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Quantization of Free Spin-Two Fields on the Light Front
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We show that the free spin-two fields, both massless and massive, can be consistently quantized on a
light-front surface, x + x' = constant. In this formulation, the massless theory is easily shown to be

the limit of the massive theory as m' 0.

I. INTRODUCTION

Quantum field theories may, in principle, be
quantized not only on spacelike surfaces, but

also on light-front surfaces. ' ' Several authors
have thoroughly investigated this alternate scheme
in quantum electrodynamics' '; they find that it
may be quantized consistently on light-front sur-
faces. Interacting scalar and Dirac fields have
also been considered and they too have consistent
formulations on the light front. ' The formal
equivalence of the equal-time and light-front quan-
tizations and their S-matrix expansions have been
demonstrated. '' In this paper we extend the work
to include free spin-two fields, our purpose being
twofold: (l) to show that, despite their added

complexity, we can formulate a consistent light-
front quantization of free spin-two fields by using
the Schwinger quantum action principle, and (2)
to demonstrate that the resulting theory for free
massive fields leads simply to the correct free
massless theory as we take the limit of vanishing
mass.

We are motivated to explore the quantization of
higher spins, such as spin two, because, even for
free fields, they present many tests of our quan-
tization procedure not encountered in the lower-
spin theories. Not only are they algebraically
more complicated, because they require many
more dependent fields in order to describe the
system covariantly, but also they are physically
more complex, as evidenced by the fact that the
Schwinger condition for the stress tensor densities
is not satisfied simply, but rather requires an ex-
tra nonlocal term. ' Moreover, there are compli-
cations which arise when we take the limit of zero
mass, and generally the proper massless theory
cannot be achieved by this limiting process.

We use Schwinger's quantum action principle' to
suggest the commutation relations among the inde-
pendent variables on the light front, and to describe
the I.orentz generators. This approach to light-
front quantization has already proved successful

for lower-spin theories. ' ' It is particularly use-
ful for finding commutation relations in theories
in which some of the field variables depend upon
the dynamical variables in a complicated manner.
Moreover, it is useful for finding reasonable com-
mutation relations on unequal-time surfaces where
we do not have the correspondence principle to
rely on. (Of course, in this particula. r example of
a free-field theory, we could use the limit on the
light front of the known covariant commutators to
suggest the light-front commutation relations, but
we prefer not to follow this procedure because the
method is not generally applicable, it does not
test the Schwinger method, and it does not indicate
the form of the Lorentz generators. )

Our description of the spin-two system in terms
of the I,agrange function and the field equations is
presented in Sec. II. At the same time we intro-
duce the notation and conventions to be used
throughout this paper.

Section III is devoted to the massless theory.
We discuss gauge invariance, the solution of the
field equations in terms of the independent vari-
ables, the light-front commutation relations
among the fields, and the proof of I.orentz invari-
ance of the theory.

The massive field theory is studied in Sec. IV.
We stress the importance of finding a set of in-
dependent variables for which the commutation
relations are diagonal. The solutions of the field
equations in terms of the dynamical variables,
the commutation relations, and the verification of
I.orentz invariance are all included in this section.

Having obtained consistent formulations for
both the massive and massless theories, we turn
in Sec. V to the transition from the massive
theories to the massless formulation as rn'-0.
It is demonstrated that, with a proper choice of
variables, we may easily extract in this limit the
massless spin-two system of Sec. III from the
massive theory of Sec. IV.

In Sec. VI we conclude with a few remarks con-
cerning the usefulness of the light-front quantiza-
tion.
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II. PRELIMINARIES

We choose a particular light-front frame to
quantize on, one. in which x'+x'=constant. " It is
convenient to use the variables previously sug-
gested by Susskind, "Bardakci and Halpern, "and
Chang and Ma." For any four-vector a" we define

a'= a'y a'

a=(a', a') =a'.
(2.1)

(2.2)

In terms of these components, the light front we
quantize on is defined by x'=constant.

The nonzero components of the metric tensor g"'
are given by

in terms of D no functions independent of x enter
the expression. For fields occupying the position
of A in (2.8) we choose the boundary conditions
A(x', x, + ~) =-A(x', x, -~) which correspond to the
Green's function c(x —y ). This choice of Green's
function has important consequences later when
we investigate the commutation relations among
the field variables.

The solutions to the constraint equations are
given by

A(x) = —, dy e(x —y )B(x', x, y ) =—(8„') 'B(x),

(2.10)

g' =g '= 2 g" = -5'~ C(x) = D(x) . (2.11)

or written in covariant form,
1

g+- =N-+= » ~ig = -~&g ~

The Latin indices can assume the values 1 or 2.
Henceforth we will write all tensor indices which
are not contracted as contravariant indices.

Then the scalar product of any two four-vectors
can be written as

Equation (2.10) defines the operator (s„') '.
Often our differential constraints will involve

more than one derivative (8„'). The solution can
then be rewritten by defining the product of dis-
tributions in terms of the Fourier transforms in
momentum space. ' For example if we have

F(x) =s„"s„Z(x)

a.b=a" b = —,'a'b + —2'a b' —a'b'.2 (2.3) we can write the solution as

Our conventions result in the following definitions
for derivatives:

8 1 9 29

8x~ g+ Bx Bx

e'= C)~8 =a+8 —O'O' =-8'8 —V'

(2 4)

(2.5)

where we have used the expression

2l» -«
l

= Jd» «(» -S )«b -«)

The four-dimensional volume element is

x= 2dx dx d x. (2.6)

Often we will need to integrate over only three of
the variables, hence we introduce the notation

der„—=—,'d ' xdx

It is also convenient to define

5'(x —y) -=5'(x —y) 5(x —y ) .

(2.7)

a„'A(x) = B(x) (2.8)

In our discussion we will often encounter differ-
ential constraint equations relating fields at the
same x'. Examples are

for the product of the distributions.
When we calculate generators, it will be conve-

nient to integrate by parts. In this paper we ne-
glect all surface terms, our reason being that the
field operator products in the generators are to be
interpreted as distributions which have meaning
only when smeared by proper test functions. This
is the procedure adopted in Ref. 6.

Spin-two theories have been discussed by several
authors. ' " In this paper the spin-two systems
are described in terms of the fields and Lagrange
functions used by Chang. " The tensor field is
described by a symmetric tensor Pg"'. We must
also introduce a, third-rank tensor "H" which has
the following properties:

a'„C(x) = S'„D(x), (2.9)
X~p IJ p JJ VX. Ij~ X.p 0

(2.12)

(2.13)
where A, B, C, and D are all fields. It will often
be necessary to solve for A in terms of B, and for
C in terms of D.

First we must specify the boundary conditions.
We assume that C(x) and D(x) have the same be-
havior as ~x~ - ~, that is, that when C is expressed

This additional field is employed to keep the La-
grange function linear in the gradient of the field
variables as required by the Schwinger method.
The Lagrangian density for a free spin-two field
of mass rn is then
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Z(x) = —.'(h„„s,)'H" —"a'"s,h„,)
.'(„H„—,"H""—a„a')

(2.14)

where we have used the shorthand notation h = h. „"

and H = "H„".The action is given by

(2.22) and (2.23) being the usual auxiliary equa-
tions, and (2.24) being the definition of the addi-
tional field variables. These equations, (2.22)—
(2.25), are all derived from the Lagrange function
and the action principle, without any further input.

III. THE MASSLESS THEORY

(2.15)

where o, and cr, are surfaces of constant x".
Application of the principle of stationary action

leads to the field equations:

aq~~a "~ —m'( h~" —g "'h) =0, (2.16)

2 "H' —(g"'H -g" H")+2(8'h" —8 h"') =0

(2.17)

5W„=G(x', ) —G(x',), (2.18)

where we have adopted the convention that, for
indices enclosed within parentheses, the first and
the last index are to be symmetrized, that i~,

())Hx. lj) ~ ())Hxv Uax)) )

In the Schwinger interpretation of the action
principle, we find the commutation relations among
the fields from the freedom of changing description
of the quantum system. The action must be invari-
ant under variations 5h~" and 6 "H" which obey
Eqs. (2.16) and (2.17). The generators of the uni-
tary transformations which induce the variations
5h"" and 6 "H'~ are found from the surface terms
in the variation of the action integral:

For completeness and for future reference we
present first the massless free spin-two field. "
Gauge invariance is discussed in Sec. IIIA. The
field equations are solved in terms of the indepen-
dent variables in Sec. III B. Sections III C-III E
are devoted to finding the commutation relations
and verifying Lorentz invariance.

A. Gauge Invariance

The Lagrangian density for the massless theory
is the same as (2.14) with m'=0. The field equa-
tions found from the principle of stationary action
are identical to (2.16)-(2.17) with m'=0:

2))H ))x + (g))xa v g)) vax) 2(s)jh))k s kh)))))

(3.1)

(3.2)

The action, and hence the field equations, re-
mains unchanged by the gauge transformation
induced by

(3.3)

provided that "II'~ transforms according to

))H)jx. ))H )/x (s )) s)) g)) )js 2)( x (s)) s )L g))xs 2)]))

(2.19) + (g"'&' -g"'&')(8.5') . (3 4)

-,'f5h~'= [h~'(x), G(x')],

—,
' i5"H" = ["H"",G(x')] .

(2.20)

(2.21)

1=0,
8 Q"'=0

pB ux. ~ x.I p v ~vgp x

(s'+ m')h"' = 0 .

(2.22)

(2.23)

(2.24)

(2.25)

These are the usual equations describing a spin-
two field h~', (2.25) being the equation of motion,

We emphasize that already, in deducing the field
equations and the generator G(x'), we have ne-
glected total derivatives 8' Bnd O'. We assume
that surface terms like these can also be neglected
in all subsequent calculations.

By straightforward algebraic manipulation, we
can easily show that the field equations (2.16) and
(2.17) are equivalent to the following set of equa-
tions, providing that m'g 0:

Incidentally, this gauge freedom assures us that,
in general, the field equations (3.1) and (3.2) can-
not be rewritten in the form (2.22)-(2.25) with
m'=0.

This invariance is very useful for finding a set
of independent dynamical variables. We shall
quantize the field in a gauge in which the field equa-
tions are particularly simple and the independent
variables easy to find.

Since we are using the so-called infinite-momen-
tum variables a', we choose the infinite-momen-
tum gauge h'"=0 for all p, . This gauge has the
advantage that the gauge requirements remain
unaffected by the transformations induced by four
of the six generators of the homogeneous Lorentz
group, namely

gi g+i L J 12

where J"' are the usual generators of the Lorentz
group [see Eq. (3.52)]. Only under transformations
induced by F' = J ' are conditions on the "+"com-
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ponents complicated by induced gauge transforma-
tion s.

For any other choice of gauge for h"', we reduce
the problem to solving the theory in the infinite-
momentum gauge by choosing the dynamical vari-
ables from a set h"' where k'"=0, all p, . This new
set of variables is related to the original fields by

+H ='H' ='H' = H"'=0 (3.26)

When necessary, these differential constraints
may be integrated and expressed in the form (2.10)
or (2.11).

From the combination of (3.14), (3.16)-(3.18),
and (3.21) we can deduce

Ii""=Ii"'+ 8 "("+s'&", (3.5) 'H" = -8'ti" (3.27)

where

g"= ks" (8') 'Ii" —(s") 'Ii"" (3.6)

B. The Field Equations and the Dynamical Variables

~-+H+- ~+ -H+- 48k(+Hk-)

H+ = -2~ H

(3.7)

(3.8)

+H+~ = 2/+(+H ' +4()"(+H"')

&
—( -H+i) 1&+ -H-i 2&k ( -Hk~)

~ -(|H+j) ~+ (;H-j) 2~k (;H kj)

e-I -' = e'a-- —-H-',

(3.9}

(3.10)

(3.1i)

(3.12)

8 Ii" =O'Ii '+iH '+ —,'5"[—,
' H+ +kH' ]. (3.13)

When p, =+ in (3.2) we obtain simple algebraic
constraints:

+H+ — kH +k
7 (3.14)

Having selected a gauge, we may separate (3.1)
and (3.2) into equations of motion, which describe
the x' development of the system, the equations of
constraint, which relate field variables at the
same x'.

Equation (3.2) is an equation of motion when p
=-+, X =-, and v=i, ; so is Eq. (3.1) when neither
p, or v is "+". These equations can be written as

The tensor Ii" is known to be symmetric and (3.27)
shows it to be traceless. Thus it represents only
two independent components and they are a possible
set of dynamical variables. We will express all
other field components in terms of h", instead of
choosing a particular two components.

Since the variables in (3.26) are now known to
vanish, two equations of motion, (3.7) and (3.9),
can be rewritten as equations of constraint. Note
also that Eqs. (3.15), (3.20), and (3.22) lead to
only two independent equations.

We can now find expressions for the remaining
field variables. From Eqs. (3.9), (3.24), (3.25),
(3.15), and (3.20) we find that 'H ' =0, as well as
finding expressions for II", 'II', 'H", 'H", and
h ' in terms of the dynamical variables h". Know-
ing these relations, we may obtain B + from
(3.7) and H'i from (3.23). We can solve (3.11) and
(3.13) for 'H i by using the expressions already
found for the other variables. Similarly we find
h from Eq. (3.19).

Finally, the last variable remaining to be found
in terms of the dynamical variables is H ', and
it can be extracted from Eqs. (3.12) and (3.10).
Equation (3.8) provides no new information; how-
ever„ it is consistent with all the other equations.

The expressions for the covariant field variables
in terms of the dynamical variables h'j are

-H+i +H ~

'H" =0,
+Hl j 0

(3.i5)

(3.16)

(3.17}

8+ +H+ —2e k+H+"
) (3.18)

The rest of the equations are differential con-
straints:

h'"=0 for all ~,
I —i 2(s+) -1(skI kl)

I
—— 4(s+) —

2(eke i@kl )

'H"'=0 for all p, , v,

H+ 4(s+)-1(skslIikl)

-H-i 2(s+)-2[2si(eksijikl) +2(ski'iki)]

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

Bh, =-2 H+ + H",
8+@ t tH. +

8+I ii iH+i x5ii[ & +H+- kH+k]
J r

s+I -i &[-Hi+ +Hi -] kHki

H'j=~ h ' —8'h ',

(3.19)

(3.20)

(3.2i)

(3.22)

(3.23)

-Hip 2(s+) -1[si (eke ki) e i
( h sk)]ki

'H'- = -H'* = -2(s'Ii")
fH+j ~+I ~j

iH jk 5ik(eiI !i) 5ii(eiI lk)

pe ij g jp ik

(3.34)

(3.35)

(3.36)

(3.37)

s 21 11 s 1I 12 & [1H 12 ~ +H-2 + -H +2)

slP 22 s2I 12 &[2H21++H-1+ -H+1]

(3.24)

(3.25)

iH-i (s+)-l[6ii(skslI kl) si(skI ki) i( salk)l ]k

(3.38)
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The equation of motion of the dynamical variables
was found when we solved above for iH ~. It is

—i5k ' =[8 '(x), G(x')], (3.45)

a -k' = (a') -'v'k" . (3.39)
we find for x' = y'

[kkl(x) S+kmn(y)] & f[5km5ln+ 6 k5nl m 5kl6mn]

Equation (3.39) implies that, for all field variables,

9'h"' =8' "a ' = 0 (3.40)

Inspection of the solutions also reveals that the
following equations are satisfied:

/Hvar

g
A.I Pv gvI PX

I =0,
8 "h„,=0.

(3.41)

(3.42)

(3.43)

Hence, in this particular gauge, the field vari-
ables obey Eqs. (2.22)-(2.25) with m'=0. We keep
in mind, however, that these equations can hold

only in a few special gauges. [The other gauges
for which (3.40)-(3.43) hold differ by a gauge
transformation which obeys au)u=0 and a')u=0. ]

C. Commutation Relations Among the
Dynamical Variables

n[x'[= l Jm, [k"a'n" -'n*'m"
[

The light-front commutation relations among the
fields are determined by relations (2.20) and (2.21).
The commutators involving independent variables
are the easiest to determine. In terms of the
dynamical variables the generator (2.19) is simply

x 5'(x —y), (3.46)

where we have assumed that 5h"' is a commuting
c number since A,

&' represents a field obeying
Bose statistics. We may rewrite (3.46) by using
(2.10) as

[kkl(x) kmn(y)]
& f[5km5ln + 5kn5lm 5k[5mn]

x —,'e(x —y )5'(x —y) . (3.47)

We now see the importance of using the Green's
function —,e(x —y ). Had we used another Green's
function denoted by K(x —y ), then K(y —x )
would replace ——,'e(x —y ) on the right-hand side
of (3.47). However, the left-hand side is antisym-
metric under the interchange of x and y; thus
K(x —y ) must also be antisymmetric. Hence we
are led back to the choice of K(x -y ) = —,e(x —y ).

The commutation relations among the field vari-
ables may be derived from (3.47) and expressions
(3.28)-(3.38). We need only consider the commuta-
tion relations among the fields Pg~v in order to com-
pare our quantized field with the field quantized
on the equal-time plane with the gauge A'"=0. The
commutators are expressed conveniently in the
form

d4k
[k"'(x),k "(y)]= —Jt, 5(k')e (k')

(27[)'

Then, using

g+I 0'i g kl (3.44)
&&

iu(x-y)PP vo7.
)

where, in terms of the vector n"=g'", we have

Pu o ~u(goug ~ +gu g o gu'g"')+ (nun"k'k'+n'n kuk
(n k)'

1

2(n k)
(g'"(nuk'+ n'k" ) +gu'(n'k'+ n'k")+ g"'(n" k'+ n'k" )

+ g"'(n'k'+n'kn) gu(n k—n' +n'k ) —gn'(nuk" +n'k")j.

It is easy to verify that P"' " equals the sum of
possible polarization tensors in this gauge;

P '"=Qeu'(k, A)e "(k,Z),

where eu'(k, A) are traceless and symmetric and
obey

n„eu'(k, A. ) =0,

e„„(k,X)eu"(k, A') =5~~',

k„eu'(k, A) =0.

Thus our quantization procedure gives the same
results we would obtain by writing the massless
spin-two field in the gauge h'~=0 in terms of op-
erators which create and destroy particles of mo-
mentum k~, helicity A. , and spin 2.

D. The Lorentz Generators

We could demonstrate Lorentz invariance by
reverting to the generators defined as integrals
over on equal-time plane; however, we prefer to
express the I.orentz generators as integrals over
the light front. We will need these new expressions
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when we consider the massless limit of the mas-
sive theory.

The ten Lorentz generators are constructed
from the stress tensor density T, which is de-
fined as a measure of the response of the system
to a spacetime displacement.

(3.48}

(s +h k l
)(8+h k l

) (3.57)

r
z' = — do„x*(s'h"')(s'h"), (3.58)

generators are rewritten in terms of the dynamical
variables

5W= — d x T""8„5x, . (3.49) (3.59)

Defined in this manner, T~' can be chosen to be
symmetric and it is conserved. Using standard
procedures we find for the massless field"

+8 r~~&~ p'& +'Il(["~q'& &vII'& q»0 0 gjs

[xl(s+hkl)(s+hkl)

k(s+hkl)(s+hkl ) 4hkls+hkk]

F' = )tdo„[x (8'hk')(s'hk')

(3.60)

(3.50)

where we understand that the bilinear products are
always properly symmetrized; that is, h~"„H~,
means —,

' [h"' „Hz „+„Hz„h &"].

The definitions of the energy-momentum and
angular momentum operators, written in terms
of the stress tensor densiti. es, are

x'( s+ h")(s h") 4(skh")h" ] (3 61)

where we have taken advantage of the known ex-
pression (3.39) for s h".

For a ground-state vacuum to exist, the x+ Ham-
iltonian operator, P, must be positive definite.
It indeed satisfies this criterion:

P = da -h"V'h. "
P"(x') = do„T'",

J ~"(x') = da„(x~ T+' x"T'") . -
(3.51)

(3.52)
gmI A, l gmI kl ) 0 (3.62)

K, =-,J '= do (, x T"), - (3.53)

F.' =J"= — da x'T" (3.54)

Since Tt"' is conserved, it is easy to show that the
Lorentz generators (3.51}and (3.52) are constants
of the motion. Thus they may be defined on any sur-
face where x' = constant. For convenience we choose
x+ = 0. Then the generators normally associated
with an infinite-momentum frame are P]' and

There is a similar requirement on P', since P'
&0 for all states, and it is also fulfilled:

(3.63)

Another requirement is that the vacuum expecta-
tion value of the equal-x' commutator [is A, A],
for an arbitrary operator A, be positive definite. "
For those A(x') which are linear in the dynamical
variables, the relation is easily verified.

Let

g12
~ do (xl7 +2 xkT +I) (3.55) A(x') = I do„f"(x)h" (x),

+'=J '= da„x T" -x'T' (3.56)

In order to calculate commutators, the Lorentz

where f"(x) is a numerical function which can be
chosen to be both symmetric and traceless. Then
we find the operator equation

[is -A(x'), A(y')] = do„do„[f"'(x)f"(y) —-'f"(x)f"(y)](B„') '(V„' —m )(s',)-'5'(x —y)

do.(((s.') '& f"'( )x)((&.') ' s f"(x)&+~'[(&.') 'f"( )x][(&:) 'f"'( )1x]».

E. Lorentz Invariance

For our theory to be consistent, we must verify
that the generators defined in (3.51)-(3.56) have

the commutation relations that the Lorentz gener-
ators must satisfy. To that end, we first calculate
the commutators of the dynamical variables with
the generators:
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P "(x},P ]=2S"I"(x),
[a"'(x),z*]= -2x-s'I "'(x),

[h"(x), K,] = —,
' ix s'12"'(x),

[@»(x) I ]
—2[x1s 2 x2s 1])2k)(x)

+ 2[gk212l 1(x) + Ql 2' lrl(x)]

2[5klI l 2+ 6!1I k2]

[Il '(x), E'] =2'[x 8' —x'8 ]Il"(x)

(3.64)

(3.65)

(3.66)

(3.67)

A. Commutation Relations Among the Field Variables

I ~=0

e~'I ~'=0

PH vX ~ XI tIv ~vI PX

(8'+ m')l2"' = 0.

(4.1)

(4.3)

(4.4)

When the spin-two field has mass, the field equa-
tions can immediately be recast in the form

+ 2[5"h '(x-)+ 5" I) '( x-)]

22(()') -'[s'I "+ s'I2 "] (3.68)

We can treat (4.4) as the equation of motion:

() -h2'= (s')-'(v' —m')Il"'. (4.5)

Thus h~' transforms like a second-rank tensor
under P", F.', K„and L, The generator F' does
not preserve the gauge requirements, so that
transformations of h"' induced by F' must be ac-
companied by a gauge transformation

@k'-a" —s'g' —a'q',
with

gk 22(S+)-11 ik

(3.69)

(3.70}

We now complete the tedious task of verifying
the I.orentz in~ariance of this formulation of the
massless spin-two field by showing that the gen-
erators have the correct commutation relations
among themselves. They are

[p", p") =0, (3.71)
i[p",Z"']=-gau p"+ aupu (3.72)
&[~)ru ~a)r] +)ra~) u+g)r )rgau uag)r), +rr)~)ra

The third-rank tensor "H'~ also obeys the same
equation of motion. Thus we may choose any five
independent fields from h"' and "H' as our dy-
namical variables. All the other variables a,re
then defined by the equations of constraint (4.1)-
(4.3). It is easy to solve these equations to find
the covariant field variables in terms of any inde-
pendent variables, but most sets of dynamical
variables have complicated commutators among
themselves. Since we have a large number of
commutators to evaluate, we require a set of
variables which has simple commutation relations.
A set which diagonalizes the generator matrix is
ideal.

The simplest method of finding this ideal set of
variables is by trial and error. A set with the
required properties is p", 'H'", and C", where

Ckl —
[ +S( kffl+) S ( 2+If1)+]

(3.73) L5kl[S+mff+m Sm+ff+m] (4 6)

Our massless theory is thus shown to be I,orentz-
invariant, and to satisfy the positivity require-
ments.

IV. THE MASSIVE THEORY

The field equations for the massive theory are
easy to solve in terms of five independent vari-
ables. However, most choices of independent
variables are impractical for evaluating commuta-
tors. In Sec. IVA we find a set of' dynamical vari-
ables which have diagonal commutation relations,
and we use them to find the commutation relations
among the fields. The expressions for the Lorentz
generators in terms of the independent variables
are derived in Sec. IV 8, and I.orentz invariance
is verified.

Note that g" is both symmetric and traceless, as
h ' is in the massless theory. In order to mini-
mize the number of "+"derivatives which appear
in the commutation relations and in the I orentz
generators, it is preferable to use the following
independent variables:

(S+) -2I ++

Pk (()+)-2+fan +k

(s+)-2( kl

(4.7)

(4.6)

(4.9)

All the field variables can be rewritten in terms
of these variables. These expressions for Pg'" and

are given in Appendix A.
The generator is, as promised, diagonal when

expressed in these variables. It is given by

G(x+) —1 do [( ++5 -ff +- I +-() +If +- 4J +k5 (-f1+k) 2I -k6 +If +k 4p k!5 (kff +1) -If+-5I ++ +~+-g +-

+ 4 ( ff +k) y +2 + 2+fan
+k g lr (kIf +l ) @kl

]
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From the expression of the generator in terms
of the independent variables, the commutation
relations among the dynamical variables follow
from

Similar expressions involving "JI" can easily
be derived by using (4.3); they will not be repro-
duced here.

—,
' iBf(x) = [f(x), G (x') ], (4.11)

B. The Lorentx Generators and Their
Commutation Relations

where f(x) is any of the dynamical variables, and
5f(x) is treated as a commuting c number.

The commutation relations are found to be (for
x' = y')

The stress tensor density used to define the ten
Lorentz generators is found by the standard meth-
od" to be

T)rv & g)rrrB (mfa)r BI ) ff ()rBav)I )r

[n(x), n(y)] =—,—,'e(x —y )5'(x —y), (4.12) +8 ~'I'a'"'h. ' +'II'~%"' + a'I"'h"' ~+ a+ G a& '

(4.20)

y~~(x) y~(y)] i[Bnm6)n + rt)knrB ™BklBmn]

x 4e(x —y )5 (x —y) r (4.14)

[n(x), P"(y)] =[n(x), y" (y)1 = [P"(x),r "(y)1=0 (4»)

I.P'(x) P'(y)] = — .~"'-'e(x —y )~'(x —y), (4 ») It is a lengthy calculation to express the genera-
tors of the Lorentz group in terms of the dynamical
variables. The expressions are simplified, how-
ever, by defining the function

R)' = —,
' m'(8'n)(8 "n) + 2 m'(8'P~) (8"P")

It is only a matter of algebra to find the commu-
tation relations among the field variables with
definite transformation properties. Qnce found,
these relations can be rewritten in the simple
covariant form:

[I v '(x), I "(y)]
1

=I -'(g"'g" +g" g"' —' g"g' )-
1

+ . (g)' 8'8'+g""8'8~+g""8" 8' +g"' 8" 8~)
2m'

1
(g)rvB XB a+g )aB)rBv) + 8)rBvB XB a2

3m2 sm'

+ (8+ al)(BP nI)

Then the generators are given by

P~ = der„R" (x),

E' =J "= do„x'R'(x),

Z, = -', J-'=, do, x If'(x), -

I, =Z"= do [x%'(x) —x'a'(x)

+ 4m'P'8'P'+ 4) "8'y"],

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

x b, (x —y),

where we have used the invariant function

d'k
h(x —y m') =i 6{k'—m')e(k')e" * '

(2)) )'

(4.16) do„[x It '(x) —x'II-(x-)

+ 12m'nP' —8m'(O'P')P'

—8m P'y" —8y" (8 "y ')]. (4.26)

which has the following properties:

8„' a(x —y) I„, ,+ = -83(x —y),

(4.17)

(4.18)
~(x —y) I„. ..= -4e(x- —y-)B(x -y),
8 b, (x —y, m') =(8„') '(V„' —m')h(x —y). (4.1&)

The second property shows that the expression
(4.18) has the proper i)-function character on the
light front, while the last expression indicates
that the equations of motion for the fields and for
b.(x —y, m') are the same. Hence we can express
the commutator in terms of b, (x —y) for all space.

At this point we can identify our quantized field
as being the same as the one found from quantizing
on an equal-time surface since the covariant com-
mutation relations are identical.

We must verify that these expressions do indeed
have the properties required of the Lorentz gener-
ators. First we note that, as required, both P'
and P are positive definite. Likewise, the com-
mutator (Ol[iB A, AJIO), where A is an arbitrary
operator, can easily be shown to be positive for
operators linear in the dynamical variables. It
remains to show that P" and J"' do in fact generate
Lorentz transformations.

For calculational purposes, we first evaluate
the commutation relations of the dynamical vari-
ables with the Lorentz generators, and express
them entirely in terms of the dynamical variables.
These results are given in Appendix B.

In order to verify Lorentz covariance, we must
find the commutation relations of the field vari-
ables and the Lorentz generators and express them
in terms of the covariant field variables. These
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relations for the field variables with definite trans-
formation properties, h"" and "IJ', can be ob-
tained from the expressions in Appendixes A and
B. They are found to be the relations required for
the interpretation of P" and J""as the Lorentz
generators. These relations are expressed most
easily in the covariant form as

[y(x), s,'y(y)] = i5'(x —y), (5.4)

IX"(x) s;X'(y)j =i~"5'(x- y), (5.5)

[( lk(X) S+~mn(y) j
l i[5km5ln+ 5kn5lm 5kl 5mn]

The commutation relations among these variables
are (for x'=y')

['H ",S"] = is,' "a"(x),

[h2'(x), I '] = ie„'h2'(x),

[h2 "(x),J "]=i(x'8'- x"8')h2 "(x)

(4.27)

(4.26)

x 5'(x y), (5 6)

[V(x), y"(y)j = [q (x), ( "(y)]= h'(x), ~ "(y)] = 0 .

(5.7)

["a'(x) Z"]

+ i[h2'(x)g" + g2'h""(x)]

—i[g"'h "(x)+ g"'h"'(x)], (4.29)

=i(x's' —x's ) "a'"(x)

+ i['H"'(x)g" + "12T'"(x)g~ + 'H '(x)g"']

—i[g"' 'a '(x)+g~' "ll"(x)+g"™a'(x) j.
(4.30)

By the use of (4.20) —(4.23), it is straightforward
to obtain the commutation relations among the
generators themselves. They are indeed the ones
demanded by Lorentz invariance:

There are no mass terms on the right-hand sides
of these relations; thus they remain unchanged as
we let m'-0.

Inspection of the commutation relations (5.4)—
(5.6) reveals that y, yk, and $" have commutation
relations identical to those that the dynamical
variables of massless scalar, vector, and tensor
fields, respectively, have when they are quantized
in the infinite-momentum gauge. Equation (5.7)
shows that the three systems are independent.
Since the dynamical variables all obey, in the
limit of vanishing mass, the same equations of
motion as the independent variables of the mass-
less theories quantized in the infinite-momentum
frame, that is,

(4.3l) s2+ s2 k s g
2kl0 (5.8)

(4.32)

[g l& » goT] 2[g l&ng T» g» &&g l& T g l&Tg&&&g»T&gl&&&]

(4.33)

This completes the discussion of the massive
spin-two field. We have omitted such topics as
finding the covariant Green's function and showing
that the system represented is indeed a spin-two
system. These calculations can be done without
reference to the frame of quantization, "so their
inclusion here would be redundant.

V. THE MASSLESS LIMIT OF THE MASSIVE FIELD

It is easy, in the foregoing theory, to take the
limit as m'-0. ' We must, however„be careful
to use dynamical variables which correctly de-
scribe the 5 degrees of freedom of the massive
field in this limit. To this end, some of the dy-
namical variables must be rescaled in order to
avoid singularities in their commutation relations
caused by the vanishing of the mass. We define
the new set of independent dynamical variables
as follows:

we may construct from them the three massless
theories. The auxiliary fields used in the covari-
ant formulation are defined in terms of the dynam-
ical variables as the solutions of the usual con-
straint equations. For example, we define the
auxiliary fields used in the massless spin-two
theory through Eqs. (3.28)-(3.38) with hk' replaced
by $". The stress tensor and the ten l,orentz
generators are constructed similarly from the
dynamical variables. We shall refer to these gen-
erators of the Lorentz transformations as I' ~~ and
J~' for the scalar field, P~ and J~" for the vector
field, and P( and J 2&' for the tensor field.

The fact that many of the field components of
and h."' diverge as m- 0 does not concern us.

The degrees of freedom are correctly described
in this limit by the rescaled dynamical variables,
and the auxiliary fields necessary to make the for-
mulation covariant can easily be defined as men-
tioned above.

We now turn to the massless limit of the Lorentz
generators of our massive theory. We find that,
as the mass vanishes, all the generators decouple
into three independent parts. They are given by

cp
= (—')'2m2l2

X"=&2mp",
l&l

(5.l)

(5.2)

(5.3)

lim P ~= I ~ + Z~+ I ", ,
m2~ 0

(5.9)

(5.10)
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where (P ~~, Z)~), (P"„,4"„"), and (P"&,J~&') are the
generators of the massless theories mentioned
above.

We thus find that our massive theory splits into
three totally independent massless theories when
the mass vanishes; each of them is identical to
quantizing one of the usual massless theories in
the infinite-momentum gauge. Since the systems
are decoupled, the contribution to the generators
of the lower-spin systems can be subtracted,
leaving only a massless spin-two theory identical
to the one we described in Sec. III. This decou-
pling of the additional degrees of freedom as m2

-0 is similar to the decoupling of the longitudinal
and transverse degrees of freedom in the mass-
less limit of the massive vector field.

VI. COMMENTS ON LIGHT-FRONT QUANTIZATION

The foregoing study illustrates the well-known
fact that only half as many independent components
are needed to describe a system on the light front.
For a field theory with several independent vari-
ables, the reduction is enormously helpful. We
also verified that the Schwinger approach is valid
for spin bvo, despite the added complexity of the
field.

The study of spin two illustrates a new advantage
of quantization on the light front —the limit of
vanishing mass is particularly transparent in the
variables suggested by our quantization technique.
The light front thus appears to be the natural
frame in which to quantize massless particles.
It should be pointed out, however, that the gener-
ators defined in our discussion are the same as
one would find in the usual equal-time theory. Our
assumed boundary conditions and the definitions
of the generators in terms of the conserved stress
tensor are sufficient to guarantee the equivalence
of these two theories. However, the light-front
formulation does help us to find the set of vari-
ables —the ones which diagonalize the generator
matrix —for which the Lorentz generators have
simple decompositions as the mass vanishes.
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APPENDIX A

I ++ (8+)2n

Il' = [(V'+m') n —28kPk],

I"=8+[8'n —P'],

(A1)

(A2)

(AS)

Il ' = (8') '[(V'+ 2m')a'n —28'8'Pk

—(V'+ m') P' —28'y" ], (A4)

I jj =[8'8'n+ —,'m'6" n —y" —8'Pj —8'P'], (A6)

Ij = (8+) '[(V'+4m'V'+m')n 4(V'-+m')akP'

48 ka l kl ]
+H +'I (8+)2P{

'H'- = 2(8')[akPk —m'n],

(A6)

(A7)

(AB)

( H'") =8"[y "+ -'(8 P" +8"P ) ——'6 "m'n] (A9)

"H'-' = [8'8'p' 2m'8'n

+ 28'y" + (Sm'+ v')-,'P'],
-H'- = (8') '[2(sm2+ V') akpk

(A10)

+ 48"8'y" —2m'(m'+ 2V')n], (A11)

(iH-j) (8+) -1[8 28 la j n

+ —,'(v' —Sm2)(8'pj + 8'p*)

-28ja'8"p —2(V —m )6'jm n

+ (v' —m')y"

aiak kj 8 jak ki]

(+Hjj) (8+) 1[16ijm-2n+ laiPj ajPi 1 yij]

(A12)

(AIS)

(-Hij) (8+)-1[ 5 8ma2ijn16+ij(V2 m2)m2n

~ aiaja p klk(V2 m2)yij

—V'ajp'+ 2(Sm2+ V')a—'pj

ala kyk~ + 28ka jyki']

(+Hi-) a la krak
~128 i n PaPE akyki

(+H —i) [ 5 m28 ln 28 jakpk
2

(A14)

(A15)

+ —.'(V'- 2m 2)P* —8"y"], (A16)

H ' = (8') [2m 2(v +2m'2)a' n —2(V'+ Sm2)8'akPk

+ (V'- m') p'+ 2(V'- m')8'y"

48iaka l kl] (A17)

generators in terms of the dynamical variables.
We therefore write expressions for the symmetric
combination "~', since this is the form that
appears in the generators. The expressions are

In this appendix we list the expressions for the
covariant field variables in terms of the dynamical
variables cy, P', and y '. These relations are used
in the tedious calculations to find the Lorentz

(kH il) 8 1 kl 1(al ik iak il)

+ —'m [8'6 '+8 ()" —28'{)"']n

+ 1 aka sPI 18 la lPk 8 la kPi (A18)
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APPENDIX B

Ne record in this appendix the commutation re-
lations of the dynamical variables with the Lorentz
generators. We express the commutation relations
in terms of the dynamical variables rather than
the field variables with definite transformation
properties since they are the easiest to calculate
with. The transformation properties in terms of
field variables can easily be recovered from Eqs.
(4.27)-(4.30), if they are desired.

The commutation relations are found to be

[y"(x), r.,] = i[x's' —x's']y"(x) —i[~"y"+ d"y"']

+ i[d' y" + ~"y"),

[o(x), F '] = i(x s' —x's ) n(x) —4i(s') 'p'(x),

(as)

21' ki
( S+) le mpm(x)

—2i(s") 'skp'+2i(s') 'y'*, (as)

[p'(x), F']=i(x s' —x's )p'(x) —i3m'6"(8") 'a(x)

[f(x),P "]=isl'f(x),

[f (x), Z'] = —i x' sf ( x),

[f(x),K, ] =ix —,'s'f(x),

where f(x) may be any of n, P", and yk'.
The remaining relations are

[a(x), I.,] = i[x's' —x's'] o.(x),

[p"(x), E„J= i[ 'xs' —x's']p'(x)

itlklP2(X) idkkp1(X)

(al)

(a2)

(a3)

(a4)

[y"(x), F '] = i(x-s' —x's -)y" (x)

+ 2im(s+) 1[gikp-l ~ gl lpk gkl pi]

+ 2i(S+) -1[Sm ml ski + Ol le m mk

el kl Sk ti] (a9)

From relations (al)-(a9) and (Al)-(A1S) express-
ing h"" and "II'" in terms of the dynamical vari-
ables, we obtain the commutation relations be-
tween the covariant field operators and the Lorentz
generators given in the text by Eqs. (4.27)-(4.30).
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