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We employ a simple field-theory model to expl. ore the extent to which kinematical light-
cone dominance entails also leading light-cone singularity dominance, for higher matrix ele-
ments of current products. We retain all leading logarithmic terms in the ladder approxima-
tion, and impose the Mueller-Regge picture as a boundary condition on simple two-particle
matrix elements appropriate for processes such as massive lepton-pair production and semi-
inclusive electroproduction. We explore several asymptotic regimes with current mass
q —~, and find that limit sequences may always be defined that become analytically equiva-
lent to some leading-singularity limit, before any discontinuities are computed. This in-
cludes commutativity of the deep-Regge and deep-scaling limits, as suggested by Brandt and
Preparata. In massive lepton-pair production the pionization (central) vertex V&(q + q~, q )
depends on the transverse momentum q~ of the current, as well as the invariant mass q~.
the present model, whenever q ~ with q~ /q finite, the appropriate residue in Mellin-trans-
form space comes in part from the leading Mellin singularity relevant for the limit q + q~—0 in Vz, for the bremsstrahlung amplitudes. This suggests that perhaps any attenuation of
these amplitudes, which carry the leading light-cone singularity, will not occur with emphasis
on the q + q~ scale in VJ, but rather on the second, independent q' scale. On the other hand,
whenever q~- ~ with q&~/q4 —~, the appropriate residue in Mellin-transform space comes in
part from the leading Mellin singularity relevant for the limit q + q~ —~, for the brems-
strahlung amplitudes. The bremsstrahlung amplitudes are not attenuated in this limit, but
rather develop a square root of a triple-Regge behavior. This behavior obtains only for the
bremsstrahlung amplitudes, with the annihilation amplitudes becoming asymptotically inde-
pendent of q~+ q~~. The existence of interpolating limits and nonattenuation of the brems-
strahlung amplitudes allows us to conclude that in the model no natural mechanism precludes
dominance by the leading light-cone singularities, in any kinematically light-cone-dominated
regime. In semi-inclusive electroproduction, the mechanism which generally links light-
cone dominance with dominance by the leading light-cone singularity is graphically equivalent
to the fixed-pole mechanism operating in inclusive electroproduction,

I. INTRODUCTION

This is the second of two papers ' in which we
investigate light-cone limit sequences for inclusive
processes which involve weak currents at large
mass. In this paper we analyze multiparticle ma-
trix elements of current products in various as-
ymptotic, light-cone-dominated domains. Some
of the results have been described briefly else-
where. '

If for a product of operators there exists an ex-
pansion in terms of c-number functions, ordered
by singularity strength on the light cone, with non-
singular operator-valued coefficients, valid in all
light-cone-dominated limits for arbitrary matrix
elements, then this operator expansion is said to
exist in the strong or operator sense. ' Such an
invariant characterization of operator products
would provide a powerful framework for investi-
gating and classifying processes which, through
kinematics, become light-cone-dominated. Of
especial contemporary interest is the possibility
of such a classification for current products. '
Then, one might expect among other things, some

modified form of asymptotic scale invariance and
fixed dependence on the masses of the currents to
obtain subsequently in any kinematic limit which
becomes light-cone-dominated.

In general, higher hadronic matrix elements of
current products introduce additional dimensional
parameters which can become large, correspond-
ing to the subenergies that can be formed among
the hadrons which define the matrix element.
This extra energy dependence would likely pre-
clude full scale invariance. ' Moreover, in some
kinematic regions these additional hadronic scales
conceivably could dest;roy the connection' between
light-cone dominance and leading-singularity domi-
nance. "'

We employ a simple perturbation-theory model,
the AQ' modei, to determine in what kinematic do-
mains light-cone dominance implies leading-
singularity dominance for two-particle matrix
elements of the product of two weak currents. The
AP' model (almost') conserves canonical light-
cone structure. In addition, it manifests Regge
behavior, which is suspected ' to be present in
multiparticle inclusive production amplitudes at
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high energies. In its simplicity, the AQ model
can lead to a deeper understanding of many ques-
tions, as well as define further questions.

For brevity, we report the details of our analy-
sis primarily for the simple model involving
scalar "photons" (weak currents) and scalar had-
rons. The scalar photon field is coupled weakly
to its hadronic current j'(x) through the local den-
sity H = e:A. (x)J (x):, where J(x) =: Q (x)P (x): .
The complete analysis with vector photons, which
we have done, introduces nothing new (aside from
logarithms coming from the usual singular con-
figurations '). We outline in the Appendix the de-
tails of a typical amplitude involving vector pho-
tons.

We consider in detail, then, the two-scalar had-
ron matrix element of two scalar weak currents,

4p.p,',„(pp'iZ(x)Z(O)happ'), „=W(x', x -p, x p', s),

x,.„(pp'le(x, )[J(x),J(O)jl pp ).
(3)

for the forward scattering process scalar hadron
(p)+scalar hadron (p') +scalar photon (q)-p+p'
+q. If we define M'=(p+p'+q)', the connection
is given by'0

W = [T (M'+i@) —T (—M' —ie) j . (4)

Through crossing, "q- —q, this discontinuity
gives the inclusive cross section for the process
p +p'- q +anything. If we take the photon to be
highly virtual, q'- ~, it may then decay into a
lepton pair'. The above discontinuity then gives
the cross section for the process of massive
lepton-pair production. ' An alternative crossing,
p'- -p', and the discontinuity in M' give the in-
clusive cross section for the process p + q -p'
+ anything. This is essentially the cross section
for semi-inclusive elec troproduction; electron
+ hadron (p) - electron +hadron (p') + anything.
Therefore, in order to study the two-particle ma-
trix element of the current products, i.e., W, it

where s = (p+p')'. We introduce the Fourier trans-
form of W,

SV)q', v, v', s) = Jd'xe"'*IV (x*, x P, x P', s),
(2)

with v =q p and v'=q p'. From the work by Muel-
ler ' we know W is a discontinuity of the causal
amplitude

P(q*, v, ', s)=qp„p'„s Jd'xe"*

is sufficient to elaborate the asymptotic prop-
erties of T.

The behavior of T in asymptotic domains de-
pends generally on the paths in the multivariable
space along which the limits are taken. For the
inclusive production processes, there are for T
two Regge limits which Mueller showed to be
especially interesting, ' namely, the single-Regge
(fragmentation) limit, and the double-Regge
(central region) limit. The dominant amplitudes
are distinguished by the specific asymptotic limit.
Work done in the context of dual resonance theory
gives theoretical support to Mueller's conjec-
tures. "

In our field-theory model, considered to all lead-
ing orders in the ladder approximation, a number
of distinct multi-Regge amplitudes appear in the
asymptotic domains. The model does not deter-
mine the relative importance to be assigned to
these distinct Regge forms. In the dual resonance
calculations, "the roles of crossing symmetry and
crossed-channel resonance are crucial in making
the correct assignment of specific Begge forms to
a particular limit according to the Mueller pro-
cedure. Our concern here is with the question of
leading-singularity dominance in T (W) at large
values of the hadronic subenergy s. In order to
investigate this question, it is sufficient to let all
subenergies become large. Upon determining the
behavior at large energies of the sum of dominant
contributions to T (W), we will then take the
Mueller assignment, appropriate to the particular
process under consideration, as a boundary condi-
tion. In particular, we focus on the double-Regge
behaviors appropriate to the central regions, as
illustrated in Fig. 1.

It remains to specify the details of light-cone-
dominated limits for the six-point amplitude T.
For convenience of calculation, we work with the
q-space representation T of T. Of especial inter-
est in light-cone-dominated limits are the dimen-
sionless variables

(u = 2)p/q', (u' = 2)p'/q', 7. = s/q' .

P

P

FlG. 1. Double-Regge exchange for production of
particle q, from the "pionization vertex" V&, of the
central region, according to the Mueller conjecture.
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Central to our interest is the light-cone-domi-
nated limit which, according to standard argu-
ments, ' becomes also leading-singularity-domi-
nated. This limit, which we will refer to as the
A. limit, is

lim = lim
q2~ oo ~

&, &', s fixed

In this limit, the dominant contributions to T are
from those regions of configuration space where x2

-0 and /x, /, [x, f
« ~/m (/x', /, /x',

/
«cu'/m) in the rest

frame of hadron p (p'). We consider also the A'
limit, defined by taking subsequently co, ~', and s
to infinity.

An alternative kinematic route to the light cone
passes through the Regge (R) limit

lim =
S

lim
7

V, V ~ s~q
~~ ~'& &fixed

and the S' limit which takes now +, ~', T —~.
Again this limit is light-cone-dominated kine-
matically, ' but of course the question of leading-
singularity dominance remains.

The organization of the paper is the following.
In Sec. II we summarize and discuss the results
obtained in the perturbation-theory model. In Sec.
III we review our approximations and the devices
which render possible the degree of accuracy nec-
essary to make our investigation meaningful.

Sections IV-VIII deal with the problem of mas-
sive lepton-pair production. A detailed study is
made particularly of the properties of the leading-
singularity, bremsstrahlung amplitudes, and their
place in the Mueller-Regge framework. In Sec.
IV we consider the Begge limit at finite current
mass. There we distinguish specific scales,
which determine the behavior of the R' limit, that
may be set by the hadronic interactions. In Sec.
V we study theA and A' limits. In Sec. VI we ob-
tain the R' limits and establish their analytic
equivalence with certain A' limits. In Sec. VII we
extend our analysis to the S limits, and again
make a, connection with an A. ' limit. In Sec. VIII
we outline the analysis for a less singular cont;ri-

lim = lim
R v, v', s~~;

q2 fixed

The route now takes q2- , defining thereby the
A' limit. This is a light-cone-dominated limit, '
saturated by contributions from ~x'~ «1/q'- 0 as in
electroproduction. Further, this limit respects
the physical-region constraints in the problem of
lepton-pair production. However, there is no a
prior reason to believe the leading light-cone
singularity remains important in this limit. '

Finally, we define the scaling (S) limit

bution, the annihilation amplitude. Section IX
summarizes the analysis for amplitudes appro-
priate to the centra1 region of semi-inclusive
elec troproduc tion proc esses.

In the Appendix, we outline the investigation for
a typical amplitude involving vector currents.

II. RESULTS AND DISCUSSION

We employ the superrenormalizable Pa]&' per-
turbation-theory model to study the extent to which
light-cone expansions of operator products and
ordering of contributions strictly in terms of
their light-cone singularities might be valid for
higher hadronic matrix elements of weak currents.
We consider in detail the prototypal two-scalar
boson matrix element of two scalar weak currents.
The ease of veetox' currents is outlined briefly in
the Appendix, where we illustrate that, aside from
a single power of current mass q', essential de-
tails of the results are the same as for the scalar
currents. Qur analysis accounts for all leading
logarithmic terms in the ladder approximation. In
order to structure our investigations according
to production phenomenology, we arbitrarily im-
pose the Mueller-Begge viewpoint' as a boundary
condition on the amplitudes in the deep asymp-
totic regimes. This does not affect our conclu-
sions concerning leading-singularity dominance,
but merely the final Regge forms which are as-
sumed to be relevant.

We distinguish among and evaluate a number of
limit sequences in which, excepting for patholo-
gies which do not appear in the present model, T
becomes dominated by light-cone contributions to
the amplitudes. Qne of these, the A limit. holds
fixed the state

~
pp') of the matrix element, and so

by standard arguments ' T becomes dominated by
the leading light-cone singularity. Other (A', S,
and S') asymptotic limits are evaluated, and we
show that each of these becomes analytically
equivalent to some A' limit. Thus, we conclude
that„within the model, light-cone dominance is
generally equivalent to dominance by the leading-
light -cone singularity.

Note added znpxoof. 'We do not intend to suggest
that the Regge structure present in (42) should ac-
tually characterize the S limit, since here ~,
and 7 are finite. The point is the following: If one
considers only a single bremsstrahlung amplitude,
in the S limit it has an effectively less singular
light-cone behavior than that revealed in the A

limit„ in that, up to powers of logarithms, the q'
behavior is weaker by one power. ' However, the
subset of diagrams whose leading terms sum to
(42) manifest canonical q' behavior when all lnq'
terms of leading order are included in the sum.
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In the S' limit, this particular subset is just that
which gives the correct asymptotic behavior ac-
cording to our boundary conditions. I thank Dr.
Robert Jaffe for discussions related to this point.

The question arises as to whether one may con-
clude the same for the discontinuity 5', since S"
actually vanishes in the A. limit for physical lep-
ton-pair production. " However, we note that,
having identified the dominant presence of the
leading singularity in T, its presence is sustained
as we continue the invariants to values which are
physical for the 8' and S' regimes, where the
discontinuities do not vanish.

It is of course not necessary that analytic inter-
polations exist in order for leading-singularity
dominance to obtain, although it is sufficient.
However, such interpolations do simplify our task
of distinguishing q' dependences brought in
through kinematic constraints [e.g., see Eq. (34)j
from the q' dependence coming simply from the
Fourier transform of an a'gebraic singularity.
Such smooth analytic interrelatedness is of inter-
est in itself in any case.

Also of some interest, because it raises further
questions, is the possibility in massive lepton-
pair production of employing the q'- limit to
study the region where q'+q~'-=M~' (=4vv'/s in
the central region)-0. This region is not acces-
sible in the production of finite-mass particles
and the corresponding scale is unknown. How-
ever, there is no reason to think the vertex
V~(M~', q') should vanish for M~'-0. Thus, since
in our model whenever q'- ~ while M~'/q' is held
finite we must take residues in Mellin space which
correspond to the region M~'-0, we suggest that
any attenuation of the bremsstrahlung amplitudes
may occur with emphasis on the scale for the q'
dependence in the second argument of V~(M~', q').
This result is evidently model-dependent, i.e., de-
pendent on the features of the singularities in Riel-
lin space. On the other hand, if q'- in such a
way that M~'/q~- ~, then the appropriate residues
in Mellin space correspond to the region where
M~'- ~. In a more realistic model, one would ex-
pect V~(M~', q') to vanish in this region. In the
present model, as q'- in this latter fashion, the
dependence on M~' in the bremsstrahlung ampli-
tudes is such that a remarkable square root of a
triple-Regge amplitude develops. This feature
raises several interesting questions, and it seems
of interest to investigate it in Other models.

As a typical example of a contribution to lepton-
pair production which is less singular on the light
cone, we survey the details of the annihilation
amplitude. In limits which measure the scale for
M~2 , this amplitude becomes asymptotically
independent of M~'. No root-triple-Regge behavior

develops, and the double-Regge form of the am-
plitude in the central region is preserved. This
is merely a consequence of the particular singu-
larity structure of the amplitude in the Mellin
transform space, which structure would essen-
tially obtain for the annihilation amplitudes of any
field theory model.

Finally, we study kinematic limits and ampli-
tudes appropriate for the central regions of semi-
inclusive electroproduction, and find that leading-
singularity dominance again obtains generally in
all domains at large current mass. The mecha-
nism is quite simple, and in perturbation theory is
equivalent to the fixed-pole mechanism operating
in inclusive electroproduction.

We should point up the fact that most of our re-
sults are quite model-dependent, especially the
sustained dominance by the leading light-cone
singularities. As has been often pointed out, "'
the question of leading-singularity dominance is a
dynamical question, which must eventually be
answered by experiment. However, we feel that
our results are quite suggestive, and at least
raise further interesting questions to be explored
in other models.

imp
p'ii P'

P'

p,X L
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(d)

FIG. 2. Classes of X@3 diagrams, rvhich remain
important at lar ge current mass,

III. XQ PERTURBATION THEORY

The classes of amplitudes which are analyzed
in detail here correspond to the Feynman dia-
grams illustrated in Fig. 2. After correct cross-
ing, these give nonzero contributions to TV, and

exemplify planar contributions which dominate in
the deep asymptotic regions. Diagrams obtained
by various permutations of the external lines are
either negligible in the deep asymptotic domains
or introduce no features which change the results
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of our analysis. Figure 2(a) corresponds to co-
variant annihilation production of the photon q in
lepton-pair production, a noncovariant component
of which has been argued by Drell and Yan' to
dominate the bremsstrahlung contributions, Figs.
2(b), 2(c), and 2(d). This is the central issue
here also, of course, since it is the bremsstrah-
lung contribution which carries the leading singu-
larities on the light cone. We refer to Figs. 2(b),
2(c), and 2(d) generically as bremsstrahlung dia-
grams, and to Fig. 2(a) as annihilation diagrams.

The diagrams in Fig. 2(b) are actually special
members of the class c. It is the diagrams of
class c that sum in some limits to a root of a
triple-Regge behavior. In the central regions for
massive lepton-pair production, it is the contri-
butions of classes b and c which sum to the ap-
propriate double-Regge behavior. In the central
regions for the process of semi-inclusive electro-
produetion, the classes c and d contribute the cor-
rect Regge behavior, according to Mueller's as-
s ignments. '

In the ca,se of electroproduetion, ' when q'-
the lea.ding contributions come from the ampli-
tudes in which the currents have minimal separa-
tion. The same considerations apply here, and
we need to retain ab initio only contributions from
minimally separated insertions. Thus, our in-
vestigation is simplified essentially to asking
whether anything can happen in the model to de-
stroy the connection between light-cone dominance
and leading-singularity dominance swithin the
bremsstrahlung contributions themselves. As an
example of a lower-singularity contribution, we
consider in Sec. VIII the contributions of the an-
nihilation amplitudes.

We make extensive use of the Mellin transform
techniques which have repeatedly been found use-
ful in investigating asymptotic features of scatter-
ing amplitudes. ' That is, we perform a Mellin

FIG. 3. The a, a' parametric space.-

transformation of the amplitudes with respect to
the variables which are to be taken large, identify
the leading contributions according to their singu-
larities in the transform space, sum these, and
then invert to obtain the actual asymptotic behav-
ior of the amplitudes. The usual analyses" re-
tain only selected leading-order contributions,
whereas for our investigation it is necessary to
retain all leading orders. This seemingly pro-
hibitive requirement is met almost trivially,
through use of an observation made by Halliday, '
and used by us in the study of electroproduction. '
For details of the observation, we refer to the
literature. ' "

IV. R LIMIT FOR MASSIVE LEPTON-PAIR PRODUCTION

Leading-singularity dominance for massive lep-
ton-pair production is perhaps particularly ques-
tionable. This is because the physical region for
this process is quite remote from the kinematical
regions in which light-cone dominance guarantees
also leading-singularity dominance, i.e., the A.
limit regions.

The physical-region constraints for this process,
in which only the four-momentum q of the massive
virtual photon (lepton-pair) is measured, p +p'-q
+ anything, are readily established. Translation
invariance and the timelike nature of the photon
give

s & —,(s +q') & —,(s +q' —4m')& v +v & Vsq & q

Thus, in the physical region we must have s&q'
strictly. ft is just this feature that could make ir-
relevant the contribution from the leading singu-
larities, the relevance of which is more secure
when q'/s -~.

There is, however, yet another constraint de-
riving from essentially geometric considerations,
which further delimits the physical region. This
relation is, at large v, v', and s,

4vv'=s (q'+q„'),

where q~' is the square of the component of the
three-momentum q which is transverse to the
three-momentum p in the p, p' center-of-momen-
tum frame. This relation is readily obtained in
this frame. In terms of parameters a, a', letting
v=s' and v'=s', for physical values of q' and q~',
this constraint becomes a+a' & 1. Also, from (5)
we have q, q~ &

qo &s so that a, a'& 1 define fur-
ther boundaries. In the a, a' parametric space,
then, the physical region is defined by the cross-
hatched area shown in Fig. 3. The regions a= a'
= 1 are accessible only at very large q' and/or q~'.
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FIG. 5. Contributions to CL.

FIG. 4. Feynman parameterization of triple-ladder
diagram.

The amplitudes which, according to Mueller„'
are appropriate for the production of q, in the re-
gions where s, v, v'» q', are those which build up
the "P ionization" vertex V„of the central- region
double-Regge amplitude illustrated in Fig. 1. V~
thus comprises amplitudes a, b, and c of Fig. 2,
subject to crossing, etc., and as q' ~ may be
saturated by contributions from classes b and c.
Let us therefore describe the 8 limit for these
latter diagrams.

We recall the representation which can be given
for scalar field-theory amplitudes, "

T= Jd(
where the discriminant D and determinant 6 are
functions of the Feynman parameters $ which are
assigned to the propagator lines of the diagrams.
[We do not retain in (7) the inessential multiplica-
tive factors of coupling constants„powers of m,

etc., that are properly present. "] According to
familiar considerations„" the present three-to-
three amplitudes for forward scattering, D, will
be of the form

D(q, v, v', s, () = q P($) + 2vg($) + 2v'gi ($)

N L N

II, = II P„ II„=IIn„ 11, =IIr,
j=1 /=0 j=l

Then some analysis gives

(9.1)

x =11 lie[(&4+&8)&s+&s(gs+G~)~~-i+" '+") ]
—= rr Ilats, (9.2)

g, =11.11,[(V, +C,)~ „+P„(b„+B„)~„., + ~ ~ ~ +11,]

-=rr rr, a, (9.3)

F =rr, li, [(V, + V,}~,+ n, (a, +A, )~, , + ~ ~ + lip

(9.4)

S=n~', (9 5)

identifying thereby the most important functions.
In order to obtain the 8 limit we employ the

Mellin transform analysis. ' We take for the mo-
ment q'&0 and fixed, while -v, -v', and -s are
all )0. Then D will be negative-definite and nor-
mal-threshold cuts will be avoided in the trans-
form. '3 The results are always to be continued
back into the physical region before inclusive
cross section discontinuities are taken. The Mel-
lin transform with respect to -2v, -2v', and -s
SlS

7'(q', P, P', o) =r( o)r( P)-r( P'-)-

for this same ladder segment after the removal of
the Mth rung, etc., down to b, , =p, +p, +5, +B,. In
a similar fashion we define AL, hL, , . . ., A, ,
and AN, 6N, , . . . , b, , etc. Further, let

+sF(g) -aZ. (8) ,exp[(q'F —aJ')/a]
Al ~8+ 8'+ o+2

For the amplitudes under consideration„a suitable
parameterization is given in Fig. 4.

Let A~ be the A function corresponding to the M-
rung ladder to which the momenta P are attached,
after this ladder has been severed from the others
at the 6, and 6, lines. Let D~, be the 6 function

(10)

where p, p', and o are conjugate to —2v, —2v',
and -s, respectively. We follow now the usual
procedure for obtaining the Regge structure of the
amplitude. ' ' In the transform space this leads to

T (q', p, p', o) = Z T'" "(q', p, p', )
L, JIf, N

C(p+p', q')9(p+o, O)9(p'+o, 0)V(p, p', o)r(-p)r(-p')r(-o)
[P +o —n, (0)] [P +P'- n, (0)] [P'+o —n, (0)]
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where n,.(t, ) is the usual' scalar AQ' trajectory and 9(, t) is the usual' scalar AQ' residue factor. For C
we have

c(&.P', q') =g ~, (P+V', q'),
&=1

with

1 8 exP[(6:q' gd)/~]~g(P+P' q')=/id( o'" ....
p p 1 8,8+8,+2

(12)

(13)

In (13) the functions P, b„g, etc., are to be computed for the (L+1)-rung amplitude illustrated in Fig. 5.
Finally,

I (O, (I', o) = 2 I '" "(e,u', o),
L,hf, N=I

where

~ g 8+8+1 1 g ~~ q 8+a+I 1 () ~ 8+0+1 1 () g8gago~ J
P+P'+I ~n, ~"; P+o'+I ~P,. .=; P'+o+I 9

(14)

(15)

and the functions Q, B, A[see E'I. (9)j, J, and b,
are to be computed for the contracted triple-lad-
der vertex shown in Fig. 6.

The full amplitude T (q', v, v', s) may be obtained
by inverting (11), which gives

T(q2, v, v', s) = .,3 dPdP'da T(q2, P, P', o')
27ff)

x(-2v) (-2v') (-s)

(16)

The surface 0 of integration is constrained to pass
to the left of the imaginary axes in each of P, I',
and o', because of the F function poles, and to the
right of the Regge zeros in the denominator of T.
Thus, 0 must lie within the real subspace of the
enclosure defined by these singularity surfaces,
as illustrated in Fig. 7.

The central 8 limit takes the parameters g and
g' both greater than zero. However, holding both
q' and q~' fixed, the constraint (6) requires
g +a'=1. Let us introduce the variable M~' =q'
+@~', the longitudinal mass squared for the pho-
ton. The limit with a+g'= 1 is then taken at fixed
M~', and we denote it as the R (M~) limit. In the
R(M~) limit, then, we may write

1 ~%t

T(q2, v, v', s) = —.3 dPdP'doT(q2, P, P'', o')(-s)~,

where Z =a +aP + a'P'. The leading behavior in the
R(M. ) limit is thus determined by the rightmost
singularities in the left half of the Z plane. The
direction of most rapid decrease in Z inside the
real subspace of Fig. 7 is along the vector -VZ„
which for a +a'= 1 is readily seen to be always
orthogonal to the line of intersection of the singu-
larity surfaces at a, and n, . Thus the most re-
mote value Z can attain, without our being forced
into a singularity surface, is at the intersection
of the planes P + a = n, and P'+ o = u, . The s ingu-
larity surface P+I3'= n, thus does not participate
in the R(M-) limit, and it is sufficient here to dis-
place 0 across the surfaces at e, and n, . The
residue at these surfaces then gives the leading
behavior in the R(M~) limit. ' We obtain, finally,

FIG, 6. Contributions to the triple-Regge vertex.
FIG. 7. The projection onto the real Mellin sub-

spaces of the volume containing the contour Q.
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lim T (q', v, v', s) =9 (o.» 0)9 (n» 0)Vz(q', M~') (-2v)"~ (—2v')" 3, (18)

with "
V~(q', Mi') = . t V(p =-o+ o.', , p'=-o+ o„o')C(-2v +n, + n, , ') ' ' i, (18)

C~ 1 3 2

where the contour C, passes to the right of the
poles in I'(o —a, ) and I'(o' —n, ), and to the left of
the pole at o'= (o., +n, —a, )/2.

Formally, the result (18) is simply the double-
Regge behavior suggested by Mueller ' to dominate
the central region. In purely strong-interaction
physics, where q'=M, ', say, the scale governing
the M~ ' behavior rapidly attenuates the amplitude"
as M~'(=q~')- ~. In the processes under consid-
eration, q' also becomes large and, in the first
argument of V~, a second scale manifests itself
which we refer to as the q' scale. Qf course, it
is possible that through the role of either of these
scales the leading light-cone singularities may
actually become unimportant in some light-cone
regions. '

The two scales which control the light-cone-
dominated, q'- regimes have now been iden-
tified. It remains to determine the actual features
of the A. and A' limits, and to identify leading-
singularity contributions. We then return to the 9
limit and identify the roles of the above scales in
our specific dynamical model, particularly in re-
gard to how they may affect leading-singularity
dominance.

V. A AND A' LIMITS FOR MASSIVE

LEPTON-PAIR PRODUCTION

The & limit, by familiar arguments, " should
project the leading light-cone singularity, which,
as has been pointed out, comes from the brems-
strahlung amplitudes, of class c in Fig. 2. These
amplitudes have the representation (7), with D
specified in (8).

In order to obtain the A limit we take the Mellin
transform of (7) with respect to -q' at fixed s,
and &'. For a typical amplitude of class c, param-
eterized as in Fig. 4, we obtain

5+co + (d
T '+' (X &u, (u', s) = I' (-li)

exp[(Fs —~g)/&]
~ 2

(20)

where X is the Mellin variable conjugate to -q'.

where T~~ ~" is finite, and is given by

f d$TL,bus(~ ~,l s)
dQo E +(dg +(d gl
x exp[(F s -6J)/6]. (23)

This identifies the leading-singularity, 1/q' be-
havior, characterizing 5(x ) behavior in configura-
tion space. That is, the leading singularity is in-
deed present in T~'"'~ and is unaltered by the in-
teractions. Further, as usual, ' any contributions
where the current insertions are separated by
more than a single line are less important by
powers of q'.

We now wish to compute the 4' limit, in order
eventually to make connection with the R' limit.
We may choose an arbitrary parametric limit of
the form (u = (s)' and tu'= (s)' [more properly,
u=(-s)', &u'=(—s)' with -s&0]. The constraints
(5) and (6) again require a and a' to lie inside the

(closed) region illustrated in Fig. 3. It is for our
purposes sufficient to take again a +a'=1, with

both a, a' & 0. The computation of the A. ' limit
exactly parallels that for the R limit. The same
approximations lead, upon summing all M by N
by (L+1) rung ladders, "to the result

T is obtained by inversion:
+ $00 ~ f

Tl, M, N,

( q2 ~ ~l s) TI,AE ~ s(~ ~ ~I s)
27tZ foo

x ( q )xdy (21

The leading behavior as -q'-~ is obtained by tak-
ing the residue at the rightmost singularity in the
left half X plane. For the amplitudes of class c
we find that the coefficient of q' in D, i.e., 5 +(dI,

+~'g, , has an over-all factor of ao. Thus we may
write this coefficient as o(6+tug+&v'g, ), defining
thereby the barred functions. An integration by
parts in no, as usual, ' exposes the simple pole at
X = -1 in T~™~.The residue at this pole term
defines the A limit of T~ "". We find

~Ct g
0!

lim T (q', co, (u', s) = -8 (o, , 0)8 (n„0)V~ (-M~'/q')
A~(a+ a'= I ) q

where

(24)
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and

Vp( —M~'/q~) = . V(P =-o+ u, , P'= —a+ u, , o)C(-2o+u, +u, )
' ' (-M~'/q~) '1 -, - r(o —u, )r(o —u, )r(—o)

2mi -20 + Al + A3 —CY2

(25)

C(-2o+ u, +u, ) = P C~ (-2o + a, + u, ),
L=l

with

-20+Ay+(xg 1 s e -J
C &-20+a +n &=L & 3 1' d~ 2O + ~ + + +g ~ ~-20+&1++3+1

0 i=l 1 3 CX0= 0

(26)

(27)

In (27) the constituent functions b, and j under the integral are to be computed as for the L-rung, con-
tracted diagram illustrated in Fig. 8. The contour C, in (25) goes between the singularities under the in-
tegral in the same way as C, in (19).

This identifies the behavior of the leading-singularity contribution, including its Regge structure. We
now establish its connection with the physical regions for massive lepton-pair production.

VI. R' LIMITS FOR MASSIVE —PAIR PRODUCTION

We recall the result (18), for the R(M~) limit. We seek to determine the behavior of V (q', M ') as
q2-~, particularly in regard to whether the result may in any sense be regarded as coming from the
leading [6(x')j light-cone singularity.

We first rewrite (19) as the inversion of its Mellin transform with respect to -q . This gives

Vp(q', M, ') = . , dodX V(X, o)( q')x(-M„')-,
(2mi

'

where we have

(28)

V(X, o) = V(P =-o+ u, , P'=-o+u, , o)C(-2o +a, +a„X)r (o —u, )r (o —u, )r (-&)r (—x)
1 3 2

(28)

C(-2o+u, +u„X)= g C (-2o+a, +u„X),
I =1

with

+ -2&y+ul+u3+1
y g P g —J

( 2o+a + u &) d] u x-20+ap+u3 I
j 31 X 0 2 j Q ~ ~ -20++1+3+2

t

(30)

(31)

again letting 6:=aors In (31) w.e see, through in-
tegration by parts in +„that there is a simple
pole in y at 2v —a, —a3-1. The inversion hyper-
surface S in (28) must then be confined in that re-
gion of the real subspace of 0' and X illustrated in
Fig. 9.

Consider first the limit -q'- ~ with -M~'/q'
fixed. We, have to consider the behavior of

V.(q', M.') =, ,
«dx v(x, .) (-q')x-"

2wzj s

this line, so we find

lim V~(q', M~') = (—q') "& "s '
2

q ~OO
2gq 4 fixed

x V~(—M~2/q ), (33)

where V~(-M~'/q') is exactly the same as in (24).
Using the result (33) in (18), we see that the
analytic form of (24) is reproduced exactly, in-

x (-M, '/q') '. (32)

The most rapid decrease in the variable X —2a is
easily seen to be orthogonal to the line of singu-
larity y =20 —n, —e3 —1. The leading behavior in
the present limit is then given by the residue at FIG. 8. Doubly contracted vertex contributions to CL.
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&n» pn 3lim: lim T (q', v, v', s) = —,— ~ I/'

-e2 R(y& ) q
%~~~a 4 ~0

(34)
with

I/'c = V (X = 2o —c(, —(22 —1, o = n2 ) . (36)

FIG. 9. The projection onto the real Mellin subspaces
of the region containing the contour S.

elusive of all constant factors. That is, leading-
singularity dominance is present in the above
R(M ) limit. Further, we note that this particular
limit measures only the q' scale, and is insensi-
tive to the M~' scale.

Let us consider now an R' limit defined by -q
—~, with -M~2/q2- 0 at an arbitrary rate. The
R' limit which Brandt' takes to commute with our
S' limit, for instance, is of this form, with M~2/q2

fixed. In this limit, the leading behavior is deter-
mined in any parameterization by the residue at
the intersection of singularities y = 20' —e» —e, —1
and o=(2„say (or o = c(, , whichever is greater;
for simplicity we assume here (2, + (22). In the
present model, the double residue gives the limit
as

Thus, this limit measures also the scale relevant
in the limitM~ -0, which is not directly acces-
sible in finite-mass processes. That this limit,
that is, the amplitude in (34), is dominated by the
leading light-cone singularity is readily estab-
lished; take the limit —M~'/q —0 in (25). We ob-
tain immediately the result (34) since the leading
singularity in the 0 plane comes again from the
function I'(o —(22) [or I (o' —(2,)].

We see that a wide range of limits is saturated
in the model by the leading light-cone singularity
[O(1/g2), here]. Moreover, any limit q2-~ with
M~2/q'-0 measures also the scale which governs
the regime M~'-0. As there is no reason to be-
lieve that the amplitudes should be drastically
attenuated in this regime (attenuation occurs as
M„'- ~, at least for finite-mass processes "),
this leads one to believe that any attenuation of
the bremsstrahlung amplitudes as q'-~ must
come from the q' scale, not from the M~' scale.

Finally, let us consider the limit where q'- ,
but M~'/q4- ~, corresponding to an extremely
high q~'. Now the relevant singularities in o and

X come from the lines -20+o.»+o., —a, =0 and

X =2o —n» —e, —1. This leads to the behavior

lim: lim T (q', v, v', s) = -
2 C ((2„0)g((2, , 0)

-e 2~'o R(Ng)
-M~ /e4~~2

where

x F(I ~ )~(u)+a2 n2)/2~t(-a2+n2-a))/2/ s)(oL)+Ix2-0'. 2)/2—n»~ » ~ co ~,-s, (36)

(37)

Once again, rather than a rapid attenuation of the
amplitudes, we find a finite limit, now charac-
terized by an unusual square root of a triple-
Regge a.mplitude. If we take the limit -M~2/q'- ~
in (24), we obtain exactly the result (36). We con-
clude that this limit again is dominated by the
leading-singularii;y contributions. Finally, we
should point out that the result (36) a.nd the
-M2 '/q —~ limit of (24) are reproduced analyti-
cally in any a, a' parameterization with a +a'& 1
and a, a'&0.

VII. S LIMITS AND COMMUTATIVITY

So far we have established the primary impor-
tance of the leading light-cone singularity in any

i

of the regions where first s goes to infinity and
then q' becomes infinite. It would be a peculiar
state of affairs to find in the S' limit that leading-
singularity dominance could somehow fail. How-
ever, if one takes an arbitrary M by Jq by (L+ I)-
rung ladder and computes the S' limit, one finds,
indeed, that up to lnq' terms, the leading behavior
is weaker, by powers of q', than the A-limit be-
havior. ' The problem, of course, is to determine
the effect of the lnq' factors when they are summed
in all leading powers of q'. It is in regard to this
problem that the result (11), so easily obtained
with Halliday's observations, becomes so impor-
tant. That is, since (11) preserves all the leading
q' dependence complete with manifest Regge struc-
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T(q', v, v', s) = . , dPdP'da dX(-2v)a
2zzz

'
x (-2v') (-s)'(—q')x

x T (X, (8, (8', g) . (38)

T(y, P, P', o) is obtained by replacing Cz(P +P', q')
in (13) by

ture, computing the S' limit is now almost trivial.
To find the S limit, we perform a Mellin trans-

form of (11) with respect to -q'. In order to re-
trieve the amplitude T (q', v, v', s), we take the
four-dimensional inversion. Thus,

(X l f(X 3 ~ 2 -lX3
llm T(q, (q(, 4(, T) = —

& 4 V&,
g Q'

(44)

which exactly reproduces the analytic form of (34),
with equality in the constant factors. Thus the
commutativity assumptions made by Brandt and
Preparata are indeed valid in the present model.

Finally, we note that, again, the S' limit also
emphasizes the scale for M~'- 0, so that any
strong attenuation of the bremsstrahlung ampli-
tudes in this limit would probably occur through
the independent q' scale.

VIII. ANNIHILATION CONTRIBUTION TO

MASSIVE LEPTON-PAIR PRODUCTION

a.o""—1 & 5 x e-~
i
((»q»( q»» (g)»»»»

(39)

where o.,5=5' as before. Now write (37) in terms
of scaling variables:

T(q, »», , )= ». Jd(q((( d»d»q(-q )»

x+ +' 7 T(X p p' o) (40)

The leading behavior as -q'-~ is given by the
leading singularity in the left half plane of the
variable X +P +P'+o. This leading singularity
occurs at the intersection of the singularity sur-
face X +P +P'+ I =0 in (39), with the rightmost
singularity in the left half of the 0 plane. This lat-
ter singularity depends on P', and in the P' o
space occurs at P'+o = (z.', and P'=0. We find

We now discuss briefly the contributions of the
annihilation amplitudes a in Fig. 2 to the vertex
V~ in massive-pair production. The A. and A. ' lim-
its for any finite-order diagram may readily be
computed by rescaling the appropriate subsets of
Feynman parameters "as necessary. ln the A
and A. ' limits„ these amplitudes are down by powers
of q' from the bremsstrahlung contributions c,
going as 1jq' up to a lnq' term. Here we outline
the features of these amplitudes in the A and A'
limits.

We begin with the formal representation (7) and
(8). With the parameteriza. tion illustrated in Fig.
10, we identify the components of (8) as follows:

Z =H [(~z+~z)+~+i zq(rzz-q+Fu-z)+zq-z+' " '+Ha]

(45.1)

gz =Hs[(~z+ez)&s+ ~(((r(((-z+ Fpr z)&zq z+' ' '+ll-]-
1limT (qz, (d, (u', r ) = ——

2 (-q') &r 3h ((d),
S

with h(~) of the form
N-l N

»y = (E +E )6(((+g (r((( „+F „)b, „ l.[
$=N-r

(45.2)

h((u) =
2ms

(42)

h(P) is smooth in the neighborhood of the contour
C&, where C& passes to the left of the pole at zero
in I'(-P) and to the right of the poles P = o(, —o.„
P =o, , and P =-1. The S' limit is now readily ob-
tained, this limit being given by the singularity at
P = cz, —o., in (42). Thus, we find

M

IIi'
s= 1

(45.3)

(45.4)

(43)

where V~ is the same constant as that which ap-
pears in (34). Using vv'q' =zM~', (43) becomes

The functions AM, 4M». . . , 4„, 6N, , . . . , etc.,
correspond to the 6 functions for the ladder seg-
ment severed from the N by M-rung amplitude at
the Mth, (M —1)st, . . . , Nth, (N 1)st, . . . , etc., -
side parameters, in exact analogy to the 6 func-
tions in (9).
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Now perform a Mellin transformation of the rep-
resentation (7) with respect to -2v, -2v', and -s
at fixed q2. This gives

invert the result. Ne obtain finally, in the limit
-v, -v', -s-~, with M~' fixed, inclusive of all
leading logarithmic terms,

f'""(q'p, p',, v&= fd&n "„n,''

AsB ~ exp[ (Pq' —b J)/6]
g 8+8'+a+ 2

x r (-p)r ( p')r ( g), where

(47)

lim T (q', v, v', s) = g (n, , 0)g (n, , 0)
zGwj )

x (-2v) &(-2v')"~V»(q', M~'),

with the usual conjugate variables. Familiar pro-
cedures expose the Mellin multipoles, and we may
readily perform the sums over M and N and finally and

V (q2 M 2) P V», »(q2 M 2)
M, N= 1

(48)

V»»(q2 M 2)
1

Cg

Ml(o)+l 1 g . - a 2&o)+l
PJ /- 0+ l(0)/- a+& 2(0)

o., (0) +1 Bn,. ',",' o., (0) +1 sP,

x r(-o)r(g —n, (0))r(o —n, (0))(—Mi') ' (49)

The functions A. , B, 5:, Z, and b, in (49) are to be computed for the M by N contracted vertex graph il-
lustrated in Fig. 11. The contour C, passes between the o-plane poles r(o' —o.,), I'(o —o.,) and the poles
in I"(-a'). In contrast to the case for the bremsstrahlung contributions to V» in (11), the first o' singularity
to the right of C is from the v =0 pole in r(-o'). Therefore, as -M~'-~ in (49), we obtain the constant
leading behavior

N
G&(0&+&

1 s p, up(0&+&M

a, (O&+S Sn,. g u, (O&+& 8P,

A" "'B ""r( (o))r(- (o))' p (50)

That is, the annihilation amplitudes remain finite and become independent of M~' at large M~'. Thus, no
root-triple-Regge behavior obtains in the large-M~ region for the annihilation amplitudes, in marked con-
trast to the bremsstrahlung amplitudes.

Consider now the -q -~ limit in (50). The leading behavior is obtained from the coefficient of the terms
o»/[n, (0)+I] and P»/[a, (0)+1]. The integration over n» andP» may be done for this coefficient, and the
two ladder rungs n», P„get contracted, as illustrated in Fig. 12. The coefficient of q' in this term,
F(n»=P» =0), has two independent minimal scaling sets, "each with two members: fe, , c,j and (e', , e,'j.
These combine with the factors (e, +e, ) 2'0& and (eI +a,')"&@& in (50) [see (45)] to give [(-q') ' "&+&

+ (-q') ' 2"']In(q'/g') behavior. Thus

4)+ &(o & ( 2v & )&2(o &

( 2v )+ &(o & (g~+ 2't&& &

lim: lim T(q', v, v', s) =g[n, (0), 0]g[a, (0), 0] ln(q'/p, ') ~ V, + 4 V, , (51)
q2 ~oo M ~oo

e2 fixed

6 '6 6 6 'K'Y~

P

FIG. 10. Feynman parameterization 0. the annihilation
ladder.

where V, and V2 are just constants. Thus, where-
as in the A limit the annihilation amplitudes have

q
' (= x') behavior near the light cone, in the A'

limit they have q 4(= 1nx') behavior. The effective
strength of the light-cone singularity has been
enhanced in the R limit. However, its net contri-
bution is still weaker by a factor of q2 relative to
the bremsstrahlung contributions. The leading
singularity, which comes from the bremsstrahlung
amplitudes, indeed dominates in all the q2- ~
limits.
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IX. SEMI-INCLUSIVE ELECTROPRODUCTION

The process here is virtual photon (q) +hadron
(p)-hadron (p') +anything, for which the inclusive
cross section is obtained as a discontinuity in the
six-point forward scattering amplitude
T(q', v, v', s). For this process, the relevance of
the leading light-cone singularity is not subject to
question as in massive lepton-pair production be-
cause the corresponding invariant s need not be
large always. Translation invariance leads to

8+2v —2V +g «0,

tial role in the present considerations, however,
so that we restrict our attention to the purely an-
nihilation contributions to production of p'.

Consider, then, the M by N-rung amplitude of
Fig. 2(d). The usual formal representations (l)
and (8) obtain, and for the A limit the Mellin trans-
form is given by

exp[ (Es —sZ)/a]
Q2

and clearly does not preclude light-cone limits at
finite s.

Qn the other hand, it would be quite useful to
know whether the leading singularity continues to
dominate perhaps even at large s. Therefore we
study here the possible connection between the A'
limit and the R' limit for this process in the cen-
tral (double-Regge) region for p' production. We
imagine that p' emerges from the vertex V~ in
Fig. 1, i.e., let c- -p', p-q, and P'-p. Then,
up to crossing, which changes no essential results,
the appropriate amplitudes are those of Fig. 2(d),
which correspond to p' production through an an-
nihilation, plus amplitudes (not illustrated) where
p' emerges from rungs of the ladder as in the
bremsstrahlung production of q in Figs. 2(b) and
2(c). The structure of V~ does not play an essen-

lim T~"(q', v, &u', s) = ——
2

Tz+"(&u, &u', s),NN

A

with

(53)

dg
p + (vg + co g

x exp[(Fs -aZ)/a]
I Qp=p

(54)

The same sequence of steps which led to (24) lead
now to

A study of the coefficient 7 + cog+ ~'g, of q2 reveals
that there is a single over-all multiplicative Feyn-
man parameter ep corresponding to the propagator
line connecting the current insertions. Therefore
we find

lim T (q', v, v', s) = C (o, , 0)9 (o.„0)V~(~'s/~)v'"'(-s)" &,

ur'q/ ~ fixed

where C(n, , 0) is the same constant present in (35), and

V~(v's/u) = . V (P, P'= -P —n, , v =-P —o.„v)(-&u's/e)
kf, N CB

where

(56)

V,""(P,P', )= «i[.. p', p,„,.... p,.„,p ~'fl'f'(- )l'(-P)i(-P') (57)

with definitions analogous to those in previous cases.
Consider now the R' limit for T. The calculation is not different from others, and we find

FIG. Il. Annihilation contributions to the vertex U&.
FIG. 12. Annihilation contr ibutions, contracted for

—q ~oo2
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lim
R'

—v's/ v fixed

T(q', v, v', s)= lim T(q', v, v', s)
u)'s/ u fjxed

~m'( s)n2
= C-(n, , 0)9(n„0)V.(&o's/~) (58)

This is analytically equivalent to (55). The com-
mutativity is readily traced to the singularity corn-
ing from the n0 Mellin space pole. That is, the
mechanism for commutativity is equivalent graph-
ically to the fixed-pole mechanism of electropro-
duction.

shows that we may write

Tp = P- 0 P-

+ 2 P 2C P
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APPENDIX

We consider here the causal (covariant) tensor
amplitude T„„for vector weak currents

T„,(q', v, v', s)

=4P0P0 d O'"" PP' 0 &0 ~„~~v o PP';„.

(A2)

T =E„T E' (A4)

If the polarization of the current is not measured,
completeness gives

where for dimensional reasons we have introduced
the boson mass m'. For a specific current (lep-
ton-pair) polarization e'„, the forward amp]itude
becomes

(Al)

The most general form of this tensor is given by
the expansion

T~„=A1QPQ +A2tgPQ +A3QPP„+A PPg +A P„g

=gatv Tpv

= TrT~V

V2 1$
VV

2 2A 2 2B 2 2C 1
q

(A5)

+A 6Ppp. v +A 7Ppp v+A 8P pp v

+A 9Ppp v+A10gpv (A2)

Crossing symmetry in the photon indices reduces
the number of independent amplitudes to seven,
while gauge invariance brings in three further
constraints. Therefore the number of independent
invariants is reduced to four, and some algebra

whenever s»m2.
For illustration, we analyze the I by iV annihila-

tion ladder diagram shown in Fig. 13. The usual
Feynman rules give for this amplitude

(2q —k)q(2q -k),
t=l

0)-'t ki

FIG. 13. Annihilation ladder for vector currents. FIG. 14. Introduction of auxiliary moments.
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N+N+ I
P „= ( d'e, fd q(2 q—k)„(qq -k)„exp Q (, (k, ' —p,.

' ~ (e)
i=1 j

(A7)

where we have introduced the same parametric set I )) as given in Fig. 10. I.et us introduce auxiliary mo-
menta" a and a', coupled into T as illustrated in Fig. 14. Then we Inay write

2'„,= d z,. d —' —q —' —q exp k,.2 —jt' 2+i'
C1 p 2 u j J q q+e

q~q+ a~ a, a'= 0

The integrations may be done, "and we obtain

(A8)

~pv 4 q q 2 (A9)

where the discriminant D(a, a') and the determinant 6 are to be computed for the amplitude oi Fig. 14.
Letting

D(a, a') =D(0)

+a„A„+a+�

„+a a'B +a2C +a"C',

we obtain

(A10)

(A11)

Formally, from standard prescription, "we have

D(a, a') =E,(p +p'+q)'+ (E, +E,) (p +q)'+ (E, +E,) (p'+ q)'+ (F9+E„+E„+E„)q'
+ (F, +E, +E, +E,)m 2 + (F» +E»)a" + (E +1E4»)a +2(F„+F29)(q +a)2 + (F19+E»)(q +a' )'

+E»(p -a')2+E»(p -a)2+E»(p'+q+a')2+F20(p'+q+a)2+E»(a -a')2 -Ag p, ,'$„. (A12)

%e identify

A, =2(F„P„' E„P„)+2(F-„+F„+F„)q„,
e D(0)/4

T (x: " d$.
I 2

(A14d)

&.= ~ (F19p' -F17p p) + 2 (F19+F19+F22)q. .

(A13a) En terms of the parameterization of Fig. 10, with
functions A„„A~,, etc., defined as before, we
have

Therefore

e lXO) /6
17 19

2A ~ ~ g4
1 2

(A13b)

(A14a)

+17 -~n&a~2 ~

+18 ~ N 1 &

19 8 E 1&

+2O 5+N 2 ~

(A15)

~ D(0) /6
19 20

em1 2

e LXO)/6
19F19 E17E20

2C ~4
1 2

(A14b)

(A14c)

when these are put into (A14) we see the T; are sym-
metric between the two sets of ladder parameters.
We now employ the formal representation (8) for D,
and. compute the Meljin transform of (A14), with
respect to -2v, -2v', and -s, at fixed q2& 0.
This gives for the M by N rung ladder

ex 6: ' —bZ b,7"*"(q' d () f) (ed)'(d"0''d, ,'eP' e.e'... P( d)P( e)P( ())---'
5

(A16a)

(A16b)

ex
(A16c)
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(A16d)

where g, g, , and Il are of the same form as in (45). The usual sums over M and I&)' may be done and we

obtain

T~(q', p, p', o) =p TI '"(q', p, p', o)
M| E

g(p+o +S, (I), 0)9(p'+o +S,(I), 0)V~(q', p, p', o, I)
[o+P —n, (I)][o+P'- n, (I)]

(A17)

where I =2A, 2B, 2C, or 1 and n, (I) = n, —S, (I), i =1, 2 and S, (2A) =2, S, (2A) =0, S, (2B) =0, S,(2B) =2,
S, (2C) =S,(2C) =1, S, (1)=S,(1) =0. Of course, n, and n, are just the usual scalar Regge trajectory. "
9(x, t) is the usual scalar residue function" and

V~(q', P, P', o, I) = g Vs"(q', P, P', o, I),
M, E= I

with, for example,

(Al 9)

V~~"(q', P, P ', o, 2A ) =
, n 0+8+a 1 S P

a 8 +1r+
d$ i

o+P+3 Bn,. &, o+P'+1 BP&

&& [(e, +e,)S„+n„(y„,+ I'„,)a„,+ ~ ~ ~ +II„] '

(A19)

while the other V&MI~) have similar representations. The constituent functions 7, b„J; etc., for given

M, N are to be computed for the contracted vertices of Fig. 11. The only new feature, we note, is the re-
location of the Regge poles in (A17), due to the spin of the currents. Upon inversion, we may obtain, for
example, the R(M~) limit

lim T, (q', v, v', s) = (-2v) "~)(-2v')" &''&9 (n, , 0)9 (n„0)V~(q', M, ', I),
R(MJ )

with

(A20)

)r (q', rr, ') = J &r (q', r) = a, (r) —q, p'= rr, (r) —tr, a&&r(rr —a, (r)) r(s - a, )r)&r(-v)(-&r, ')-',
CO

(A21)

where C, passes between the poles at o=n, (I), n, (I) and those at v=0. Inserting (A20) into (A5) we deter-
mine finally

lim T(q', v, v', s) =9 (n, , 0)9(n„0)~(
—2v)"q(-2v')" q[U~(q', M ', 2A)/q'+V~(q', M ', 2B )/q'+3V„(q', M ', 1)]

R(M~)

vv'
+ s —

2 -2v ~ ' -2v' 2 'Vz q', M~', 2C (A22)

If we take -M~'- ~ at fixed q' in (A20), the relevant o singularity is the pole in I'(-o) at o =0. That is,
this limit. gives again constant leading behavior, with no root-triple-Regge behavior, in contrast to the
bremsstrahlung amplitudes. Taking subsequently —q'- , we obtain finally

(A23)

for I =2A. or 2B, with n, = n, for 2A and n, = n, for 2B. The V~(I) are just constant residue factors. These
are the leading terms in (A22), which now becomes

lim: lim:lim T(q', v, v', s)=9(n, , 0)9(n„0), V~(2A)+, V~(2B)
&u" &(-2v')" & (-2v)"&(ur" 2

-q ~ -M~ ~~ R(Mg) Q' g
fixed

(A24)
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Up to in@' terms, we see upon comparison with
(51) that the essential difference is the single
power of q', introduced by spin factors.

A representation for the bremsstrahlung contri-
butions to T may be obtained, and the result is
similar to (A20). The limit -q'- ~, at any rate

such that M~'/q'- 0, again probes the M~'- 0
scale, while if M~'/q4- ~ we obtain again the be-
havior (36), up to one power of q'. In every case,
the leading light-cone singularity dominates the
amplitudes in all regions at large q'.
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