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A new set of renormalization-group equations is presented. These equations are based on a
renormalization procedure in which counterterms are calculated for zero unrenormalized mass. Unlike

the Gell-Mann-Low and Callan-Symanzik equations, they can be solved for arbitrary momenta. The
solutions involve a momentum-dependent eff'ective mass as well as a momentum-dependent effective

coupling constant. By studying these solutions at large momenta, it can be shown that the nonleading

terms discarded by previous authors do, in fact, remain negligible when the perturbation series is

summed to all orders if, and only if, the effective mass vanishes at large momentum, which will be the

case if a certain anomalous dimension is less than unity, as it is in asymptotically free theories. In this

case, the new renormalization-group equations can be used at large momentum to derive not only the

leading term, but the first three terms in an asymptotic expansion of any Green's function. These
results are also applied to Wilson coefficient functions, and an important cancellation of anomalous

dimensions is noted.

I. INTRODUCTION

The renormalization-group equations of Gell-
Mann and Low' and the closely related equations
of Callan and Symanzik have been widely used in
studies of asymptotic behavior at large momenta. '
Recently they have been brought into even greater
prominence through the discovery by Gross and
Wilczek' and Politzer' that non-Abelian gauge
theories can exhibit free-field asymptotic behav-
ior. However, useful as these equations are,
there has always been some doubt as to the nature
and the truth of the assumptions that need to be
made in deriving their large-momentum limit.
This is not a mere matter of mathematical rigor,
but a serious problem of whether or not terms
which are suppressed by inverse powers of mo-
mentum in each order of perturbation theory re-
main asymptotically negligible when the perturba-
tion series is summed. In addition, and even
more important from a practical point of view, it
is difficult to use the Gell-Mann- Low or Callan-
Symanzik equations to obtain asymptotically non-
leading terms, which play an important role in
calculations of weak and electromagnetic correc-
tions to hadronic symmetries. '

This paper will present a set of "new renormal-
ization-group equations, "which share the good
features of the equations of Callan and Symanzik
and Gell-Mann and Low, and have the following
additional advantages:

(i) The new renormalization-group equations
can be solved before passing to the high-energy
limit. This is in contrast to the Gell-Mann-Low
equations and the Callan-Symanzik equations,
where terms which vanish in perturbation theory

like powers of the ratio of mass to momentum
must be discarded before a useful solution can be
obtained.

(ii) The solutions of the new renormalization
group equations for general nonasymptotic mo-
menta are similar to the high-momentum solutions
of the Gell-Mann —Low or Callan-Symanzik equa-
tions, except that in addition to a momentum-de-
pendent "effective coupling constant", they also
involve a momentum-dependent "effective mass".
Thus, the question of the validity of the high-mo-
mentum solutions of the G ll-Mann-Low or Callan-
Symanzik equations hinges on whether or not the
effective mass vanishes at large momentum. We
shall see that it does vanish if a certain anomalous
dimension is less than unity; in particular, this is
the case in theories with free-field asymptotic
behavior.

(iii) By expanding in powers of the effective
mass, me can easily use the new renormalization-
group equations to derive not only an asymptotic
limit but the first three terms in an asymptotic
expansion for general Green's functions at large
mome nta.

The derivation of the new renormalization group
equations depends on the use of a "zero mass" re-
normalization procedure, which resembles the
Qell-Mann-Low procedure in that renormalized
charges and fields are defined in terms of Green's
functions at arbitrary nonzero momenta, but dif-
fers from it in that these Green's functions are
evaluated at zero unrenormalized mass. Also,
the ratio of the renormalized to the unrenormal-
ized mass is defined in terms of the value of a
vertex function at a partly arbitrary renormal-
ization point, again evaluated at zero unrenormal-
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ized mass. In a sense, the zero-mass renormal-
ization procedure is the opposite of the well-
known Bogoliubov -Parasiuk -Hepp procedure, '
which is based on calculations at zero momenta
and nonzero mass. It is much closer in spirit to
the "intermediate renormalization technique" used
by Lee and Gervais' in their treatment of the
g model; in particular, the zero-mass renormal-
ization procedure respects any symmetries which
are broken in the Lagrangian only by mass terms.

It is essential to our derivations that this zero-
mass renormalization procedure should actually
work, that is, that when an unrenormalized
Green's function is expressed in terms of re-
normalized coupling constants and masses defined
through calculations at zero mass, and is multi-
plied with appropriate field renormalization con-
st3nts defined at zero mass, then all cutoff depen-
dence is removed. This is certainly not true for
theories involving scalar fields; in this case there
are quadratic divergences in the scalar self-
energies which would not be removed by this re-
normalization procedure. However, the zero-
mass procedure does seem to work in any theory
which is "strictly renormalizable" in the limit of
zero unrenormalized mass; that is, in theories
which in the limit of zero mass do not have diver-
gences which require mass counterterms. Thus,
although I will not attempt a rigorous proof here,
the considerations of this paper are intended to
apply to quantum electrodynamics, and also to
any renormalizable gauge theory involving only
spin-1 gauge fields and spin--,' fermion fields. "
Additional work would be needed before this dis-
cussion could be extended to theories involving
spin-0 fields.

The zero-mass renormalization procedure is
described more fully in Sec. II. Then, in Sec. III
the new renormalization-group equations are de-
rived and solved, using methods that share some
elements of both the Callan-Symanzik and Gell-
Mann-Low approach. The solutions are used in
Sec. IV to derive an asymptotic expansion for the
Green's functions at large momenta. These re-
sults are compared in Sec. V with the asymptotic
formulas provided by the Gcll-Mann-Low and
Callan-Symanzik methods. Finally, the new for-
malism is applied to the coefficient functions of
the Wilson operator-product expansion" in Sec. VI.
Attention is drawn to an important cancellation of
anomalous dimensions which occurs when the
operator appearing in the Wilson expansion is the
same as the mass operator in the Lagrangian.
(This is the cancellation mentioned in Ref. 7.)
Section VII deals with the constraints imposed by
the new renormalization group equations on the
perturbation series for general amplitudes.

II. RENORMALIZATION AT ZERO MASS

We shall consider a renormalizable field theory
characterized by a single dimensionless unre-
normalized coupling constant g and a single unre-
normalized mass ~. This would include quantum
electrodynamics or any quark-gluon model based
on a nonchiral non-Abelian simple gauge group
with a single irreducible fermion multiplet; in
these examples g would be the charge or the gauge
coupling constant and m would be the fermion
mass. The restriction to theories with a single
coupling constant and mass is made here purely
for the sake of simplicity; our discussion would

apply equally well to theories with several ~'s
or g's, such as gauge theories with reducible
fermion multiplets or gauge theories based on
nonsimple gauge groups. However, as mentioned
in Sec. I, major changes would be needed to deal
with scalar fields.

The analysis presented here depends on the
introduction of a renormalization procedure which,
unlike more familiar procedures, is based on cal-
culations carried out in the limit ~-0. Of course,
in this limit the unrenormalized Green's functions
would contain infrared divergences if evaluated at
zero four-momenta. Thus, in order to avoid these
infrared divergences, it will be necessary to base
our renormalization procedure on prescriptions
for the value of certain selected Green's functions
for ~=0 at certain selected nonzero four-momen-
ta. We shall introduce a single arbitrary scale
parameter p, with the dimensions of mass, which
will characterize the values of 3ll the momenta at
these renormalization points.

In particular, the renormalized coupling con-
stantg~ may be defined in terms of the value of
some Green's function at momenta characterized
by the scale p, in the limit ~ = 0. Then g„will be
a function of the unrenormalized coupling g, of p,
and of the ultraviolet cutoff A. :

For instance, in quantum electrodynamics the re-
normalized charge may be defined as

ee =e[p,'K)(p', e, O, A)j "',
where $(q', e, m, A) is the coefficient of g„„ in the
unrenormalized photon propagator at four -momen-
tum q. In non-Abelian gauge theories g~ may be
defined" as the value of the quark-quark-gluon or
gluon-gluon-gluon vertex (including square roots
of propagators on external lines) for m= 0, evalu-
ated at some renormalization point characterized
by the parameter p, such as the point P,' =P,'

2 ~2

It is also necessary to carry out a renormaliza-
tion of fields. Again, this may be based on the
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values of Green's functions for ~=0 at momenta
characterized by the parameter p. For instance,
in quantum electrodynamics we may define field
renormalization constants

Z, (e, A/p) = p'S, ( p', e, 0, A),

Z, (e, A/g) = p,'I)( p, ', e, 0, A )

= e„'/e'

where S,(P',g, m, A) is the coefficient of iP"y„ in
the unrenormalized electron propagator at four-
momentum P. Similar prescriptions apply in non-
Abelian gauge theories. '

Finally, since we are really interested here in
the case of nonvanishing mass, we must provide
for mass renormalization. Let us suppose that ~
appears in the Lagrangian multiplying an operator
6. (In quantum electrodynamics, 8 is just $~g).

The infinities associated with the mass dependence
of the unrenormalized Green's functions then take
the same form as the infinities associated with
insertion of e vertices in the graphs for the
Green's functions in the theory with m= 0. We

can define a renormalized 6 operator:

~~ and g~ are parameters which can be used to
characterize a physical theory as well as any
other, and as we shall see, all physical quantities
can be expressed as finite functions of wz and gz.

The fundamental result on which our work in
this paper is based is that all unrenormalized
Green's functions become cutoff-independent if
we express ~ and g in terms of ~& and g„and
multiply the amplitude by a suitable Z factor, with

m~, g~ and the Z factors defined as above. That
is, given any unrenormalized Green's function
I'(P, g, m, A), we may form a A-independent re-
normalized amplitude

I s (&,gs, m~, ~) = Zr(g, A4) I'(P, g, m, A),
(2.4)

where Z„depends on the number and types of the
external lines" and P labels all the components of
all their various four -momenta. (For instance,
in quantum electrodynamics F might be an ampu-
tated Green" s function with n, external electron
or positron lines and nz external photon lines,
and then Z~ would have to be taken as

e, -=Z, (g, A/i )e, (2.2) Z Z &q /2Z ft y/2
I 2 3

where Ze is the infinite factor needed to remove
infinities associated with insertion of 6 vertices
in Green's functions with ~=0. For instance, in
quantum electrodynamics the only subgraph which
remains superficially divergent after insertion of
a PP vertex is the electron self-energy, and we

may define

Z~~
'=—I", , ~~(p.', e, O, A)Z, ,

(Py)s = (jy)Zy~,

whose matrix elements are cutoff-dependent, at
least in the theory with ~= 0.

The renormalized mass ~„will in general be
defined as

m~ =mZe '(g, A/y. ). (2.3)

Of course this is not a mass of any direct physi-
cal significance, just as g& is not necessarily a
directly observable coupling constant. Howe~~er,

where I", , && (P', e, m, A) is the complete one-par-
ticle-irreducible vertex for an incoming electron
with momentum P, an outgoing electron with mo-
mentum P, and a Pg insertion with zero momen-
tum. (In the limit m-0 this. amplitude becomes
proportional to the unit Dirac matrix; otherwise
Z&-& could be defined in terms of the part of the
amplitude which commutes with y, .) With this
definition of Z&&, we can define a renormalized
operator

with Z, and Z~ defined for m = 0.)
This result is certainly not true in theories in-

volving scalar fields. In this case there is a qua-
dratic divergence in the scalar self-energy, which
does not go away when we let the unrenormalized
mass vanish. This divergence is not removed by
coupling-constant and field renormalization, so
the expression (2.4) is not A-independent even in
the limit ~-0.

On the other hand, in quantum electrodynamics
and other gauge theories, there is a symmetry,
y, reflection, which prevents the appearance of a
divergent fermion self-mass (at least in perturba-
tion theory) when the unrenormalized fermion
mass vanishes. Of course, gauge invariance does
the same for the gauge field self-mass. Thus, for
gauge theories without scalar fields, Eq. (2.4)
does give a A-independent amplitude for ~=0, this
being just the statement that gauge theories with
zero fermion mass are renormalizable. The ques-
tion then is whether this remains true when we
turn on the unrenormalized fermion mass m, while
continuing to use the m= 0 definitions of gz, mz/m,
and Zr.

To construCt a proof that this is the case, we

might proceed inductively. If all divergences in
Feynman graphs of order n —1 or less are elimi-
nated by the nf:=0 renormalization procedure, then
the only Feynman graphs of order n which could be
divergent are those which are superficially diver-
gent, in the sense of ordinary power counting. '
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By using gauge invariance and Lorentz invariance,
we find in the usual way that these are all loga-
rithmically divergent, except for the fermion self-
mass, which is superficially linearly divergent.
Now, because we are using the m=0 renormaliza-
tion procedure to eliminate divergences up to or-
der n —1, the derivative with respect to ~~ lowers
the over-all superficial divergence by one unit.
(This is not true with conventional renormaliza-
tion procedures, where the renormalization count-
er-terms would depend on mR. ) In addition this
differentiation eliminates all overlapping diver-
gences, so that by the induction hypothesis all
subintegrations are now convergent. We now see
that the mass derivative of the logarithmically
divergent Green's functions is superficially con- .

vergent, and all its subintegrations are superfi-
cially convergent, so it is actually convergent';
thus, the logarithmic divergences are all mass-
independent, and are therefore removed by the
order-n coupling-constant and field-renormaliza-
tion counterterms evaluated at ~ =0. This leaves
only the linear divergence which occurs in the
term of the fermion self-energy which does not
have a factor y&P". By y, -bookkeeping, we see
that this term is odd in ~, so it takes the form of
~ times a logarithmically divergent function. The
above arguments show that the logarithmic diver-
gence in this function is ~-independent, so it is
removed by the term of order n in the counterterm
(Ze —1)m„.

The above line of argument is reasonably per-
suasive, but not at all rigorous. To do better, we
would have to replace the ordinary ultraviolet
cutoff used here with a gauge-invariant regular-
ization procedure. One approach would be to in-
troduce the regulator fields of Lee and Zinn-
Justin, " in which case A in Eq. (2.4) would pre-
sumably be replaced with a very large regulator
mass. Alternatively, we may apply the 't Hooft-
Veltman technique of dimensional regularization.
This latter approach does not introduce any free
parameter like A with the dimensions of mass,
so we would have to return to the spirit of the
original Gell-Mann-Low analysis, ' and use the
renormalization-point scale parameter p, in place
of a cutoff. Instead of taking Eq. (2.4) as a basis
for the new renormalization group equations, we
would then have to make direct use of the equation
relating Green's functions defined with two differ-
ent renormalization prescriptions, characterized
by the scale factors p. and p':

from Eq. (2.4) could equally well be derived from
Eq. (2.5).

III. NEW RENORMALIZATION -GROUP EQUATIONS

We can derive the new renormalization-group
equations for our renormalized Green's functions
by simply differentiating Eq. (2.4) with respect to

Recalling that ~~ and g& depend on p, , while
the unrenormalized amplitude does not, we find
immediately tha, t

8 9 3
+P( gR) re(gR)mR yr(gR) ~R = 0

Bp, 4R

(3.1)

where

8
P(gR) u, „=-gR—(g, «V), (3.2)

8
ye(gR) —= p lnZe(g, A/p),Bp (3.3)

9
rr(gR) = p — InZ, (g, A/u).

9 p.
(3.4)

8 0
p,
—+~~ + K—I'~ =DPI"~,
8 p. B~R BK

so (3.1) may be rewritten as

(3.5)

—P(gR)
BK BgR

~ ))+~,la, )]~, -&,+r,(z, )I

x I'R(zpo ~SR ~ mR ~ p, ) = 0

Note that the coefficients (3.2)-(3.4) must be A-
independent, because they appear in a differential
equation for a renormalized amplitude. Since
these coefficients are dimensionless, they must
also be g-independent. " (It was precisely in or-
der to eliminate the p dependence of P and the y's
that we were careful in Sec. II to perform our re-
normalization in an m-independent manner. )

We wish to use (3.1) to learn about the momen-
tum dependence of the Green's function. Let us
suppose that all the momentum components vary
together with fixed ratio, so that p = Kp, , where t),
is a set of fixed momenta and K is a momentum
scale variable. If I' has the dimensions (in the
sense of ordinary dimensional analysis) of mass
to the power D,-, then

~R(P gR R P ) Sr~R(P gR mR l ) (2.5)
(3.6)

where gR, mR/mR, and S„are functions of g„and
p, '/p, but not of mR, All the results derived below

This is our new equation in its final form.
The solution of this kind of equation is well

known. " Define a K-dependent effective coupling
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and mass through the differential equations

—g(~) = P(g(~)),
dK

(3.7)

z —m(z} = —[1+ ye(g(a)) ]m(x') (3.8)

and the initial conditions

g(1)=gs m(1) ™s
Then (3.6) has the solution

(3 8)

&(g~) = A, ~ gn( g, A-lu),
8 (3.11)

rs(gp„g„, ms, u)=g rI'„(P. , g(g), m(~), u)

dK
& exp — yr(g(tc'))

1

(3.10)

valid for all K.

It is worth mentioning in passing that the P and

y coefficients may be written as logarithmic de-
rivatives with respect to the cutoff:

Callan-Symanzik' methods. Thus a crucial task
for us will be to determine whether or not m(tc)

actually does vanish as K- ~. This depends crit-
ically on the behavior of g(K), which, of course,
also enters directly in (4.1), so we will have to
proceed by first cataloging the possible ways that
g(z) could behave as v-~, and then working out
the asymptotic behavior of m(z) for each case.
Afterwards, in order to judge the validity of Eq.
(4.1), and to choose N, we will have to return to
the question of the existence and the differentiabil-
ity of F~ at m~ =0.

According to Eq. (3.7), the effective coupling
g(tc) must tend as a-~ to a "fixed point", which
may be either the point at infinity, or any zero
of the function P, including the zero at the origin.
We may therefore distinguish three qualitatively
different cases:

(1) If P atgR has opposite sign tog„, and has
no zeroes between g„and the origin, then ~g(v) )

must decrease from ~g„~ as x increases, ap-
proaching the origin for K- ~. Such theories are
called "asymptotically free". In the usual case,
perturbatj. on theory gjves

8
ye(gR)= -A

A 1nZe(g, A/u), (3.12) P(g„)=g„'&(power series ing„') . (4.2)

(3.13)

The renormalization-point parameter p, plays a
purely passive role in Eqs. (3.10)—(3.13).

IV. ASYMPTOTIC ANALYSIS AT LARGE MOMENTA

Up to now, our ana, lysis has dealt with arbi-
trary momenta. We now turn to the high momen-
tum limit, in which the momentum scale K tends
to infinity.

The asymptotic behaviour of the Green's func-
tions 1 „depends on the asymptotic behaviour of
the effective coupling g(a} and effective mass m(a).
If the anomalous dimension ye(g(K)) stays suffi-
ciently above the value —1, then (3.8) shows that
m(a) vanishes as w- ~. Also if, I"s and its first
N derivatives are finite at ms =0, then Eq. (3.10)
yields the asymptotic expression

K

I's(~go' gR ms u} ~ exp — yr(g("'))
1

N m+n
xg, I'"'(Po, g(~), o, u),

n=0

(4.1)

where F~ denotes the nth derivative of 1"„with
respect to ~„. W'e shall see in Sec. V that the
leading (n=0} term here gives just the same as-
ymptotic behavior as the Gell-Mann-Low' and

(Here and below, "power series in. . . " indicates
a power series, with a constant term presumed
not to vanish. The series may actually converge,
or may be merely an asymptotic expansion for
small values of the argument. ) The solution of
Eq. (3.7) then takes the form

ln lnKg'(z)~ (1nz) '+0
lnx ' (4.3)

y(g„) =g„'&&(power series in gR2), (4.4)

so that

ln lnK
y(g(~)) ~(lna) '+ 0 (4.5)

and

K

y(g(lc')), =I ln inz+ 0(l), (4.6)

where L is the calculable numerical constant

3 y"(o)

Pill�(0)

In particular, the solution of Eq. (3.8) is

m(~) ~ ~ '(ln~) ~e, (4.7)

so m(v) definitely vanishes as z- ~ in all asymp-
totically free theories. We can therefore use

The anomalous dimensions of interest here usual-
ly take the form"
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Eq. (4.1), which here reads

Fa(KP»ga, ma, p ) ~ K Dr(lnK)

Fa'(P. ,g(K), o, u),
m(K)" („)

n=0

(4 8)

& 0] or decreases [for p(ga) &0] from ga is at a
finite point g 40, then (3.7) shows that g(K) will
increase or decrease tog as lc-~. Suppose that

g is a simple zero of P, so that

p(ga) =(gR -g ) x[power series in (gR -g„)] .

(4.12)

with m(K) and g(K) given by (4.7) and (4.3), respec-
tively. If we are willing to neglect powers of z '

but wish to keep all powers of (lnK) ', then we
would usually drop all but the term of zeroth or-
der in m(K), and obtain the familiar result ' '

The solution of Eq. (3.7) is then of the form

g(K) —g = K "x(power series in K "),
where v is the positive quantity

v=
I p'(g )I .

(4.13)

(4.14)
F„(KP, ,ga, ma, P)-KDr(lnK)- r

x[power series in (lnK) '].
(4.9)

We expect the anomalous dimensions y to be regu-
lar atg„, so that

y(g(K)) —y(g )=K 'x(power series in K ")
However, it sometimes happens that the zeroth-
order term in m(K) is absent, because there is
some symmetry of the Lagrangian, broken only

by the term me, which if unbroken would force
the amplitude I' to vanish. In this case, the as-
ymptotic behavior may be dominated by the term
of first order in m(K), so that in place of Eq. (4.9),
we would have

and
K d~ I

y(g(K')), =y(g )lnK

+(power series in K ").

(4.15)

(4.16)

I „(Kp, ,ga, m~, y. )-K r '(lnK)

x[power series in (lnK) '] .

In particular, the solution of Eq. (3.8) is

m(K') =K ' re '" x(power series in K ").
(4.17)

(4.10)

We see that the extraction of a factor ~R from FR
not only reduces the asymptotic limit of FR by one
factor of K, but also changes the power of inc. In
any case, it is noteworthy that all coefficients in
the power series appearing in (4.9) or (4.10) may
be determined (up to an over-all multiplicative
constant) from the perturbative calculations of
P, yr, ye, and FR. (See Sec. VII. )

(2) If P atgR has the same sign as ga, and if
there are no zeroes of P between g~ and +~ or -~
(for ga &0 or g„&0), then Ig(K)I must increase
from Ig„I as K increases, approaching infinity
for K —~. We know approximately nothing about
the behavior of y(g(K)) or m(K) in this case. How-
ever, if -ye(gR) is less than some quantity e for
all sufficiently large values of ga, then (3.8) shows
that

m(K)=O(K "'). (4.11)

(3) If P has zeroes, and if the first zero of P
encountered as its argument increases [for P(g„)

Thus m(K) will vanish as K-~, provided e& l. The
Gell -Mann-Low or ballan-Symanzik equations
apply in this case, even though they tell us very
little about the behavior of Green's functions for

We see that m(K) will vanish as K-~ if (and usual-
ly only if) the anomalous dimension ye satisfies
the inequality

—ye(g )&1 (4.18)

In this case, we can use Eq. (4.1), which here
reads

FK(KP, gR, ma, g)-K~r rr(~"1

x (power series in K
"

)

FR(KPo gR mR p ) ~ K (4.20)

On the other hand, if there is some symmetry
principle which makes I'R vanish for mR =0, then
I'R is asymptotically dominated by the term of
first order in m(K), which for K- ~ gives"

Fa(KPo, ga, ma, g)~K r ' rr " re ". (4.21)

mK („)xp Fa" (Po g(K) 0 ~)
n.-- 0

(4.19)

with m(K) and g(K) given by (4.17) and (4.13), re-
spectively. If 1"R is nonzero at ~R=0, then the
leading term is the term of zeroth order in m(K),
which for K —~ gives
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We see that the extraction of a factor mR from 1R
reduces its asymptotic behavior, not by a factor

', but by a factor
K-~-y (r ) (4.22)

The neglected terms in (4.20) and (4.21) are small-
er than the leading term by powers of K. In partic-
ular, if v is less than 1+ye(g„), then the leading
corrections to (4.20) or (4.21) arise from the Ic

dependence of g(x) and [for Eq. (4.21)] m(a'), and
are smaller than (4.20) or (4.21) by a factor x '.
On the other hand, if v is greater than 1+ ye(g„),
then the leading corrections to (4.20) or (4.21)
may arise from terms of higher order in m(x),
and are smaller than (4.20) or (4.21) by the factor
(4.22).

So far, we have only considered the powers of
K and lnK which appear in the asymptotic Green's
function. However, in some cases it is possible
to determine the constant factors as well. The
effective mass m(x) takes the form

propagators at zero momentum, appearing either
in the graphs for I'R itself, or in the renormal-
ization counterterms used to calculate rR. As
long as we stay away from exceptional momenta,
only one internal line in each loop can have zero
momentum at a time. (Strictly speaking, this is
true only if by "internal line" we mean the fully
dressed internal line, with all self-energy inser-
tions. It is tacitly assumed below that the mo-
mentum-space integral of the full propagator is
no more singular at zero mass than is the integral
of the bare propagator, as is the case in pertur-
bation theory. ) With our renormalization proce-
dure„ the renormalization counterterms are also
defined at momenta which are ~R independent and
nonexceptional, so in evaluating these counter-
terms also, only one internal line in each loop
can have zero momentum at a time. Hence 1„
behaves as ~R-0 like a sum of powers of integrals
of single propagators, such as

m(x) = x 'ms exp
K dK
ye(A'(x')) (4.23)

(ZypP ™R)d P ~ (4.27)

and so according to Eq. (4.1), the (n+ 1)th term in
the asymptotic expansion of 1"„is

Fs„(&Pp gR mR, p)=
t

& r mR
1

nf

x exp

xI's" (pp, g(v), 0, y),
(4.24)

where 0 indicates that the integral is taken over
some finite neighborhood of the origin. This inte-
gral is not infrared-divergent at ~R = 0, and its
first and second derivatives with respect to ~R
are not infrared-divergent at ~R =0, but its third
derivative is logarithmically divergent for mR =0.
Hence we expect 1 R, in general, to be twice but
not thrice differentiable at ~R =0. This is, we

expect that the strongest singularity of IR at ~R =0
to be of the form

where y„" is an effective anomalous dimension mR JAR3 2 (4.28)

(n)yr =—yr+ nye. (4.25)

In general I"R„contains an unknown multiplicative
factor, because whether or not g(x) vanishes as
x-~, the exponential in (4.24) receives contri-
butions from x'values where g(x') is not small.
This factor is absent when the effective anomalous
dimension (4.25) vanishes, so that in this case

0 n n
FR„(KPp, lR, mR, P)=

~

~ r mR

xmas" (Pp, k(x), 0, 0). (4.26),
We shall see in Sec. VI how this can happen for
the n = 1 term in a Wilson coefficient function. A
result like (4.26), of course, finds its most in-
teresting application in an asymptotically free
theory, where g(~) is zero, so that the right-hand-
side of (4.26) is given by the Born approximation.

Now let us return to the question of the existence
and differentiability of 1"R at ~R ——0. Any singular-
ity of I"R at ~R =0 can arise only from the po&.es in

For theories in which m(x) vanishes as z -~, we

can use (4.1) with N= 2, but usually not with any
larger value of N.

It is worth emphasizing that the ~R3ln~R' sin-
gularity found here is much weaker than would be
encountered if we used the conventional definition
of renormalized mass, as was done by Gell-Mann
and Low' and by Callan and Symanzik. In the
conventional procedure, mass-renormalization
counterterms are defined in terms of self-energy
integrals evaluated at the renormalized mass, so
that more than one propagator in each loop can
have a pole at zero momentum at the same time
in the limit of zero unrenormalized mass. The
self-energy counterterms are still not infrared-
divergent in this limit, but they do have singular-
ities of the form ~ ln~ and ~2ln~' in terms odd

or even in ~. Thus, with a conventional definition
of renormalized mass, general Green's functions
would be finite but not differentiable at zero mass.
If such singularities had occurred in the "zero



3504 STEVEN WEINB ERG

mass" renormalization procedure used here, we
would have been able to derive only the leading
term in I'R for K-~, not the first three terms of
an asymptotic expansion. The virtue of the zero-
mass renormalization procedure is that mass
here plays only the role of a coupling constant,
while in the conventional renormalization proce-
dure it also determines the location of all renor-
malization points, and even in the Gell-Mann-
Low procedure' it determines the self-energy
renormalization point.

analysis then gives

8 8
~—+K —-Dr I'"(P,g5, 0, J )=0, (5.5)

P =&Pp (5 6)

Thus Eq. (5.1) may now be written

8 8P'—(gs, o) -Dr+yr(gR, o)

where K again is the momentum scale variable,
with

V. COMPARISON WITH OTHER APPROACHES

At this point we pause, in order to compare the
above results with those obtained by the Gell-
Mann-Low and Callan-Symanzik approaches.

The renormalization-group method of Gell-Mann
and Low' differs from the present method in that
the renormalized charge and .Z' factors depend on
the bare mass m as well as on g, p, , and A, while
the renormalized mass is taken as the true posi-
tion of the pole in the propagator, and therefore
depends on m, g, and A, but not on the renormal-
ization-point scale parameter p. Hence the Gell-
Mann-Low equation corresponding to Eq. (3.1.)
would read

«R(~P. ,g'R, o, u) =o (5 7)

The solution is well known, and yields the result

I s(~Po ga ms 9) ~ rexp yf(g*(&'), o)—,

xI'a&P„g*(&),o, u) (5 8)

for p, h.'»mg and p, » mg. But I'„* and our previ-
ously defined amplitudes FR should differ only by
a constant factor, so comparing (5.8) with (4.1)
for z-~, we see that the Gell-Mann —Low results
agree with the results of our present analysis if,
and only if, m(/c) vanishes as K-~. In this case,
the P and y coefficients are simply related by

8 8
+P (gP»mls. ) s .g

—yr(gR» %/p)

xl'*(P,g*, *, p, ) =0, (5.1)

P*(gs, o)=P(gR), ",
8gR

ye(gs, o) = yr(gs)

(5.9)

(5.10)

where

8
&'(gs, ms/V) -=~—gÃ(~, g, m, A), (5 2)

8
y*,(gÃ, mA/u) V ln=—Z~& (V,g, m., A), (5.3)

Fs(P,gR, ms, i ) Fs(p, gs, 0,
» ) (5.4)

for p»~R* and p, ~& ~R*. Ordinary dimensional

the asterisk here indicating the use of the Gell-
Mann —Low renormalization prescriptions. Again,
P* and yr must be A-independent because they
appear in the differential equation for a A-inde-
pendent amplitude, but now they may depend on
the renormalized mass ~R*, and therefore, even
though dimensionless, they may depend on p.

through the ratio mz/p. The g dependence of p*
and y* prevents us from being able to find useful
solutions of (5.1), even though this equation ap-
pears simpler than (3.6) in so far as the mass-
derivative term is missing. It is usual to seek a
solution by taking both p, and P very large com-
pared with ~R~. Under the assumption that in this
limit mR* may be neglected altogether, we then
have

However, if -y„becomes too large, then m(z) may
not vanish as v-~, in which case the Gell-Mann-
Low approach would fail. This failure can occur
even though 1"R* may have a well-defined limit at
mR =0, because this limit is not uniform in the
ratio p/p. , and we are interested in the case where
p, »mR* and p » p, .

In the Callan-Symanzik approach, a conven-
tional renormalization procedure is used, so that
no arbitrary renormalization scale parameter p,

need be introduced. In place of Eqs. (3.6) or (5.7),
the momentum dependence of the renormalized
Green's functions is governed by the equation

(gR) - + yr(g~) Dr R( Po gR ms)8K 8gR

= I'se(Kp„g„, m~), (5.11)

with a tilde indicating the use of a conventional
renormalization procedure. The amplitude F~R
is the renormalized Green's functions related to
FR by the insertion of a zero-momentum 6 vertex.
(Recall that 6 is the operator, usually gP, which
appears in the mass term of the Lagrangian. ) The
coefficients P and y- are A-independent and di-
me nsionle s s, and therefore independent of re-



8K
~s(~p. ,g~, ™s)-~'«xp — yr(g (~'))—,

1

xI's(P„g-(g'), m~) . (5.13)

Again, 1'~ should differ from I'& only by a con-
stant factor, so by comparing (5.13) with (4.1),
we See that the Callan-Symanzik res, ,its will agree
with our present analysis if, and only if, m(a)
vanishes as g-~. In this case, the P and y coef-
ficients are simply related by

P (gs) P(g~)=, ',
&gR

yr(gR) =yr(g~).

(5.14)

(5.15)

If m(tc) does not vanish as g-~, then the Callan-
Symanzik solution (5.13) must fail. Such a failure
can occur even though I'e~ is negligible for I(.'-~
in each order of perturbation theory, ' if it is not
asymptotically negligible when the perturbation
series is summed.

We see that the precise condition, which ensures
that the zero-mass limit has the uniformity prop-
erties assumed in the Gell-Mann-Low approach,
and also ensures that the right-hand side of the
Callan-Symanzik equations remains asymptotically
negligible when summed to all orders in perturba-
tion theory, is just that m(z) should vanish as tc-~.
This will depend on the magnitude and sign of the
anomalous dimension ye, and, in particular, is
always satisfied in asymptotically free theories.

However, even when m(a) does vanish, it is very
difficult to use the Gell-Mann-Low or Callan-
Symanzik methods to derive the terms of higher
order in m(z). In making use of the Callan-
Symanzik equations this problem arises when 1~
is anomalously small as v-~, say, because it
contains a factor of mass, so that even though the
right-hand side of the Callan-Symanzik equations
behaves just as expected from perturbation theory,
it is not asymptotically negligible. In this case we
must use the Callan-Symanzik equation for Fz&,
which takes the form

normalized mass, so here it is the extra term on
the right-hand side of Eq. (5.11) that prevents a
useful general solution. In order to derive a solu-
tion, it is usual' to argue that the insertion of a 6
vertex lowers the asymptotic behavior of the right-
hand side in such a way that this term becomes
negligible for z-~. In this case, Eq. (5.11) be-
comes

8
K —p (gR) + yr(gs) —Dr I R(Kpo, gs qmR) (j .

BK gg~

(5.12)

This has the solution

P-(gs) - +yr(g~)+ ye(gR) -Dr
OK ~gR

X +eR (KP 0 ~ gs ~ mR ) = I eeR (KP 0,gz, mg ) .

This can easily be solved if 1 ee~ is asymptotically
negligible for K-~. However, it is not so clear how

to use this solution to deter mine the asymptotic
behavior of I'„ itself. (As indicated in Sec. IV,
the use of a conventional mass-renormalization
procedure gives 1 ~ a singularity of form m~ lnm~

at~, =O, so r„ is not given as K-~ by even the
first few terms of a Taylor series in ms. ) The
problem of deriving an asymptotic expansion seems
even more difficult in the Gell-Mann-Low ap-
proach, and I have no idea how this could be done.

Because the P and y functions depend on the re-
normalization prescription adopted, here we could
not make direct use of the perturbative calcula-
tions of P and y in Refs. 4 and 5, where prescrip-
tions different from ours were used. However,
all definitions of the renormalized coupling con-
stants agree in lowest order, so the partial de-
rivatives in (5.9) and (5.14) are equal to unity in
lowest order, and therefore the lowest-order
terms in P do not depend on the renormalization
prescription used. This is of some importance,
because it is the sign of the lowest-order term in

P that determines whether or not a theory can be
asymptotically free.

VI. WILSON COEFFICIENT FUNCTIONS

So far, we have dealt only with the asymptotic
behavior of Green's functions when all external
momenta are taken to infinity. In physical appli-
cations, it is often more interesting to consider
the behavior of Green's functions when some sub-
set of momenta go to infinity, the others remain-
ing fixed. The asymptotic behavior in such cases
is described by the coefficient functions in a
Wilson operator -product expansion. " We shall
now apply the new renormalization-group approach
to these coefficient functions.

Let us divide the external lines of a Green's
function 1 into two sets, labeled & and B, and use
A' and q' to label all the components of all the four-
momenta of these two sets, respectively. The
Wilson operator -product expansion states that
when the various components of A' tend to infinity
with fixed ratios, with q fixed, these Green's
functions have the asymptotic expansion

I'~e „(k,q, g„,m„, p, )-g U„o(A', g„,m„, p)
0

xI ao, z(q&germs& P) )



3506 STEVEN WEINBERG

where 0 runs over all local renormalized opera-
tors (say, evaluated at x = 0); I'» a denotes the
renormalized Green's function for the external
lines B with four-momenta labeled q, with an
extra zero-momentum 0 vertex; and U„p is a
finite coefficient function. This expansion will
apply to whatever renormalization procedure'
we use for I', since the difference is only a multi-
plicative constant.

The simplest way to derive the new renormal-
ization-group equation for the coefficient functions
UQ p is to write down the renormaliz ation group
equations analogous to (3.1) for I'»

~ R and I'ap

8 ' 8 8
+ P(gR) s

—ye(ga)ma s8g'z R

-y (g )-y (g ) r„,, =0,
8

+ p(ga), ye(ga)m—a,m—
R

the operator O. In order for these equations to
hold for all 0, the coefficient functions U+p must
satisfy the differential equation

8 8
tu
—+ p(ga) —ye(ga) ma

8Pl+

—y~( ga) + yo( ga) Ug p = 0 . (6.2)

(This can also be derived by observing that tne p
dependence of U&o arises only from a factor Z„, a
factor Zp ', and from the p, dependence of g~ and
ma. ) This equation is very much like the renor-
malization-group equations satisfied by ordinary
Green's functions, but with a crucial change of
sig'n in the yp term.

Once again, we can easily convert this into an
equation governing the momentum dependence of
U». If U&p has dimensions D», and if we set k
equal to a constant &, times a scale factor v, then
ordinary dimensional analysis gives

—ya( ga) —Yo(gR) I'ao, a = 0,

where y&, y~, and yp are anomalous dimensions
associated with the external-line sets 4 and 8 and

8 8 8
I(; —+ p.—+~ — — —D U =0

8K 8 p, 8'M

and therefore (6.2) becomes

(6 3)

8 8 8))()() -+((+~e()." )I~ -() ~ +~ ().'.)-~ (a )}()~ =o.
8 II" 8Plg

The solution takes the form

(6.4)

U„p(Kk, gR, m„, p, ) =Ko&oexp
K dK
[yo(g(K')) —y~(g(K')] —, U„o(k g(OK), m(K), P,), (6.5)

with g(K) and m(K) given by Eqs. (3.7)-(3.9).
We could now proceed to discuss the asymptotic

behavior of U», but the analysis runs along just
the same lines as in Sec. IV, and there is no point
in going into details again here. However, one
particular case is worthy of special notice. Sup-
pose that the set & consists only of conserved or
partially conserved vector or axial-vector cur-
rents, so that"

Suppose also that 0 is the mass operator 6, so
that

yp ye

In spinor gauge theories e is the operator gP,
and y, -bookkeeping forces U&p to be odd in ~~,
so that if m(K) vanishes as K-~, U„o will be dom-
inated by the term of first order inm(K):

U„(o(&k, (gK), m(K), P)™()U K(~keg(Ko), 0, p.) .

If we recall the formula for m(K):

m(K) = K mR exp
gK

ye(g(K'))

we see that all y teems cancel in the exponential,
so that

VII. CONSTRAINTS IN PERTURBATION THEORY

Our emphasis here has been on the use of the
new renormalization-group equations to study the
asymptotic behavior of the exact Green's functions

U~e(Kk, g, m, p)-K Ae m U (k g(K) 0 i))

(6.6)

as in Eq. (4.26). In particular, in asymptotically
free theories g(K) vanishes as K-~, so Uze is
given in this case by the zeroth-order Born ap-
proximation. The particular circumstances de-
scribed here actually occur when we calculate the
weak corrections of order a to natural strong-
interaction symmetries, ' and our result shows
that the strong interactions may be disregarded
in such calculations.
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and Wilson coefficient functions at large momenta.
However, the renormalization-group approach
also imposes interesting constraints on the struc-
ture of the perturbation series for these ampli-
tudes. Such constraints are useful aids in actual
perturbative calculations, and by checking that
these constraints are indeed satisfied, we can
verify the validity of our approach.

We suppose that the function p(gR) is calculated
up to some finite order in gz. In electrodynamics
and other gauge theories, this series takes the
form

P(u) = b,u'+b, u'+b u'+ ~ ~ ~ .

It is straightforward to check that (3.7) and (3.9)
have the solution

g'(«) =gR'+ 2g„b, 1n«

m(«) = «-'miR(1 -gR'c, e ln«

+gR [(2cie —bicie) lrl « —c0e»«]

+ ~ ~ ~ (7.5)

where c„eare the c„coefficients for the particular
anomalous dimension ye.

Now let us consider some renormalized ampli-
tude F~ with dimensionality D~. The Gell-Mann-
Low and Callan-Symanzik methods deal with an

asymptotic amplitude FR~, defined by keeping
only those terms in each order of perturbation
theory which contain the maximum number D~ of
powers of momentum, times any powers of log-
arithms of momentum. We shall take advantage
here of our capability for dealing with nonleading
terms, and consider an amplitude I'~n, defined by
keeping all terms in 1"z in each order of perturba-
tion theory which have the asymptotic behavior

+ PgR'(2b, ' ln'«+b, ln«)+ (7.2) I' R~«D& "x(powers of ln«), (7.6)

In gauge theories the various anomalous dimen-
sions y(gR) will usually have a power series of
the form

where p = «p, with «- ~. Inspection of Eq. (7.5)
shows that such terms are given by the terms in
Eq. (3.10) of nth order in m(«):

y(u) =c,u'+c, u + ~ ~ ~ .4

Using (7.2) in (7.3), we find

(7.3)
K QK

I'R„(«p„gR, mR, p, ) =«r exp — yr(g(«')) —,
1

x —m(«)" I R (p»g(«), 0, 1 ) .

(7.7)

exp
K dK /

y(g(«')) —,

= I gR'c, -ln«+gR [(0c, —b,c,) ln'« —c, ln«]+ ~

We can usually expand the I'R (p, gR, 0, g) in a
power series in gR".

I'"'(p, g„o, q) =f'""(P, ~)+gR'f'""(P, ~)

(7.4) +gR'f'""(p, V)+ " (7 8)

In particular, the effective mass defined by (3.8)
and (3.9) is given by

Using (7.8), (7.2), (7.4), and (7.5) in (7.7) yields
the power series for F~„:

I'R„(«p0, gR, mR, p) =—
1
«r "mR"ff" (p0, ir)+gR [f" (p0, p) —C,"r»«f" (p0, g)]

+gR'[f'""(po &)+ ( bi - C'i"r'-)»«f'""(po, P)

+((0Cr,"i2 —b,C«.) ln'« —C2r ln«') fr" ~( p 0, lr )] y ~ ~ ~ ),
where

(7 9)

C ~—= C r+nCme.{n) (7.10)

For example if we calculate I'R„up to first order in g„' we can determine the quantities f "",f'"",and
Ci,"i, and then (7.9) immediately yields the coefficient of ln'« in the term of second order in gR'.

The result (7.9) becomes particularly useful in cases where the effective anomalous dimension yr +&ye
vanishes. We then have C "rr = 0 for all m, so that (7.9) simplifies to

I" „(«P„gR,mR, P) = —,«r "mR"$f'"' ( PP)+g 'fR"' (P„u)+gR[f (Po &)+2b I'" f (P0 i )] +'' ']j n n
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We see that there are no lnK terms in order g~,
no (lnz) terms in order gz, and so on.

This result has been checked by Duncan ' in a
detailed calculation of the Wilson function for the
operator 0= gP, with the large momentum k car-
ried by a pair of vector or axial-vector currents,
using a vector-gluon theory of strong interactions.
This Wilson function has dimensionality D = -1,
but as discussed in Sec. VI, this function is odd
in the fermion mass ~, so the leading term in
powers of 1/K is the n = 1 term, which in pertur-
bation theory behaves like I/v' times powers of
lnK. It was shown in Sec. VI that y„ for this Wilson
function is just —y&-&, so that the effective anom-
alous dimension (4.25) for the n = 1 terms vanishes,
and therefore the perturbation series for the
Wilson function should be of the form (7.11).
Duncan finds that the individual graphs of second
order in the gluon gauge coupling contain both
K and K lnK terms, but that all the K

' lnK terms
cancel when the graphs are added together, in
agreement with Eq. (7.11).

Notes Added in Proof

(1) The cancellation of anomalous dimensions
demonstrated here in Sec. VI is essential1y the
same as that noted earlier by K. Wilson, Phys.
Rev. 179, 1499 (1969), in a study of current prop-
agators and electromagnetic self -energies. How-
ever, Wilson's work was in a non-Lagrangian
framework, and no proof was offered that these
results actually hold in a field theory.

(2) Nonleading terms in an asymptotic expan-
sion of the inverse propagator at high energy were

obtained using the Callan-Symanzik approach in
a Q' theory by K. Symanzik, Commun. Math. Phys.
23, 49 (1971), Sec. 111.3.

(3) A condition on the anomalous dimensions
y&2 analogous to Eq. (4.18) was presented for a
Q' theory by K. Symanzik, Commun. Ma.th. Phys.
23, 49 (1971), Sec. IV.2. It is interesting that
this condition on y@2 arose from the requirement
that the beta function be continuous, rather than
from the requirement imposed in the present work,
that the effective mass vanish at large momentum.

(4) The considerations of this article also apply
when the renormalization prescriptions are de-
fined using the actual values for all internal mass-
es, as long as the external momenta are kept off
the mass shell in all cases, even in the case of
mass renormalization. The functions P, y, and

ye then depend on both y~ and m~/p. However,
the renormalization group equations can still be
solved for arbitrary momentum, the solutions
depending on an effective coupling and mass de-
fined by a pair of couPled nonlinear ordinary dif-
ferential equations. As long as the anomalous
dimension y~ stays sufficiently above the value
—1, the effective mass will still vanish at large
momentum, and all the usual results will follow,
even for theories involving scalar fields.
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entirely different context by P. Langacker and H. Pagels,
Phys. Rev. D (to be published).

~~Such equations have been considered by C. Callan,
Phys. Rev. D 5, 3202 (1972).
This argument is similar to that used in Refs. 17 and
21 to derive the asymptotic Callan-Symanzik equations
for the Wilson coefficient functions. However, Eq.
(6.2) holds for all momenta, not only in the asymptotic
limit.

~3A. Duncan, private communication. Duncan uses the
BPH (Bogoliubov-Parasiuk-Hepp) renormalization
procedure of Ref. 8, so that his results do not involve
a renormalization-point parameter p, and have a
more complicated dependence than ours on the renor-
malized mass. However, the Wilson functions can
only differ for differerent renormalization prescriptions
by at most a finite constant factor, given by a pertur-
bation series in the square of the coupling constant,
starting with zeroth-order term equal to one. Also,
all definitions of the renormalized coupling constant
are the same in lowest order. Hence the second-order
contributions to the Wilson functions will differ for
different renormalization prescriptions at most by
terms proportional to the zeroth-order contributions.
Since the zeroth-order contributions do not involve
ln~, the coefficient of ln~ in the second-order Wilson
functions must be the same for all renormalization
prescriptions.
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