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The method presented by Schwinger to obtain an exact solution (to order a) of the inverse modified

electron propagation function in a homogeneous magnetic field is reviewed. Applications of his general

result to obtain the magnetic susceptibility, the anomalous magnetic moment, the decay rate, and the

power spectrum of radiation are discussed.

I. INTRODUCTION

The origin of nonthermal galactic radiation is
believed to be due to the synchrotron radiation
of charged cosmic particles moving in magnetic
fields. ' Recent interest in pulsars suggested that
magnetic fields of the order 10"—10i4 gauss
probably exist in neutron stars and their illumina-
tion might be attributed to the synchrotron radia-
tion. ' Thus, an investigation of radiation from
charged particles at such high magnetic fields will
be of great importance to astrophysics. Histori-
cally, the study of synchrotron radiation is in-
timately connected with the development of cyclo-
trons and storage rings. ' Furthermore, the study
of the motion of charged particles in a constant
magnetic field has been of theoretical interest be-
cause such motion can be solved exactly ' and
because investigations in this area might lead to
an understanding of strong coupling calculations.
New interest in studying synchrotron radiation
arises from the proposed experiment at the
National Accelerator Laboratory by the combina-
tion of megagauss magnetic fields' (1.5-3.0 MG),
with high-energy electrons (150-300 BeV).

In the conventional treatment of the synchrotron-
radiation problem, '" the wave functions for an
electron in a homogeneous magnetic field are
utilized to calculate the tra, nsition amplitudes for
one-photon emission. The spectral and angular
distributions are then obtained by squaring the
amplitudes and summing over the final states.
The algebra involved is quite complicated" and so
far only the weak-field cases have been discussed.
Other related problems are the calculations of the
magnetic susceptibility" "and the magnetic mo-
ment of electron. """' These are obtained by
studying the modified propagation function in a
magnetic field, either by power-series expansion
in H (to order H') (see Ref. 10) or by a summation
over the intermediate states through the use of

electron wave functions. " In the latter method, a
closed form is obtained only for the weak- and

extremely high-magnetic -f ield cases.
One might ask whether it is possible to bypass

the use of the electron wave function and to solve
for the modified propagation function in a homo-
geneous magnetic field exactly„so that it provides
not only the mass shifts and the anomalous mag-
netic moment but also the general expression for
the power spectrum of radiation. The answer to
this question has been given affirmatively by
Schwinger for both the spin-0 (Ref. 15) and the
spin- —,

' (Ref. 16) cases through the use of the
proper-time method'" and the replacement of the
photon-momentum integration by an algebraic
procedure. "

The purpose of this paper is to illustrate how to
apply the exact result of Ref. 16 to some specific
problems. Because it will be some time before
Bef. 16 becomes available to the reader, we will
first, in Sec. II, review Schwinger's calculation
of the lowest-order radiative corrections to the
electron propagation function in a constant field.
Applications of the general result to the magnetic
moment, magnetic susceptibility, and decay rate
are discussed in Sec. III. In Sec. IV, by a slight
modification of the calculational method given in
Sec. II, the power spectrum of radiation is obtained
exactly (to order n) and an application of this re-
sult to the synchrotron radiation (high-energy par-
ticles in weak magnetic field)"" " is also pre-
sented in this section. The evaluation of various
expectation values and energy eigenvalues are
presented in the Appendix.

II. METHOD OF APPROACH

In this section, we review Schwinger's calcula-
tion of the modified electron propagation function
in a constant field given in Bef. 16. The starting
point is the additional action term associated with
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single -photon exchange ":

=.-'I (dx)(dx')[[) (x)y'M(x, x')y(x'),

a contribution that alters the spin-& Green's func-
tion expression into

&I+ xtI)G, &x, x') +f &dx")I &x, x")e:,&x",x')

=5(x -x') . (2)

where the expectation value refers to the $'=0 state.
The evaluation of (e "")can be performed by

considering the analogy with the quantum-mechani-
cal system having the variable s as the proper
time and y as the Hamiltonian. The "time" evolu-
tion of any operator, say 0, in this system is then
described by

O(s) =e'x«Oe-'x«

which obeys the equation of motion

Here, in a matrix notation, we have —O(s) = —. [O(s) X].
I

ds 2
(12)

with

II~ = —,8~ —8/A. ~

-I
2

. , ", (dk), 1 1

J (2[T)' k' m+y(II -k)

(4)

Here, the full set of equations of motion to be used
in our calculation is

—k(s) =0,d
ds

The contact terms (c t ), .w.hich will be determined
later, are linear functions of yII that are designed
to satisfy the propagation-function normalization
conditions.

The program involves constructing M (x, x')
exactly. This is made possible by the application
of two devices" ": the proper-time technique
and the replacement of the photon-momentum in-
tegration by an algebraic procedure. The first
will become apparent when one uses an exponential
representation for the combination of two propaga-
tion functions:

I I

(5)

—
& (s) =2[k -uII (s)],ds (14)

—II (s) =2ueqE[II (s) —k] .
ds (15)

k(s) =k,

11(s)-k = (I+A)(II k),

eqE(j(s) —$) =Dk -A.II, (18)

where we have defined

Note that it is the constancy of the external field
I' that enables one to solve the above linear equa-
tions exactly. They are the same equations as
those encountered in Ref. 15, and the solutions
are (in the matrix notation)

where

}((u) = (k -ull)'+ u (1 -u)[m' —(yII)']

+2~8+Fs

D =A +2(1 u)eqEs. —

(19)

(20)

+ u'(m' -eqoE), (6)
Now the expectation values, (e "«k) and

(e ""kk), a,re related to (e "")as follows: By
using Eqs. (8) and (18), we have

The second is the transformation of the k integra-
tion into a matrix form by the use of a variable $&
that is complementary to k„,

[~„,k, ] =fZ„, , (8)
r

and by observing that ($' is the eigenvalue of $) and

&

-' "»=(-""
(
—"))) " [«) -&] )

,,„(w „) (21)

f (k) =($'=Ojf (k)i$'=0).

Using these two representations [Eqs. (5) and (9)],
one can then convert Eq. (2) in the form

M =-ie' sdsduy~ e "x'"' m —y -k y„

&e "ee„).,) =(e ""(—Il [&&e) —)]) X)

=&e x"),,)(—II) —&e "")&( )
P p, v

=& '"»(-".") (-".") —('
+c.t., (10) (22)
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where we have used the relation [cf. Eq. (11)]

e "«$(s) = $e "".
The main task of evaluating (e "«) can now be
performed by constructing a differential equation

8
(e ) =(e X)

=(e "«i~') —2u(e "«k)II

28 Zs
M =-——du det e is~iy)'eisueeat

47t s D

x m —y II y„+c.t. 2V
2 (1 -u)e qFs

To simplify the Dirac algebra, we apply the prop-
er-time technique to y& by defining

y (S ) e isuee aty e isuee at

+(e "«)u(m'+lI' eqoF-) . (23)
which satisfies the equation of motion

The substitution of Eqs. (21) and (22) into Eq. (23)
then yields

i —rn(e "")=n(-) (
—)n-qsrr( —

) rr

-i tr + u (II + m eqoF), —eqE 2 2

which is also the differential form for the spin-0
case except the u(m' eqoE) —term. Following the
arguments given in Ref. 15, one has

(e-rs«) ' 1
det

eqFs -qse

d
ds
—y(s) =2ueqEy(s),

since

[y, oE] = 2iFy-.

The solution of Eq. (29) is

y(s) = (I +A)y

=y(1 +A T)

which implies that

ye isuee at e isuee aty(1 +A T)

When we combine this with the rearrangement

(29)

(30)

(31)

(32)

where

1 D
Cr =u(II +m -eqvF) +II ln ——II

2eqg's D ~

-=4, -ueq&E. (26)

By substituting Eq. (25) together with Eq. (21) into
Eq. (10), we obtain

(
2)r —e)eqres 2)r -e)ence

)m —y y=y m+y

2(1 -u)eqEs
D

(33)

Eq. (27) can be simplified to the form (with oA
=--'e &"")

n "ds 2eqFs '",,~ .
)

2(1-u)eqFs
( T) 2(1 u)eqEs&-

D

(34)

The contact terms are now to be determined by the physical normalization conditions that, as F =0, M
and its first derivative with respect to yII must vanish at yII = -rn. Accordingly, one has

c.t. = —m, -g, (m+yll),

where

m, =—m —du(1+ u)e
Q dS -tsm2 u2

27T s (36)

and

—du(1 u)e " " i ——m' ds-duu(1-u')e
2Z S 77

(37)

The combination of Eq. (34) together with Eqs. (35)-(37) then gives an exact construction of M for a spin- —,

charged particle in a constant external field.
If one specializes to a pure magnetic field which is chosen to be in the g direction,

(38)
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then Eq. (34) can be further simplified by using the following reductions (in the following, without loss of
generality, we will assume that II, =0):

~—= det = 1-u+u e'" 1-u+u e '"

s1n2x 2 s lnx= (1 -u)'+2u(1 -u) — +u'
2x x

—4-trA +2ivA =-4cosxe '~",

2(1 -u)ebs 1-u + u[(sinx)/x]e ''"
y II = 1 -u yll + 1 -u

(39)

(40)

(41)

y(1 ~) (1- )q&
11 (1 )11 (1 )1

D

where

x=eHus, y II =y,II, +y,II„
and we have used the identity

eqy&II =S(eHr. ~& .
As for 4, we have

e-"~"-1 y rI (42)

(43)

(44)

4 = u(1 -u)[m' —(yll)']+ u'(m'-eqoE)+II — ln — r + u' ll
2eqEs D ~

= u(1 -u)[m' —(yII)']+ u'(m' -eqvE)+ —[P —(1 -u)x]II '
x

—:u m +p~

where

(1 -u) sinx
(1 -u) cosx+u(sinx)/x '

(45)

(46)

q) = u(1 -u)[m' —(yII)'] + —[P —(1 -u)x]II~'-u'eq(rp (47)

The simplified version of Eq. (34) is

Q dx yII 1 -u 1 -u u sinx' )g„ 2]g„ ~M =—m — du exp -i —ux, » 1+e ' " 1+(1-u) —+ — +— e "-e "y II~
277 0 x ~ 0 eH 6"' m m 4 g x

—((+ e) —(( + —(( -e)(( —2(m*ee (1+e)] (48
m

with 6 and q) given in Eqs. (39) and (4V). Note that Eq. (48) is the exact solution obta. ined without making
the usual approximation that the wave function p in Eq. (1) satisfies the equation (m +yii)g =0.

III. MAGNETIC MOMENT, MAGNETIC SUSCEPTIBILITY, AND DECAY RATE

For most applications„ to an accuracy of order n„we may approximate M by its expectation value taken
between the particle field g obeying the equation

(m+yii)g =0, or (II'+m' —eqo'H)g =0. (49

With this approximation, Eq. (48) becomes

M =—m du exp i —ux —~ exp i —[P —(1 —-u)x]II~' e'~""Q dx . m' -X/2 .us
27r x eH x

1 —u 1 —u u slnx1+ue "~"+ +— e "*—e *'"' i II, —((ee)).m Z a x (50)
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Further simplification requires a knowledge of the
expectation values of the operators, y, f, y f,
y ~ II~, Il~', and Py ~ II~, between states satisfying
Eq. (49). The details of these evaluations will be
given in the Appendix. Here we only remark that
the various operators in Eq. (50) can be effectively
replaced by their corresponding expectation val-
ues as follows:

, eH
y II~- (2n+1 —&')—,

I
gy ~ II =—[eqo' H, m+yli]-0,

II~'- (2n +1 —&'+r)eH,

(53)

(54)

(55)

o & o
(51)

(52)

where E' =m'+ (2n+1 —g')eH is the energy eigen-
value of Eq. (49), g'=+1 is the eigenvalue of y'g,
and n=0, 1, 2,

Introducing these simplifications, Eq. (50) now
becomes (to order n)

1 m2
du exp -i ux g '"exp -i —I -u x 2n+I -f'

X p eH

&& e '~'8 "'(1 +ue "~*)+(1 -u)(2n+1 —&')—eH
m2

I —u u slnxx cos(l3 —x)+ — cosP —cos(P+x) —(1 . u)Ix
(56)

where, for convenience, we have used both g'=+I and ( =qv, representations. Some applications of this
result will now be discussed below. "

A. Ground State

By specifying Eq. (56) to the ground state with
n =0, &'=+I, E = m, and & —&'=+I, we have

In particular, a zero of the denominator in Eq.
(57) would require that

2(1 -u)ri+u(l -e '" cos2$) =0, (61)

2
(o) n ~ dx .m

M =—m —
~ du exp —i ux

Jo x o eH

X
I +ue -I —u

1 —u + u[(sinx)/x]e

(57)

since [by using Eqs. (39) and (46)]

I —u+u e
I sinx

x
SlnX - ixI —u+u e (58)

x=$ ig, $&0-, rl&0. (60)

We can also express Eq. (57) in another form by
rotating the integration path from the positive x
axis to the lower imaginary axis to yield

(o) A m2M"' =—m —
l du exp — uy

27t' eH

X
I+ue "

—I —p
1 -u+ u[(sinhy)/y] e '

(59)

This is the known result of Demeur. " The justifi-
cation of the rotation of axis involves the absence
of a singularity at the origin and throughout the
quadrant

which obviously cannot be satisfied for q& 0. The
reality of M thus made explicit was to be expected
since the ground state is stable against radiative
decay.

g. Strong Magnetic Field

The strong magnetic field limit of Eq. (59) has
been evaluated by several authors "'4 recently in
connection with the claim of possibly large radia-
tive corrections. "'" The main contribution comes
from the regiony-~ and u-1, and has the lead-
ing behavior

(62)

In terms of the ground-state energy, we have

n 2eH '
E =m I+—ln, +'

4m m' (63)

Note that, even when 2eH/m'-100 or H-2&&10" G,
the radiative correction is only about 1%%ug of the
rest energy. As (o/4')[ln(2eH/m')]' becomes
large compared to unity, the approximation of re-
placing M by its expectation value between the par-
ticle fields obeying Eq. (49) is no longer valid, and
we must go back to examine Eq. (48).
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2. 8'eak EieM

For weak fields, which are characterized by the condition eH/m «1, we wish to evaluate Eq. (59) to
order (eH/m ) . This can be achieved by dividing the u integration into two regions: 0 u & u, and uo& u 1,
with 1» u, »eH/m'.

In the region 1 ~ u &u„only small values of y contribute, and we may expand the parenthesis in Eq. (59)
as

( )=-u(1 -u)y+( —,
' —',—u+u')uy' —(1 -u)(1- —,'u+u')uy'+ ~ ~ ~,

and obtain

(64)

1 pOO rn2
M&,"=—m, sou s) exp —

& w') [-() -w) ~ ('—, ——', M+ ')v —(( —~)((-—,'M+w')&']
fl 0 ~o

=—m — + —ln ——— + — —ln —-- (65)

where we have omitted terms which are power series in u, or 1/u, , since they will be canceled by the cor-
responding terms in the other region. The final result should not depend on u, .

In the region 0 ~ u&u„we expand the parenthesis in power series of u and obtain

n ""p "2m' . 2eII
=—Rz duu uln 1+, —1

27t p eH Fpl u

+ ——+ 1+™-u+— »u' ln 1+, — +4 ln 1+

(66)

where, in arriving at the last form, we have used the condition uo»eH/m to expand the integrated form
into power series of eH/(m u, ), and again we have omitted terms which are power series in u, or 1/u, .

Summation over the contributions from both regions, Eqs. (65) and (66), yields the result

M' '=—m — -2 + —, —ln ———+ —, —ln -- ——ln2+— (6S)

which is the same as that obtained in Refs. 10 and 14.

B. Arbitrary State

For this situation, we go back to the general ex-
pression, Eq. (56). Note that the rotation of inte-
gration path, x- -iy, cannot be used here, as ex-
pected from the radiative instability of all the
level above the ground state. Some special cases
will now be discussed.

In the region up&u ~ 1, small values of x still
dominate and the quantity in large braces in Eq.
(56) can be expanded into power series of x, which
yields

( I = —igu (1 -u)x —('—, —,—'u +u')ux'

+, (2n +1 —g')(2 ——",u +—,
' u')x'

2. J o~ En«gy (E - m) and Weak Field-
(eH/m' «1) Case

Here we will eva.luate Eq. (56) to cubic terms in
H. As in Sec. IIIA2, we divide the u integration
into two regions: 0 &u &up and up+u &1, with
1»uo» eH/m

,'i (2n +1 —g—')u(1 +u) (1 -u)'x'

+iru (1 -u)(1 ——,
' u +u')x'. (68)

s ' = 1 + ('—u —u')x' + ~ ~

3 (69)

Here, in obtaining Eq. (68), we have used the fol-
lowing expansions:
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p = (1 -u)x+ —,'u(1 -u)'x'+ ~

exp(-itp —(1 -u)x](2n +1 —g')j

(7o)

=1 ——,'i(2n+1 —g')u(1 -u)'x'+' ' ', (71)

1-u u s1nX
cos(p -x)+— cosp —cos(p+x)x

= (2 —,—'u)x'+ ~, (72)

s -i&(8-x) (1 + ue -Bi (PI)

= 1+u -igu (1 -u)x —(2 ——,'u +-,'u')ux'

+ig (1 ——,
' u +—', u' --,' u')ux'+

The integrations over x and u are simple and
straightforward, and we find

+, 2n+1 —g' —ln—

14 1 5
+g ——ln ———

3 uo 3

which reduces to Eq. (65) in the ground state.
Again in writing the above equation, we omit
terms that are power series in u, and 1/u, . We
also note that Eq. (74) is purely real, i.e., to order
H', the imaginary part comes solely from the re-
gion 0 &u &u0.

In the region 0 & u &u„we expand the terms in
the brace of Eq. (56) into power series of u:

sin2x, sin2x sin'2x —sin'x=1+2u 1- +u 3-3 +
2x ''x x' (75)

sin x
sin(P -x)= -u +O(u'), cos(P -x) =1+0(u'), (76)

sin'x
e ' ' "(I+xe " *)=I+e cos2x+ii —s(n2x)x

sin x
+—sin2x -2 sin4x ——sin x+i& sin2x sin2x-2x, x x (77)

1-u u s lnx sin 2x sin'x
cos(B —x)+— cos() —cos(B+x)=(1 —cos2x)+e I — —' s(n2x),X 2x x

2
n '"exp(-i[B —(I -e)x](2n+I —I')) = I+e (I — -i(2n+I —I )ex I —'

2x x2

+ u =, (2n+1 -g')' x — —i(2n+1 —&') x — 1 ——1 sin x 2 sin x sln2x
x x 2x

-"'" ('-".:")' (79)

The resulting M is

r0 " dx . m , eH eHSS, =—I
J

de —enp -i nx eB + (2n+ I —I'), (I —cos2x) ~, (2n+I —I')sB, + s BI, (20)',
0 "0

where

sin2x . sin'x
B0= cos2x- +i

2x x

3 sin2x sin4x sin xBI = 1 —— + -i(2n+1 —g')(1 —cos2x) x—
2 x 2x x

1 . 1 . sin xcos2xReB, = 1+cos2x ——sin2x ——sin4x+
2x 2x x'

sin2X—sin2x —(2n+1 —g') x-
x

sin x sin x sin x+i(2 +I —I )(x — '—s'n2 --,'(2n+I I')' x--
x x x

-ImB, =g sin2x — 1 — + 2n+1 —g' x — sin x
1

sin
+ X

sin x

(81)

(82)

(83)

(84)



MOTION OF AN ELECTRON IN A HOMOGENEOUS MAGNETIC. 3453

To evaluate Eq. (80), we first separate it into two parts:

the first part M&", which is obtained from M& by setting n =0, p, g'=+1, has already been evaluated in

Eq. (66), and is purely real. The remaining part is

(85)

, eH eH
M& =—m du —exp i -ux -iuB,'+ (2n+1 —g'), (1-cos2x) +, (2n+1 —g')uB, +u'B,'

4 p m) p

(86)

where

sin'x sin'x
B', = (2n +1 —g') x — + (1 —g) —sin2x

x x

sin'x sin'x sin x
ReB', =g(2n+1 —g') x — —sin2x ——,(2n+1 -g')' x-

x x x

sin'x sln2x 2 sin x sln2x
-1mB,' = (1 —g) —sin2x 1 — + (2n +1 -g') x — 1—

x x x 2x

(87)

(88)

san'x
+ x — cos2x . 89

The integrations over u and x are then performed by considering the real and imaginary parts separately.
For the real part, we have

n ""o " dx eH
ReM& ———m du —-uB,'sinAx+ (2n+1 —g') —,(1 —cos2x) cosAx2'

Q m2Q x m'

with

m'u
eH

+ n(2n +1 —1'), (BeB,oossx+ 1mB, sinlx) +n'(BeB'nosnx+lmB, ' s'nnx)},

(90)

(91)

Some of the integrals are effectively given by (omitting terms which are polynomials in u, or 1/u, )

, eH ""p "dx eH ' 25 16 10 m'u
(2n +1 —g'), duu —ReB, cosA.x = (2n +1 —g'), ———ln2+ —ln

m gp x m 9 3 3 2eH

""p, ""dx, . eH ', 73 16 2 m'u 233 32 14 m'u,u' du —1mB,'sinAx =, (2n +1 -g') ———ln2 ——ln ' + (1 —g) — +—ln2 ——ln
x ' m' 90 15 3 2eH 90 5 3 2eH~( p

while all other integrals are effectively zero. Therefore, we obtain
(98)

eH I 323 32 8 m up 233 32 14 m'u,
ReM& =—m, (2n+1 -g') ——ln2+ —ln ' +(1 —&) — +—ln2 ——ln

2w m' 90 5 3 2eH 90 5 3 2eH
(94)

which is to be combined with Eqs. (66) and (74) to give the total real part

eH', 8 m' 32 293 14 m' 32 83
+ —, (2n+1 —2') —ln ——ln2+ +1 —ln ——ln2+ —}.3 2eH 5 90 3 2eH 5 90 (95)

This is precisely the same result obtained by Newton. " The parts that depend explicitly on g are usually
referred to as the magnetic-moment terms, which have also been reproduced recently. "'" The remaining
parts are referred to as the mass-shift terms and have not been confirmed since.

The imaginary part of M (to order H') comes only from Eq. (86) since both M, and M,'0' are purely real
%e have
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Q o 4x eH-lmld =—m du — uB,'cosAx+(2n+1 —g') —,(1 —cos2x) sinhx
27T J p go X yn'

+, (2n + I —f ')u (ReB, sinAx —ImB, cosAx )+u'(ReB,' sinhx —ImB,' cosAx)m'

The integrals can be easily evaluated:

Jx , eH eH
du —uB', cosAx+(2n+I -g'), (1 -cos2x) sioux =-',m, [(2n+I -g') —(1 -f)]x re' rn'

H H
n + 3m&' 2n +1 —&'

(96)

(97)

, eH t o ~ ctx, eH 3
(2n+1 —&')—,~ udu —[ReB, sinXx —ImB, cosAx] = ——,'m(2n+I -&') —, [(2n+I —g')+5],

0 "0
(98)

p Qo +OQ 3
u'du —[ReB', sinXx —ImB', cosAx] =v ., [—,'(2n +1 —g')'+ ~»&'(2n+1 -g') + —,'(2n+1 —&') + ~~(1 —g')],

dp ~I ()

(99)

where we have used Eq. (52). The result is
3

-ImM =~ em —, n --, + —, ——,', 2n+1 —g' '+ —5g' 2n +1 —(' ——, 2n+1 —g' +~ 1 —g' (100)

which has not been previously presented.
Finally, consider the eigenvalue equation

(m+yii +M)g =0,

which implies the energy eigenvalues (to order o.') (see Appendix)

(101)

E'=E + —M. (102)

The energy shift due to radiative corrections is

m~ = —ReM

eH ' m' 32 217, 14 m' 32 83+, (2n+1 —g') 2 ln ——In2+ +L' —1n ——In2+ —I,m' 2eH 5 6O 3 2eH 5 90 (103)

while the decay rate y is defined by
1~y= -ImE

or

y=4 nm —, n

eH 3

+ASS —
~ ~~~5 2n+1 —(

+(—,', r'-1)(2u+I -C')+~(1 -r')] .

(105)

As a check of our result, we note that theH' term
can also be obtained from a semiclassical or ele-
mentary quantum-mechanical consideration of the
decay rate due to electric dipole radiation, while
the H' terms (specializing to the n = 0 and g' = —1
state) agree with the expected rate of magnetic
dipole radiation (since only a spin-flip transition
is possible to the ground sta, te).

2. Total Decay Rate (fox E /m'» 1 and eH/m «I }

The radiation from a high-energy electron in a
weak magnetic field is the usual situation en-
countered in connection with the operation and con-
struction of cyclotrons. It has been extensively
discussed in the literature. ' However„because
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the conventional approach to calculate the decay
rate is quite long and complicated, we will here
demonstrate how simply it can be obtained from
Eq. (56).

Under the high-energy and weak-field circum-
stances expressed by

which is dominated by values of x such that

eH
X — 2--- && 1 .

m Q

The important range of x occurs when the two
arguments are roughly comparable, i.e.,

(110)

and

eH
m2

or

(1 -u)'x' —-1
m2E', eH 2neH

m2
—= (2n+I —g'}—+1 = »1

m2 m2 (106} 1 m
1-u E'

the parameter that characterizes the quantum cor-
rection" "is

3E eHY-———
2mm2 (107)

which, for the usual synchrotron operation condi-
tion, is negligibly small. However, it has the
magnitude -0.03 for the proposed experiment' at
the National Accelerator Laboratory (with E = 150-
300 BeV and H=1.5-3 0). To present a more gen-
eral situation, we wish here to calculate the total
decay rate of radiation by keeping Y as an arbi-
trary parameter and omitting all terms of the or-
der m'/E' or eH/m', and higher.

In order to proceed, let us return to Eq. (56).
To evaluate the imaginary part of M, which is our
concern here, we divide the u integration into
three regions: (i) 0 & u&u„with 1»u, »eH/m',
(ii) uo&u & 1 —e, with e» m/E, 1 —e =1, and

(iii) 1 —e &u & l. It can be shown that the contri-
butions from regions (i) and (iii) are negligible.
For region (ii), we examine the exponential struc-
ture

which is indeed small compared to unity as re-
quired by Eq. (110). Accordingly, by using Eqs.
(69)-(73), we retain only the leading terms in an
x expansion of the quantity in square brackets in
Eq. (56):

E2
[ ]=1+u -igu(I -u)x+ —,(1 -u)(2-~u)x'

=1+u -it, "uz+(2 ——,'u)(1 -u) 'z', (112)

where, in writing the last form, we have intro-
duced a new variable

1 m
X 1-u E (113)

exp[-i-,'] (z + —,'z')],
where

(114)

2 m m u

3 eH E 1-u

and used Eq. (52}. The use of z variable then con-
verts Eq. (109) into the form

eH m'
exp -i ux+[P —(1 -u)x] —,m' eH ' (108) 1 u

T 1-Q (115)

which reduces to [cf. Eq. (71)]
2- 2

exp -i 1+&(1-u) x —,ux —,E m
m' eH '

and T is defined in Eq. (107).
Substituting Eqs. (112) and (114) into Eq. (65), we

we obtain, for the imaginary part of M,

I
imM =—m }m de —[(}+e—i('ee+ (2 —,—e)(}-e) 'e'}e ' —(1+e)e"' e"']I,

2r 0 "0
(116)

where we have extrapolated the region of u integration from region (ii) to qover all three regions, and de-
fined

8 = z$(z+ 3z') .
In terms of the decay rate y defined in Eq. (104), we have

~m2 I -I 2
y = —— du l

—1[1+u + (2 —+u) (1 -u) 'z'] sin8 —(1 -u) sin —,$z + &'uz cos8]
m E 0 0 g

n m'
du (1+u) K„,(]7)d]7+—', u(3u —2)(1-u) 'K„,($)+g'uK„, ($) .3mE 0

(117)

(118)
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In obtaining Eq. (118), we have used the following
Airy's integrals "" where we have used the integral"

J
cosedz = (-,')'"K„,($),

0
(119)

d$ 5" 'K. (&) =2" 'I'(-'4+u))1'(-'Q-u)).

(129)

g sinedz = (—,')"'K», ($), (120) In the other limit Y» 1, we may use the expansion

1+2g2
sinedz ,v——= (-, ) K„,(q)dq,

1 1 y/2

0

(121)
where K„(x) is the modified Bessel's function of
the second kind. Here we observe that y depends
on the eigenvalue g': The decay rate is larger for
the g'=+1 state. For the unpolarized electron, we
average over the initial states and obtain

2" 'I'(v)Kv($)=, , as $ —0

and the J3-function integral

1
duu' '(1 -u)' ' =B(p, q),

0

to yield

(130)

(131)

n m' 8 oo

y„„„= J
du (1 +u) K ~~(ri)dq

3 7f g
— +g

+ —,'u(3u —2)(1 —u) 'K„,($)

(122)

which is to be compared with the corresponding
result of Refs. 3 and 20:

a m' ' d]
&3m E, (I+T5)'

(

T2g2
+I,T( K.is(&) .

(132)

IV. POWER SPECTRUM OF RADIATION

In Sec. III, the total decay rate is obtained from
the imaginary part of M through the definition of
Eq. (104). This is to be compared with the conven-
tional approach, '"which utilizes the electron
wave function to obtain first the power spectrum
of radiation, P(tu), and thereby the decay rate by
the relation

(123) ~= f &)~) (133)

T$
I+Tg '

and by the use of the differential equation

(124)

One notes that even though they appear to be quite
different, they are actually identical to each other.
This can be easily proved by a change of variable

One might ask whether our method discussed in
the previous sections can also be used to obtain
P(&u)'? The answer is that one cannot extract P(&u)
from y, since there are many equivalent integral
forms which represent y [such as Eqs. (122) and
(123)]; each of these leads to different power spec-
trum and different power of radiation:

(125) I= dc'+ co .
0

(134)
and the asymptotic behavior

1/2
K (])= — e ', as $ -~.V (126)

g, -"f(&1.

Accordingly, we obtain

5n m' 16 14y= T 1 — T+—T'

(127)

In the limit T «1, since the functions K„($) of
direct concern decrease exponentially for g» 1,
the important values of u are such that [cf. Eq.
(115)]

However, by a slight modification of the compu-
tational method discussed in Sec. II, one can un-
ambiguously identify P(~) before performing the
photon-momentum integration. The resulting form
is quite similar to those of Sec. II and can be
evaluated in an analogous manner. In this way,
P(~) can be calculated exactly.

In the expression for M, Eq. (3) or subsequent
forms, we insert a unit factor"

du6 u -Q'

+—
g T — —g'71

5 3
(126)

and obtain

—e'& -'~'" dT
2' (135)
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I=-ie' du —e« ' sdsduy~ e "xe '~ ' m —y —k y +c.t.2'' (136)

When applied to ImM, which arises only from the real particle exchange process, the inferred spectral
distribution in (u will be that of the radiated photon energy and will supply the desired photon spectrum
without ambiguity. The power spectrum of radiation, P(a&), is then identified [from Eqs. (104) and (133)]
as

d7'
P(&u) =-2m —Im ' —e' 'M',

E g„2m

where

(137)

sdsduy" e ' xe «~ m —y —k y (138)

Here we note that the k integration symbolized by ( ) is now modified by the presence of the factor

e-sA v' eikp po + p p

and thus the substitution

(k -uII) (k -uII) ——= k -uII ————(pII) ——2 kp p u P
s 2S S 4s

(139)

(140)

takes place in }((u), Eq. (6). The subsequent k integration

k-k+—P
2s

(141)

together with the last two p-dependent terms of Eq. (140) then modified Eq. (2V) by the additional factor

e iu pII+ i p2/4s e - «&Ev' e -«r 2/4s

and by the substitution

(1 u)eqFs — (1 u)eqFs —p
D D 2s

After all these modifications, we obtain [cf. Eq. (56)]

(142)

(143)

in ds
P((/t)) =-2m —Im~ —m I

— due8 (2)( J, s

x ~ exp -i —1-u x 2n+1-g'

&&
e-'"8 s)(1+ue "'*)

+ (2n+I —g'), (1 -u) cosQ —x)+— cosP —cos('P+x) +, eeH f-u u s111X -i g(8+@)
m' x 2m's du

I + u + ( &((~ ss)r&-(s /4s ~-
2m2s du J 2p ]' (144)

This is the general expression (to order o) of P((s)).
The T-dependent part of Eq. (144) is

d7 ((~ „s), i (7uZ)' m
(145)

where we have used the variable z of Eq. (113)and $ of Eq. (115). In the high-energy and weak-field limit,
the several variables are z -1, $-1, TuE-1. Therefore, the Gaussian function is close to unity and the
integral of Eq. (145) is reduced to 5(v —uE). Now the quantity in curly brackets in Eq. (144) can be ex-
panded in the same ways as those given in Sec. IIIB2. The subsequent u integration can be easily per-
formed, and we obtain
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Q pB co " dx . DE 4), s (d (d E,3 . 40 (dP(~) =-— —Im, exp -i —x' exp ———1-— x" 1 —ir —1 ——x'
m Z E „o x' eH E 3 E E eH E E

+ 2 I 2 + 2 1

2 oo f
C0 CO) nc" — ) —— c" nino' —n'n, )'c'cK' —c'conCC'I, (146

where we have defined the variables analogously
to Eqs. (43), (113), (115), and (117) with u re-
pla. ced by &u/E, i.e.,

When RverRged over the lnltlRl stRtes this ls the
first quantum correction obtained by Schwinger"
in 1954.

x'= —seH ACKNOW". EDGMENT

PB
1 — —8E

(148)
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of Ref. 16. One of us (W. -y.T.) would like to thank
Professor Thomas Erber for his encouragement
and for his continuous interest in this problem.

The integration over x' is immediate [cf. Eqs.
(119)-(121)j, and the result is APPENDIX: ENERGY EIGENVALUES AND

EXPECTATION VALUES

1. Energy Eigenvalues

+ — I —— K2~3 ('
The Dirac equation for a spin=~ particle in an

external field,

(m+yll)g =0, (Al)
(150)

which depends on g' a.s in Eq. (118). The total en-
ergy radiated per unit time is then

applied to a homogeneous magnetic fieM implies
the eigenvalue equation

(A2)

P (u&)d &d

d co 40 K„., (7))dq
)I

(151)

where, without loss of generality, we have chosen
H to be in the z direction and II~ =0. Now let )j), be
the projection of the field ))) onto subspaces of in-
trinsic parity where iy, has only unit element be-
tween them. Then we can decompose Eq. (A2) into

(Z-m)q, =P 11„)y (A3)

(E + m))t) = (a ~ II~)g+ „ (A4)

since

d(d (d I C0I = -m' — K„,(7I)dq+g' —K,q, ($')
317 0

1l3

= —,', o.m'T' (1 ——,",v3 T+g'T+ ~ ~ ) . (152)

which, when averaged over the initial states, is
precisely the same result as that of Refs. 3, 8,
and 20.

For all presently attainable experimental ar-
rangement, the parameter Y is very small. In
this case, we have

Qn eliminating the fields between the equations,
we obtain

(E' -m')y, = (v ~ II~)'))),

= (11~2 —eHqa3)g „.
Evidently, the energy eigenvalues are obtained by
assigning to & =go, an eigenvalue g'=+1, and, in-
dependently, introducing an eigenvalue for II~'.
The familiar one-dimensional oscillator problem
provides the latter spectrum
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(II~')'= (2n +1)eH, n = 0, 1, 2, . . .

and one infers the energy eigenvalues

(A7)

Z' = m'+ (2n +1 —g')eH.
(AB)

Note that, for the ground state of the system which
is characterized by the quantum numbers n =0 and
g'=+1, we have E = m. All other energy levels are
doubly degenerate.

( y II~) = (y )E -m

, eH=(2n+I -g') —.
m

Finally, from Eqs. (A11) and (A13), we have

g& =( y'( y'~))

(A15)

(A16)

2. Expectation Values

In the above discussion, no distinction has been
drawn in this account between the quantum num-
bers assigned to g+ and g . Since o, anticommutes
with c II» the eigenvalues assigned to g in the
two subspaces for a state of given energy must be
of opposite sign, with corresponding differences
in the eigenvalues of II~'. Thus, a more precise
description of the eigenvalues associated with the
energy, Eq. (AB), is given by

(g g')q —=0, [II ' —(2n+1)eH]q =0,

(g +g')g =0, [II~' —(2n +1 —2r„')eH] g =0,

(A9)

To evaluate (y'), the expectation value of y' be-
tween states satisfying Eq. (A2), we differentiate
Eq. (A1) with respect tom,

8
(m+yll) y+ 1-y' q =0,

Bm
(A12}

which implies

(A10)

which are summarized in the following charac-
teristics of the complete g field:

ygP=t;'g, II~ $=(2n+1 —g'+f)P.

3. Energy Eigenvalues Including Radiative Corrections.

The general eigenvalue equation including radia-
tive corrections is

(m+yII +M)g =0, (A17)

where M is given in Eq. (48). We first note that
Eq. (A17) can be rewritten in the form PL, 's are
numbers)

E 'P = y Q ~ +A.g +A ~y
' II~ +A. g y ' II~)(, (A18)

since M is a function of f, yII, y II, and &y II
only. The characteristic equation can then be ob-
tained by the method described in subsection 1 of
this appendix or by other methods. ' ' However,
to solve the energy eigenvalues from the resulting
characteristic equation is not a simple matter,
since the energy eigenvalues E' also appear in the
exponential factor [cf. Eq. (48)].

Nevertheless, if we are content with a solution
that is accurate to order e, we may first approxi-
mate the various quantities in M according to Eqs.
(AB), (A11), (A13), and (A15). In this way, M is
effectively replaced by its expectation value be-
tween states satisfying Eq. (Al), and is a pure
number. Therefore, the energy eigenvalues are
[with n~-m+M in Eq. (AB)]

E"= (m+ M)'+ (2m+I —g')eH

The expectation value of (y II ) can be obtained
from Eq. (A2):

(y'E —m —y II~) =0,

or

=E'+2mM,

mE'=E + —M

(A19}

(A20)

or where E is given in Eq. (AB).
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Recently, Schwinger was able to solve exactly the modified propagation function for the spin-0
charged particle in a homogeneous magnetic field. Here, we consider some applications of his result. In
particular, the energy shift, the total decay rate, and the quantum corrections to the classical radiative
spectrum are obtained explicitly.

I. INTRODUCTION

Recently, through the replacement of the photon
momentum integration by an algebraic procedure'
and the use of the proper-time method, "Schwinger
was able to obtain an exact expression (to order n)
for the modified inverse propagation function of a
charged particle in a homogeneous magnetic
field. ' The interest in this problem can be seen
both from the methodological point of view' and
from the applications of the result to the discussion
of synchrotron radiation in the cyclotrons and the
storage rings, ' and the high-energy strong-mag-
netic-field bremsstrahlung spectrum, which might
be of great importance to the astrophysicist. '

The applications of the spin-~ modified propaga-
tor to obtain the mass shift, magnetic moment,
radiative decay rate, and the power spectrum have

been considered by Yildiz and the author in the
preceding paper. ' As for the analogous spin-0
case, even though the modified propagator has
been evaluated by Schwinger in Paper I, there the
only application discussed is to reproduce the
known classical spectrum of radiation from the
quantum point of view. ' The purpose of this paper
is to extend the application of his result to include
the mass shift, radiative decay rate, and the quan-
tum corrections to the classical radiative spec-
trum by following closely the discussions of Paper
II.

II. MODIFIED PROPAGATION FUNCTION

In this section, we will review Schwinger's cal-
culation' of the modified propagator for the spin-0
charged particle in a homogeneous magnetic field.
One starts from the modified action term associ-


