

&(P', Q) = [~' —(p' —2Q)'] '[m' —(P'+ 2Q)']

with m the mass along the chain; our normaliza-
tion is such that on shell, for Q=0 (forward scat-
tering)

A(s, f =0) =A"'(s, M', M')o,.~(s).
APPENDIX A

Our first demonstration of the importance of
the function f(t, j ) of Eq. (1.1) is based on the

If the basic blobs themselves consist of two-par-
ticle scattering amplitudes, then on the mass shell
V is given by elastic unitarity:

1 6( —n.(t, f„ t2)+ t t, t2/k )
167)~/&&~( & &) & ] 2[ g(t $ $ )+) t f /k&]&/2 ( & 1) (s~ 2)~ (A2)

with 4sk' =A(s, m', m'), and M(s, t) are the invariant amplitudes associated with the blobs. (See Fig. 6.)
In principle, of course, even within the framework of this simple model, it is necessary to know the off-
shell behavior of the scattering amplitudes.

Leaving aside for a moment the question of what V(P, K, Q) is, we may simplify the integral equation for
A(P, K, Q) by making a "partial wave" diagonalization. We introduce a set of scalar variables

z =P.Q/(ut)' ',
& =K Q/(vf)'"

y = P.K/(P'K')'~', -
p, p g /(p 2p g 2

)
1/2 (A3)

j" = u' z' =P' Q/(u'f) ", y~ — Pl K/(p/2K2)1/2

where for any vector N, N= N Q(N Q)/Q'. -The
y's in turn may be expressed in terms of the sub-
energies s =(P-K)', s, =(P P')', and s'=-(P'-K)'
as

——PQ
2

—-KQ
2

cosh 8(u, v) —zg
[(1-z')(1 g')] ~n

cosh8, (u, u') —zz'
yO [(1 )(1 2)] /2

cosh8'(u', v) —z'g
y [(1 2)(1 g2)] 1/2

(A4)

—+p —+KQ Q
2 2

FIG. 5. Kinematic structure of the multiperipheral
equation. The momentum labels on the external lines
on the right-hand side are the same as on the left.
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A, ( z z;v, ;tt)=, f ds Q, (y)A(s;s, z:, v, t;t), (A6)

FIG. 6. Elastic unitarity for the "potential" V.

where

coshe(u, v) =, , », ,2(uv)

S
coshe()(uy u ) 2(uv)'"

t)'

cosh6'(u', v) = . . .», .
2(u'v)

(A6)

where ds =2[uv(1 —z')(1 —f')]',"dy. Similarly

Vt(, z;v, 6;t)= J, ds Q,. (y)V(s;s, z;v, 6;t),
(A7)

V,. (u, z; u', z '; t )=,ds, Q,. (y, ) V(s„u, z; u', z '; t ) .
L

In these equations L is the lowest mass occurring
in V which would be 4m' in. our present model,
and t)},. is a Legendre function of the second kind.
The inversion formula to recover A(s;. . . ) given
A. ( ~ ~ ) is

For technical reasons we imagine u, v(0, although
ultimately on the mass shell they take on the posi-
tive values u=v =M' —4I, . The appropriate trans-
form is

x-,'[uv(1- z')(1- g')] '" (A8)

Details about the partial-wave analysis are given
in a paper by Abarbanel and Saunders. "

The diagonalized equation is

A,. (u, z; v, g; t ) = V,. (u, z; v, g; t )

0 ' dz
+ , du' , „)„,V,. (u, z; u', z';t)A„. (u', z'; v, g;t)[( 'mu' —,'t)'- u'tz"] -'. —

W 6)o

For our present illustrative purposes, we solve this in the first Fredholm approximation. We find

A,. (u, z; v, $; t ) =
Vy (u, z; v, g; t ) +

6 j (A10)

where
I

16v', (1-z")'" (m'-u'--'t)'-u'tz"
(A11)

1 ' dz V&(uyzy uter t)
D(t, j)=1—

4 du 2»2 ~- '
t '2

16~ -,(1-z ) (m —u- —,t ) —utz

There are two sources of singularities in j: sin-
gularities that occur in the kernel V,. itself and
those associated with the Fredholm denominator
D(t, j). For example, if D(t, j)=0 for some
j = o.(t), this determines the Regge poles. As for
V, , note that it is given as an integral of the in-
put V(s, . . . ) over an infinite range of s weighted
with Q, Any finite part of the integration con-
tributes an analytic function of j (except for triv-
ia.l and irrelevant poles of t6),. at negative integers).
The dynamical singularities arise from the high-
energy tail of V(s, . . . ) for which we shall use our
model given by elastic unitarity. In addition zwe

M(s, t) =m(t)s (A12)

For high-energy s we now have

'„, g(- (Att„t, })
16 ' [ (6(t t t )]'

x m(t, )m*(t, ) s ""t)+ ~('» .
(A13)

shall assume that off-shell effects may be ne-
glected and that the amplitudes M (s, t ) are ade-
quately approximated by a single Regge pole:
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The singularities of V,. are correctly given by

v )u, z;, 0; t ) =J ds )'(s, &)Q, (y), (A14)

S

2[ uv(1 —z')(1- g')] "'
(A15)

Q (S)- 3 [~~(1-z')(1-(')]""s' 'm"'I'(j+1)
1"(j+ —,')

where s* is some large energy. When s is large Our model for V,. then turns out to be

V, (u, z;~, g;I)=, . „„,[zn(1 —z')(1 —g')]&'"'"

e(- ~(t I I )) m(I )m*(I )s+-i-""i'""2'
y ' [—b, (t, I„I,)]'" j+1—n(t, ) —n(t, )

(A16)

We see here the emergence of the integral f(t, j ) (for the case where the trajectories are the same) in
the potential V, , aside from the appearance of the factor

m(t )m~(t )s* ' " "~ '
1 2

which serves to cut off the integral for large —t„—t„ in our definition of f (t, j ) we simulated this by a
square cutoff at —t, since only the region near t„ t, =0 is important in the singularity structure of the in-
tegral. Finally, we note that the Fredholm denominator D(t,j ) becomes

I (I,j ) ~ ' e(- r (I, I„t, )) &
g- j-1+n(g&) + n(g&]

D(&,j )=1 — ' dI, d 2[' (I I I )II/2~(I1)~ (4)
1 (I ) (I )

(A17)

where

256z'"I'(j+-,'),(m'- u ——,
' I)'- utz' ' (A18)

The function I (t, j ) has singularities for j&0, but
these are spurious and a result of our omission of
off-shell damping effects. If these are properly
taken into account, I (I, j ) is seen to be real and
positive for j& —I and all t &0. The coefficient
of I (I,j ) in Eq. (A17) is our fundamental integral
f (t,j ), aside from the modification of the cutoff
mentioned above.

A much more detailed treatment of both the low-
and high-energy parts of the potential, together
with a discussion of off-shell effects and a more
accurate solution of the integral equation, is pre-
sented by Abarbanel et al."and by Goldberger. '

nonrelativistic energy denominator

1 cos[—,'w(j, +j,)]
(j —1)—(j, 1) —(j,——1) sin(-,'mj, ) sin(,'-wj, )

In addition there is a propagator for each Reggeon,
[j,. —o),. (-j, ')] ', where q, are two-dimensional
vectors and the e,. the Regge trajectories. The
product of energy denominators and propagators
is then acted on by

APPENDIX B

A second demonstration of the relevance of
f (t,j ) can be obtained by studying the I -channel
partial-wave amplitude for Reggeon-Reggeon scat-
tering. We deal with the amplitude g(t„t„'t,j;I,', t2),
where the t, , t,'. are Reggeon masses squared, and
t and j are the t -channel energy and angular mo-
mentum, respectively. The structure of the am-
plitude is shown in Fig. 7. We take g and the
Reggeons appearing in intermediate states to have
even signature. According to the Reggeon cal-
culus, " each intermediate state in Fig. 7 has a

t2

FIG. 7. Structure of the Heggeon-Heggeon scattering
amplitude. The blocks are the sum of all two-Reggeon
irreducible Gribov diagrams.
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d'q, d'q, dj, dj, 2

(B2)

where the integrals over j, go counterclockwise
around the propagators. The over-all momentum
is t = —q'. Note the elementary kinematical re-
lation

d q, d q~6 q —q, —q2 = dt, dt2 d q, d q26 q —qy q2 5 ql +tl 5 q +t2

e(- s, (t, t„ t, ))„'[-A(t, t„ t,)]"' '

Using this, each two-Reggeon link in Fig. 7 contributes a factor

'; tI(-A(t, t„ t, )) cos(-,'w [~(t,)+ a(t, )])„'„'[-A(t, t„ t„)]'"sin[-,'~n(t, )]sin[-,'~~(t, )] j+ I n(t, ) —n(t, )

The discontinuity of g across the two-Reggeon cut is now easily found to be

(B3)

—.[ g(t„ t2; t, j + i e; t,', t~) g(t„ t2; t, j——is; t,', t2)]
22

' [—A(t, t„ t, )] '" sin[2m o.(t,)] sin[2mn(t, )]
~ ~

xg(t„ t, ; t,j;t„ t, )g(t„ t„t,j—ic; t,', t,') . (B5)

At the threshold of the two-Reggeon cut, the 5 function requires t, = 4t. If we set all t, , t, , t,' = 4t and ig-
nore further dependence on the Reggeon masses, we can remove the g's from the integral and we have a
simple mapping problem of the form

(B6)

The solution is ', g(- A(t, t„ t, )) 1
' = '[ —t (« t )] '" [ -'. (t,)] - [—.' . (t )] [j I — (t,) — (t,)] '

where R(t,j ) does not share the branch points of
the integral. Finally, the contribution of the two-
Reggeon cut to the physical partial-wave ampli-
tude is proportional to g(t, j),"with the propor-
tionality factor analytic at the branch points of

g(t, j).
There are two features to be noted in Eq. (B7).

The cut is multiplied by sin(-, m j ), so it disappears
at even-signature integers. This behavior is of

course required, but it does not occur in the
multiperipheral model. The second point is that
the sign of the cut term is opposite to that found

in the multiperipheral model. In any case, both

models lead to what is essentially the cut integral
introduced in Eq. (l.l). [The singularities as-
sociated with the signature factors in Eq. (B7)
are spurious. ]
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We present arguments based on positivity conditions and light-cone analysis for the structure functions 8',
and 8', (which occur in neutrino scattering) to conclude that if they scale as v 8;,(v, q ') —F, ,($), then

p = 2. We also get the following bound on the scale dimension l „of the chiral-symmetry-breaking
Hamiltonian: —(-') & l„)—4. Further, if we assume that fractional dimensions are not admissible, we

get l„=- —3.

I. INTRODUCTION

The scaling observed in the SI.AC electron scat-
tering experiments has generated considerable
interest in light-cone analysis of structure func-
tions for inelastic electron and neutrino scattering
on nucleons. This is due to the fact that in the
scaling limit, one is probing the structure of the
current commutator near the light cone. The
structure functions are related to the Fourier
transform of the current commutator. The scaling
behavior of the structure functions W„W.„and
W3 which are connected with conserved currents
is now more or less established both theoretically
and experimentally. It is natural to assume that
the other two structure functions W4 and W, which
occur in neutrino scattering due to nonconservation
of the axial-vector current also scale. Their
scaling behavior has important bearing on the na-
ture of the chiral symmetry breaking. In particu-
lar if W, and W, scale (v- ~, $ = q'/2mv fixed) as

v~W~, (v, q ') -F~,($),
it is important to know P. This is because P can
be related to the scale dimension l„of the chiral-
symmetry-breaking Hamiltonian. ' ' Moreover,
the value of p is important in deriving sum rules"

which W4 and W, satisfy in the scaling limit.
The purpose of this paper is to present argu-

ments based on light-cone analysis and positivity
conditions' for the structure functions W4, which
lead to the results (a) l„~ ——', (this result implies
l„=—3 if only integers are allowed), (b) P =2, (c)
if D(v, q') -=q'[W, —(2mv/q')W, .] scales as v '~y(&),
then p, =O.

For the derivation of result (a), we do not re-
quire positivity conditions but we need two assump-
tions: (1) the equal-time commutator [&„J„(z,0),
a„J,(0)j is nonzero and (2) the scalar operator u&

which occurs in the light-cone expansion of
D(P. z, z') has scale dimension l ~ —1.

For the derivation of results (b) and (c), we
make use of positivity conditions and three more
assumptions: (3) E~($) =0, where F~(() is the
scaling part of W~ (defined below), (4) the non-
scaling part of W~ falls like 1/v and not like 1/v',
with 0& e & 1; (5) W, has the same scaling behavior
as W, . The assumption (3) is the Callan and Gross'
sum rule and is generally believed to be true.

The plan of this paper is as follows. In Sec. II,
we discuss the consequences of positivity condi-
tions for W4, . In Sec. III„ light-cone analysis for
the function D is done. In Sec. IV we derive our
main results.


