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~Equation (3.4) has a classical analogy. It is formally
identical to classical equations for the orbit of a
particle in the potential V. Of course, for classical
motion to occur we must have E &V, while in the
quantum-mechanical tunneling problem E & V. Thus
our most probable escape paths are analytic continua-
tions of the classical orbits,
In a problem with a continuous symmetry, such as
spherical symmetry, the set of MPEP's will of course
be continuous. This happens in our problem only when
e =1. When c & 1 (and a = b =1) we have four paths
because of reflection symmetry in x and y.
T. Banks and C. M. Bender, following paper, Phys.
Rev. DB, 3366 (1973).
It is also easy to show that these are the only straight-
line solutions of Eq. (3.4).
This transformation is of course motivated by the

direction of the MPEP's for c&1 (they meet the x axis
at 45' angles). See Sec. III.

~iSee the Bateman Manuscript Project, IIigee~ T~ans-
cendentaE I'unctions, edited by A. Erdelyi (McGraw-
Hill, New York, 1953), Vol. 1, p. 121, Eq. (1). This
work is referred to hereafter as BMP.
We are of course free to choose any linear combin-
ation of P ~i (zv) and &, (u)). It is most convenient and
simplest to make the choice in Eq. (4.21) because it is
easy to argue that o.2, the separation constant for
Eq. (4.23), vanishes. For choices other than that in
Eq. (4.21) there may be an integral over separation
constants.

~3See Ref. 18, Sec. II.
4BMP, Vol. 1, p. 163, Eq. (8).

~~BMP, Vol. 1, p. 145, Eqs. (20) and (23). There is
an error in Eq. (23) which we have corrected.
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We develop a general formalism for calculating the large-order behavior of perturbation theory for
quantized systems of unequal-mass coupled anharmonic oscillators. Our technique is based on a
generalization of the semiclassical approximation which was used to study equal-mass oscillators in the
first paper of this series. The unequal-mass problem is much more difficult because the path which
minimizes the classical action is not a straight line. Assuming that this tunneling path is known, we
derive a general expression for the physical-optics approximation to the wave function of a tunneling
particle. This derivation rests on the construction of a WKB approximation in curved space. We thus

completely reduce the general quantum problem to the much simpler classical one of determining the
path. Then we present a perturbation scheme for finding the classical path for systems of oscillators
~hose masses only differ by a small amount. Finally, we illustrate our techniques by solving a
two-mode unequal-mass oscillator and comparing these results with a computer calculation. Our
theoretical predictions and numerical calculations agree.

r. wTRoDUcrroN

In the first paper of this series, ' we developed
a method for computing the large-order behavior
of the perturbation series for the ground-state
energy of a system of N equal-mass coupled an-
harmonic oscillators. The method employs an
extension of the semiclassical (WEB) approxima-
tion to multidimensional systems. However„be-
fore we can make the %KB approximation we must
find the particular solutions of the classical orbit
equations which make the action integral j(V- E)'~'
both a local and global minimum. ' ln general, it
is very difficult to solve the classical equations,
but in BBW I it was shown that for equal-mass
oscillators the MPEP's are straight lines. In the

present paper we will investigate the more diffi-
cult problem of computing the large-order behav-
ior of perturbation theory for systems whose
MPEP's are not straight lines. To demonstrate
that our techniques work in such situations, we
completely reduce the calculation of the large-
order behavior of perturbation theory to the clas-
sical task of finding the MPEP.

Our interest in curved-path problems is not
merely academic, for we are ultimately interested
in quantum field theoretic perturbation series.
The (P')„ field theory with spatial and ultraviolet
cutoffs is equivalent' to a system of unequal mass
anharmonic oscillators. The "masses" in this
case are just the energies of the modes of the
field. It therefore seems likely that any attempt
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to extend our work to a real quantum field theory
will have to deal with the problem of curved paths.

The work which. we present here is a first step
in that direction. Section II gives a formal solu-
tion of the problem, assuming that the MPEP is
known. Specifically, we show how to compute the
physical optics (first-order WEB) approximation
to the wave function of a tunneling particle in
terms of the MPEP. The expressions we derive
are surprisingly simple and bear a remarkable
resemblance to the expressions we found in the
straight-line MPEP case treated in BBW I. As in
BBW I we obtain a Hiccati equation which deter-
mines the thickness of the tube surrounding the
(curved) MPEP. In Sec. III we use a perturbative
approach to formally attack the problem of finding
the MPEP. We study potentials of the form V =U,
+qU„where U„has straight-line MPEP's and g
is small. We obtain a perturbative expression for
the MPEP and derive a compact form for the geo-
metrical-optics approximation to the wave function
valid to second order in q.

In Sec. IV we apply the general techniques of
Secs. II and III to the specific potential

V = —,'(x'+ y') + —' A(x + y + 2cx y ) + —'
qy

We calculate the large-order behavior of the
ground-state-energy perturbation series (a power
series in X) to second order in q. Section V gives
a comparison between the theoretical predictions
in Sec. IV and extensive computer calculations.
The agreement is excellent.

x
I

FIG. 1. The coordinate system suitable for describing
the most probable escape path.

where s is the path length. Since we are interested
in the region surrounding the MPEP, it is conve-
nient to introduce a suitable curvilinear coordi-
nate system. We take one coordinate to be the path
length s and the other to be the perpendicular dis-
tance n from the curve (see Fig. 1). Of course,
this is only a local definition valid for small n.
It will not be necessary to describe the global
nature of the coordinate system.

The tangent vector to the curve is

[p|'(s) p2'(s)]

This vector is a unit vector because

dx'+ d~ '

II. TUNNELING ALONG CURVED PATHS

In this section we present a formal semiclassi-
cal treatment of tunneling along a curved path.
For simplicity, we consider only two-dimensional
problems defined by

(—V + V —E)g =0. (2.1)

x= P,(s),

y = y, (s), (2.2)

As explained in BBW I, the wave function is con-
centrated in a narrow region surrounding the most
probable escape path (MPEP), which is the tra-
jectory that minimizes the action integral
j(V —E)' '. We emphasize that although the MPEP
may be curved, it is assumed to be known. Find-
ing the MPEP is a difficult but classica/ problem.
Thus, in this section we show how to reduce the
quantum-mechanical problem of tunneling to a
purely classical one.

We suppose the MPEP to be given parametrically
by

x = P, (s) —ny, '(s),

y = y, (s) + ny, '(s) .
(2 3)

Again we emphasize that these relations are local
and must be altered for sufficiently large n.

To solve Eq. (2.1), we will need an expre'ssion
for the scalar product of two vectors in the (s, n)
coordinate system. This is most easily obtained
in terms of the metric tensor g„„, which is given
in the (s, n) coordinate system by'

(-.":)' (:-')'
Bx Bx By By
Bn Bs Bn Bs

Bx Bx Bg BY
Bn Bs Bn Bs

(2.4)

A unit vector normal to the curve (that is, to the
tangent vector) is

[-p '(s), p '(s) j .
Hence the relation between the (s, n) and (x, y) co-
ordinate systems is
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g2, in Eq. (2.4) may be simplified using the rela-
tions

approximately one-dimensional region. We expand
V —E, S, and A as power series in n:

BX II—nQ1 2

Bg—= Q2'+ ng1",

V —E = V2(s) + n V, (s) + n'V2(s) +. . . ,

S = S,(s) + nS, (s) + n'S, (s) + n'S, (s) +. . . ,

A =A,(s)+. . . .

(2.12)

(2.18)

(2.14)

BX

BQ

Bg
Bn

We obtain

Z..=l+2n(e. '0," —0,'A.")+n' [(0,")'+(e,")']

We will assume that the linear term S, in the ex-
pansion of S vanishes. This is the first place
where we use the assumption that P(s) describes
an MPEP. We expect the amplitude to reach a
maximum on the MPEP and to fall off exponentially
on either side. This is not true if S,c0.

Using the expansion in Eq. (2.13) and Eq. (2.6),
we express the scalar product (VS)' as

= (1+np)2,
(2 5) g""V„SV,S=(1+np) 'S, '+S„'

= S0' —2Pn$0'

g" =(1+np) ',

+ns

(2.6)

where p, the curvature of the path, is given by
The off-diagonal elements of the

metric tensor vanish because Eq. (2.8) describes
an orthogonal coordinate system. Finally, we
observe that the reciprocal of the metric tensor
is given by

+ n2(8 p'S,"+2S,'S, '+ 4S,')

+ 0(n') . (2.15)

/P V0 0 )

-2pS,"=V, ,

3p'S ' +2S '$ '+4$ '= V

(2.16)

The first of these equations has the familiar
solution S2' =+@V2, when

Matching powers of n reduces the eikonal equation
[Eq. (2.9)] to three equations:

Having established Eq. (2.6), we proceed to find
the WKB approximation to |tt in Eq. (2.1). Substi-
tuting

So=+ vV~ ds. (2.17)

y=Ae '
into Eq. (2.1) gives

(2.7)

-V'A+ 2VA VS+A O'S-A(VS)'+A(V —E) =0.

We choose the plus sign because we are describing
tunneling. The wave function P should decrease
with increasing path length.

The second equation may then be rewritten as

(2.8)
V,

2V0
(2.18)

(VS)'= V-Z

and the transport equation

2VA VS+AV'$=0.

(2.9)

(2.10)

We have disregarded the term V'A. We simplify
Eq. (2.10) by multiplying by A:

V (A'VS) = 0 . (2.11)

The n-dimensional eikonal equation is very hard
to solve in general. However, we need only solve
it in the neighborhood of the MPEP, which is an

The WKB approximation follows from the assump-
tion that $' and V —E are large and of the same
order of magnitude. Equating powers of S gives
the eikonal equation

f + 2V 1/2S 2 V -1/2(V 8p2V ) (2.19)

To convert Eq. (2.19) into a linear second-order
differential equation, we substitute

S, = —'V '/ u'/u. (2.20)

This equation relates the path directly to the po-
tential and makes no reference to g. We therefore
view Eq. (2.18) as a consistency condition for our
approximation scheme. This condition arises be-
cause we have assumed that S, =0. In the Appendix
we show that Eq. (2.18) is a consequence of the
classical equations of motion [the Euler-Lagrange
equations of 6J(V E)'/2=0]. Thus, -our approxi-
mation is valid along classical paths.

The third equation is a Hiccati equation:
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Then,

u" + 2(Vp'/Vp)u' = u(V2 —3p'Vp)/Vp,

or in self-adjoint form

(11/V 1/2) I + 11(3p2V 1/2 V V -1/2) 0

(2.21)

(2.22)

This equation can be further simplified to Schro-
dinger form by introducing the new independent
variable

t(s) = dS t/0 (2.23)

We obtain

d'
—2u+u(V2 —3p'V, ) =0. (2.24)

We have thus reduced the computation of S„whicsh
describes the thickness of the beam of probability
current, to the solution of a second-order ordinal
differential equation. In BBW I, where we con-
sidered only straight-line (p = 0) MPEP's, Eq.
(2.22) was an associated Legendre equation.

This completes our study of the eikonal equation.
The transport equation [Eq. (2.11)]need only
be solved to zeroth order in n. In this order it is

—[A,'S,']+ 2S,Ap2 = 0
ds

or (2.25)

+2g y -»2~=p

where

g 2y j/2
0 0

Hence,

(2.26)

and

s
B= ( conts)ex p-2 j S,V, '/'ds,

L

A, =(const)V, ' 'U ' ', (2.27)

where u is defined in Eq. (2.20).
Combining Eqs. (2.7), (2.13), (2.17), (2.20), and

(2.27), our final WEB expression for the wave
function is

Is I//2
( t)V-/ -/ -f Fe-nFp2

(2.28)

where u satisfies Eq. (2.21). To define u (and
thus tf) uniquely, boundary conditions must be
imposed on Eq. (2.21). These are determined by
matching g asymptotically to the solutions of Eq.
(2.1), which are valid outside the tunneling region.
The matching procedure is exactly analogous to
the one for straight-line MPEP's described in
Sec. IV of BBW I.

and requires no knowledge of u.
The second difficulty, that of actually determin-

ing the MPEP, is more serious and we have not
found a general way to avoid it. It might at first
appear that the classical equations may be treat-
ed perturbatively for small A. . However, as we
show in Sec. III, this is not true. A simple scaling
of the dependent and independent variables com-
pletely eliminates the anharmonic coupling con-
stant' from the classical equations, leaving a com-
plicated system of coupled nonlinear equations
which must be solved exactly. In Sec. III we show
how to solve these equations when the MPEP is
very nearly a straight line.

III. SLIGHTLY CURVED MPEP's

In this section we show how to obtain the MPEP
perturbatively when it differs only slightly from
a straight line.

An MPEP is a solution of the classical equations
which makes the action j(V —E)'/'ds a global min-
imum. The classical equations are the Euler-I, a-
grange equations obtained from

5 (V —E) ds =0 (3.1)

Equation (2.28) is remarkably similar to the
wave function we found in BBW I [Eq. (4.26)]. As
in BBW I, we can identify three physically distinct
terms in the wave function g. Along the MPEP, g
is given by a rapidly varying exponential term
from geometrical optics and a slowly varying term
independent of n T. he term exp(-~22Vp'/'u'/u) de-
scribes the spread of probability current into the
area surrounding the MPEP.

There are, of course, two difficulties present
in Eq. (2.28) which were not encountered in the
straight-line case. Equation (2.21) is a second-
order differential equation and cannot always be
solved. Moreover, the functions V„V„and p
appearing in Eqs. (2.21) and (2.28) are undeter-
mined until we have found the MPEP.

The first difficulty is not as bad as it might seem.
Because Eq. (2.21) contains a small parameter
(the anharmonic coupling constant) for the class of
problems in which we are interested, it may be
possible to treat it perturbatively. Furthermore,
even if we cannot find u, Eq. (2.8) still enables us
to compute the dominant large-order behavior of
perturbation theory. We demonstrated in BBW I
that the leading behavior (the factorial and power
growth) could be computed directly from the geo-
metrical optics approximation to the wave function.
This approximation is given by

e —f ~Fp Ss
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where s is the path length. Equation (3.1) is a
constrained variational problem because the path
always satisfies

Plugging this result into Eq. (3.4) gives

P„'fP, '-VU, [g„(s)]]= VU„[4„(s)], (3.8)

cf ~—P(s) = 1.
Qs

(3.2)
in which (Q, ')'=1. Equation (3.8) may be written
more simply as

2- X/2
6 (V-Z)" —y dt=O,

dt
(3.3)

and then set t = s. Either way we obtain

2(V —E), +——.VV = VV,
d'P dQ dQ-
tfs mls As

(3.4)

Vfe can proceed by introducing either a Lagrange
multiplier or a dummy parameter t. Following
the second method, we derive the Euler-Lagrange
equations of the new variation problem

(3.9)

From here on we simplify our notation by sup-
pressing the argument of any function which is
evaluated at Q, (s). This will shorten many of the
formulas which are to follow, but we caution that
it can lead to some confusion. VR' means compute
BW/8 p and evaluate the result at p = p, . Thus,
a(s) VW=0 does not imply that (a(s) ~ V)'W=0.

We now expand Q(s) in a power series in q:

where (dp/ds)'=1 and VVmeans s V/sp.
For the specific potential V in Eq. (1.1), Eq.

(3.4) is a pair of equations, the first of which is

[ (x'+ y'+ qy') ——,'e(x'+ y'+ 2cx'y') —2E]x"(s)

+ [x'(s)]'(-,'x —ex' —ccxy')

240+ n4'i-+ n 42+

The constraint [Eq. (3.2)] gives

when

(3.10)

+ x (s)&! (s)(2 y —ey —ecyx )

= 2x —E'x — cexy, (3.5)
m=0

Also, we have

(3.11)

where we must have A. = —e &0 for tunneling to
occur. The second equation of the pair is similar.
Equation (3.5) is very difficult to solve in general,
and the following scaling argument shows that it
cannot even by solved perturbatively for small e.
Simply letting x-x& ' ', y-ye ' ', s- se ' ', and

neglecting E compared with x' in the tunneling re-
gion gives a new equation, almost identical to
Eq. (3.5), in which all reference to e has vanished.
Fortunately, we do not have to find all solutions to
Eq. (3.5). The MPEP we seek is a special solution
and has in the past been relatively easy to find.
In BBN I we found straight-line MPEP's for the
equal-mass case (q =0) even though the general
solution remains unknown. Here we show how to
solve equations like Eq. (3.5) for the MPEP as a
perturbation series in g.

We proceed formally by assuming a potential of
the form

OO 00

U, ,(y)=g —, gq y. .V U, , I(y, ).
n 0 ' — m

(3.12)

and

0i'0'0' = 0 (3.13)

2U Q,"+Q,
' —U (s)

Qs

+ Q„'[(f),' VU, + ((j) '..V)(P, .VU ) + P 'VU, ]

= V(Q, ~ VU, + U, ) . (3.14)

Equation (3.13) implies that P,.Q„' is a constant
and we choose the constant to be 0 without loss of
generality. Using Eq. (3.9) we then have

Plugging these expressions into Eq. (3.4) and keep-
ing terms to first order in g gives

P-8= U +qU, (3.6) Q, VUD=O. (3.15)

where U, has a straight-line MPEP and g is small.
Uo and U, are functions of P(s) and thus implicitly
functions of s.

The straight-line solution of the unperturbed
problem is just

Q, (s) = sP, '. (3.7)

P, ' is a constant vector pointing along the path.

Furthermore, since the component of P, parallel
to &f&„' vanishes, we need only consider the compo-
nents of Eq. (3.14) which are perpendicular to Q, '.
The equation for these components simplifies to

2U, (5.$,)"+ —UD(s)(5 Q, )' —5 VU, —(5.V)(Q, V)UD

= 0, (3.16)
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where 5 is a unit vector perpendicular to (t)„'.
We have not yet specified the boundary conditions

that Q) must satisfy. We will see later that the
requirements that P) be finite and have a finite
derivative are sufficient to completely define the
solution of Eq. (3.16).

A. Calculation to First Order in q

It is surprising that we can calculate the wave
function in the geometrical optics approximation
[see Eq. (2.17)),

e —f~vp d s

I

P = exp -2 V, ' 2(s)ds,

is required. [s„and s„ the nearby and distant
turning points, are zeros of V,(s).]

We now calculate lnP to second order in g. We
have

(3.19)

V„= Uo+ qU, + q [Q2 VUO+ 2(Q~ ~ V) U2 + Q~ VU, ] .

(3.20)

multiplicative constant by the geometrical optics
approximation to the wave function. In particular,
the barrier penetration factor P, given by

to first order in g without even solving Eq. (3.15).
The solution of Eq. (3.16) is needed to compute

g to second order in )1.
To first order in g we have

Equation (3.9) gives

-,dU,
4'2'VUo = 42'4o (3.21)

Vo = Uo+ 71U~+ qT(),.VU2, (3.17) When n=2, Eq. (3.11) gives

but Eq. (3.15) eliminates the last term from this
equation. Hence

42''40' = -24 i"
from which we have

(3.22)

S »sI ((&="s&,-)(S.'(s))issj . (3.18)
( S

T()2 (I)o' = —2 [T(),'(S)J'dS .
aSp

(3.23)

This expression is indeed independent of P, .

B. Calculation to Second Order in q

In BBW I we showed that the large-order behav-
ior of perturbation theory was determined up to a

s, is the nearby zero of U, [(t),(s)] and it differs
from s„ the nearby zero of Vp, by terms of order
g s

We now approximate the expression for lnP as
follows:

~S

lnP= —2 (Uo+qU, +71'[$2.VUo+ 2(Q, .V) Uo+ Q, VU, ]]2d2s
v' S

(3.24)

Here we have used Eqs. (3.20) —(3.23). At this point in the computation all reference to Q2 has been elimi-
nated. Because the second integral in Eq. (2.24) is multiplied by )1, we can change its present limits s, and

sy to sp and s„ the zeros of U, . Also, we can neglect the U, term in the denominator. Hence,

( Sg 1dUlnp= —s ds(U +ss)' ' —s' dss ' —— ' S," (S;2)'L+(S, 'IT)v
j o(s').'

~Sp p
"s0

Some manipulation of integrals must be done to simplify Eq. (3.25). We define

yUJ= — -'ss U '~' ' (S ')'j
S "s~Sp Sp

Integrating by parts gives

(3.25)

(3.26)

wS Sg

(P ')2dS
&Sp (Sp

&S~

+ ds U, '/2((t) ')'
" Sp

Integrating by parts again gives
&S Sg

d =-U '/' (y ')2ds
Sp Sp

Sy

ds U '/2(t) "~
T()

S /'Sg

U )./2y, y
I ) daU -)./2 ()

(t)
S as

(3.27)

Next, we use the differential equation for Q, [Eq. (3.14)) to evaluate the last integral:
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~ S~
ds U z/2y e.y

0

2ds Uo P, VU, + (Q,.V) U, —Q, P, '
"S0

ds
(3.28)

We have used the result that P, Q,
' =0 to simplify Eq. (3.28).

Plugging Eq. (3.28) into Eq. (3.27) gives

U ~~2
(y ')2ds

~Sp

S] S~ t S~
+ U, Q, 'Q„— —,ds U„'~'[Q, VU, + (Q, V)'U,).

Sp Sp &Sp
(3.29)

Finally, we substitute Eq. (3.29) into Eq. (3.25):

lnP= -2 (U, +))U,)
~$0

+S)
'i'ds —q' ds U, ' '(Q V)U —U ' '

~Sp

~S S~ S~

(Q, ')'ds + U, '~'(t), 'Q, +O()7') .
& so sO SO

(3.30)

(3.31)

The linear differential equation for Q, [Eq. (3.14)] has singular points at the zeros of U„namely, s, and s, .
Therefore, the boundary terms in Eq. (3.30) do not obviously vanish even though U, ' ' vanishes at both s,
and s, . Fortunately, we are not interested in the general solution of Eq. (3.14) because Q, must be inter-
preted as a real path. Consequently, it is required that Q, be everywhere finite. Furthermore, since
(Q, ')'= 1 all along the path, Q,

' must also be finite. Thus, we disregard surface terms and obtain

~$ $

lnP= -2 ds(U, + qU, )' ' ))' —,"ds U ' '(Q V)U +O()1')
&Sp Sp

This is our final expression for lnP, which we will
evaluate for the specific potential in Eq. (1.1) in
Sec. IV. We will, at that time, pursue the question
of the boundary conditions for P, in greater detail.

C. Comments on the nth-Order Calculation

Unfortunately, the nonlinearity of Eq. (3.4) makes
the perturbation calculation that we have outlined
quite complex as the order n increases. However,
we will show that there are some features of the
calculation that are true in all orders.

First, we emphasize that Eq. (3.31) is correct
to second order in q. The first-order term is
independent of the perturbed path, while the sec-
ond-order term depends on the first-order correc-
tion to the path. In general, the constraint in Eq.
(3.11) allows us to express the nth-order contribu-
tion to P in terms of Q„g„.. . , (t)„„but not P„.

Second, in every order, the equation comparable
to Eq. (3.4) is a linear inhomogenous differential
equation. The differential operator is the same
in all orders; only the inhomogeneous term changes
from order to order. To verify these assertions
we introduce the following notation:

U.[e(s)]=g n"U(."'(e., s),
n=o

U.[e( )]=En"U(")(e., ),
n=p

where U("'(p„s) is the coefficient of )l" in

g q (| (s) V U,
n=o ' . -m=1 , (YI0{S)

U y can of course be written in terms of multi-
nomial coefficents but the resulting expression
is not very illuminating. We now express the nth
order equation as

U{"-' U{"- -"
j= j.

n

+
d U(n z) U(~ ~-i) -P i(s)

ds ' ds

in which the relation

= V[U("'+ U'"-"] (3.32)

p(s) VU[p(s)] =
d U[p(s)]

and the convention

U{."'=0 m&0

have been used.
Next we observe that in Eq. (3.32) the only term

in U("' that contains (1)„ is T()„.VU, Also, P„does
not appear in U, for m & n+ i. Thus, we rewrite
Eq. (3.32) as

—V[/„U( ] = h„, (3.33)

where h„does not depend on P„. Hence, only the
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inhomogeneous term of Eq. (3.33) changes from
order to order. Since Eq. (3.33) determines Q„-Q,'

in terms of Q„.. . , Q„„we need only solve it
for directions perpendicular to Q, '. Hence, if
5.P, ' =0, we have

(0)
2Uio 5.p„"+ Q„'6 —6 V(Q„.V)U0= 6.h„.

(3.34)

Observe the similarity between Eqs. (3.16) and

(3.34). The computation of P„ to all orders is
possible in principle if we can solve the homoge-
neous equation corresponding to Eq. (3.34) exactly.
If we cannot, further approximations must be
made.

IV. ILLUSTRATIVE CALCULATION

Qur presentation to this point has been extremely
formal and general. In this section we illustrate
the techniques we have developed in Secs. II and
III by specializing to a particular oscillator. We
consider the unequal-mass version of the two-
mode oscillator that we studied in Secs. III and IV
of BBW I

V —E = —,'(x'+ y') ——,'e(x'+ 2cx'y'+ y') + —,'qy'- E

g —1+cd c —1- c'g

—&1+q& c. (4.2c)
1

The first two sets of saddle points face the origin
but the off-axis saddle points do not; we have
straight-line MPEP's if 1+re & c or 1+7)& I/c, but
otherwise we must solve a curved-path problem.
To solve this more difficult problem we assume
that for small g the MPEP's are perturbations of
the four straight lines through x=+y, y
=+[2@(c+1)] '~'. By symmetry we need only per-
turb about one of these lines.

B. Perturbative Determination of the Path to First Order in q

In the notation of Sec. III we have P, = —,'W2 s(1, 1).
This is the expression for the MPEP to lowest
order in g and is all that is necessary to evaluate
the first integral in Eq. (3.31) for lnP. However,
we defer this calculation until part C of this sec-
tion. We proceed to compute the first-order cor-
rection to the MPEP because this result is needed
to evaluate the second integral in lnP.

The equation for Q, allows us to express the
following quantities as functions of s:

=—U +gU, . (4.1) Uo(po) = gs [1 —

eels

],

The specific calculation that we perform here is
a geometrical optics determination of the large-
order behavior of perturbation theory to second
order in q for the potential in Eq. (4.1). We will
do this by evaluating the expression for in/ given
in Eq. (3.31). As is the case in BBW I [see Eq.
(3.5)] geometrical optics gives the factorial and

power growths of the Rayleigh-Schrodinger coeffi-
cients. At the end of this section, we show that
our results compare favorably with a computer
calculation.

U, (po) = ks',

VU, ($,}=-,'v2 s(0, 1),
where

n= —,'(c+1).
Equation (3.15) implies that P, has the form

e, =(e„-e,).
Hence, Eqs. (4.1), (4.3), and (4.4) give

(y, V)VU,

(4.3)

(4.4)

A. Discussion of Saddle Points

Because we work to leading order in e, we may
neglect E in Eq. (4.1). Recall that when q=0,
U, has radially directed saddle points at x
=a(2e) ' ', y =0, and y=a(2e) ' ', x=0 when c&1
and at x = ay, y = +[2m(c+ 1)] '~' when c & 1. The
analysis of BBW I tells us that the MPEP's are
straight lines through these saddle points.

When gt 0, we have saddle points at

= p, V(-,'x —e(x'+ cxy'), 2y —e(y'+ cyx'))~

Ay(2 2E(3 c)s i —a + E(3 —c)s ) ~

Thus, (Q,' V)(Q, ~ V) U, = 0 and

($0'.V)U, = ~s . (4.5)

Plugging the above expressions into the formal
result in Eq. (3.16), we finally obtain the differen-
tia, l equa, tion for Q, (s):

x=z(2c) 'i', y=0, I+g&c,

y=+(2c) '~', x=0, 1+q& —,1

(4.2a)

(4.2b)

'[1 — '] ~', + [1 —2 ']
ds ds

+ (e &us' —1)y, (s) = --,' v 2 s, (4.6)
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where 40=3 —c.
We convert Eq. (4.6) to a more familiar form by

introducing the variables

Thus, we must choose

y = -v'2o. /(4~) . (4.13)

z = (1 —e o.s')'i' (4.7)
The distant zero of U, is s, = (eo.) ' ', which cor-

responds to z =0. f(z) is finite at z =0. However,
Eq. (4.7) gives

f(.) =.-"y,(s) . (4.8)

(1 —z') f"(z) —2zf'(z)+ ——(1-z') ' f(z)

In terms of these variables, Eq. (4.6) becomes

df E cps
'(z),

ds (1 —e o.s')'i '

and thus the derivative of the path at s, is finite
only if f'(0) =0. But

= --,'[2o(I —z')] '~ '. (4.9)

We recognize this equation, from which all e de-
pendence has disappeared, as an inhomogeneous
Legendre equation. ' Homogeneous solutions are
associated Legendre functions of the form

P I 1 q& 1

where v(v+ 1) = &u/n.

A particular solution of Eq. (4.9) is found by
noticing that

f '(o) = P P.'(—z) + y —Q.'(z)
z ', 0 dz

This expression reduces to'

4I (zv+ z)sln7f(v+ 1)/2
vm I'(-,'v)

2vm I"(—,'v+ —,')cosw(v+ 1)/2
I'(2v)

The vanishing of f '(0) thus requires that

P = -'ym tan( —,'mv) . (4.14)
d2

(1 —z'), —2z ——,(1 —z') '~' =0,z' dz y —z'

so that

(4.10)

Therefore, if o =v2a/(4&v), then

o(l —z') '/

=—(1 —z') ' '.
Q

(4.11)

is a particular solution of Eq. (4.9).
The general solution is then

1
(1 —z') —2z —— +(u/o. o(I —z') '~'

dz dz 1 z

Combining Eqs. (4.12)—(4.14) completely deter-
mines f(z):

f (z) = — [-,'a tan(-,'av)P', (z)

+9!(z)+(I—z') "]- (4.15)

C. Evaluation of lnP. First Integral in Eq. (3.31)

This is our final result for the MPEP to first
order in q. To review, the first-order correction
to the straight-line path is given by Q, in Eq.
(4.14); f(z) is related to Q, though Eqs. (4.7) and
(4.8). The finiteness conditions on f(s) assure us
that the boundary terms in Eq. (3.30} vanish.

f(z) =PP,',(z)+yg, ', (z) —
4

(1 —z') ' '.P2a
(4.12)

The evaluation of the first term of lnP in Eq.
(3.31) is relatively easy. The integral is formally
given by

P and y are still arbitrary but, as we argued in
Sec. III, f (s) a,nd f '(s) must be finite along the
path. In particular, f' and its derivative must be
finite at the endpoints of the path, which in the
notation of Sec. III, are the points s, and sp. s, and
sp are the distant and nearby turning points of
V„(s) [see Eq. (3.20)]. Actually, we will require
finiteness at s, and X„ the turning points of Up,
because it is simplest to work at these points.
[Choosing to use SD and s, instead of s and s, can
only affect the evaluation of lnP to third order in

q because s, —s, =O(q) and s, —s, =O(g). ]
As s~sp, z~1 and

lim f (z) = lim ——(1 —z) '~ ' ——(1 —z) '~ '
~- ~ x ~ x W2 4&d

—2 ds(U, + qU, )'~'.
~Sp

For the case of the potential in Eq. (4.1) this inte-
gral is just

r S)
s(1+ —,'q —co.s')" i'ds

eJ S0

1 ]
Sg

(1+—,'q —zo.s'}'~' . (4.16)34K
Sp

s, is the larger zero of Vo(s) = Uo+ qU, +O(q')
[see Eq. (3.20)J. Therefore, (1+—,'q —eo.s,2)3~'
= [O(p')J' '=O(7]'). Furthermore, s, is O(1). Thus,
&esp' is negligible relative to 1+--q. This implies
that we can approximate Eq. (4.16) by
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(1+2n)"' =
3

(1+ 'n-+ ,', —)l')+O(n') (4 17)

Equation (4.17) is the desired expression for the
first contribution to lnP. Observe that it was not
necessary to know f(z) to obtain Eq. (4.17).

D. Evaluation of lnP. Second Integral in Eq. (3.31)

The second integral contributing to lnP is for-
mally

&S

2vUo
0

But, according to Eq. (4.3),

(0;T)U, 1 f(z)
2VI/2 ~2@ z

Furthermore, from Eq. (4.7),

1
(1 z2)1/2

Hence, the integral in Eq. (4.16) reduces to

1 "' f(z)dz
2~/2+ „, (1 —z2)'/2 ' (4.18)

for x-1.
The first and second terms are slightly more

complicated. Using the differential equations
satisfied by P'„, Q'„and (1 —z') '/' [Eqs. (4.9)
and (4.10)J, it is easy to show that'

A glance at Eq. (4.15) shows that each of the
three contributions to Eq. (4.18) is separately di-
vergent at z =1. To extract a finite answer we
must integrate up to x& 1 and then let x tend to
unity at the end of the calculation. The third term
gives

dz 1 1+x
(1 —z')'" ' 1-x

-
2 ln2 —

2 ln(1 —x),

W(z)dz 1
(1 z2)1/2

=
v(v+ 1)

zR
z2)1/2

z=O

where W=P', or Q'„. A substantial amount of algebra now gives

, «2[,'ntan( —,'n—v)P', (z)+Q', (z)J = — —[—,'ntan( —,'nv)P'„(x)(1 —x')' '+Q', (x)(1 —x')' '].. (4.20)

We must evaluate this expression for x near 1. P', (x) is finite near x= 1, so it is sufficient to consider
its leading behavior there". P", (x) --v(v+ 1)[2(1—x)]'/'. Thus,

[P'„(x)(1—x')'/'] - v(v+ 1) . (4.21)

We must be more careful with the second term in Eq. (4.20). We use an expression for Q', (x) in terms
of hypergeometric functions

2n x tan(~2nv) P 1 1 cot(2nv)
QV( )

(1 2)1/2 F(1 )F( 1 1
)

( 2vx 2+2vi 2rx )+2F( 1 )P(& 1) ( 2 2 |2V| 2tx )I r

and an asymptotic expansion of I' near x = 1":

I'(a, b; a + b + 1;x ) - —+ (1 —x )[1n(1 —x ) —h, ~ J +O((1 —x ) ln (1 —x )) .I'(a+ b+ 1) 1

(4.22)

(4.23)

In Eq. (4.23),

h„=p(1)+le(2) —g(a+1) —$(b+ 1), (4.24)

where g is the logarithmic derivative of I'.
We combine Eqs. (4.22)-(4.24) with the second term of Eq. (4.20) and simplify. The leading divergence

drops out leaving one that is only logarithmic:

+ —, + 2 ln2 + 2 ln(l —x) ——,[h, sin'( —,nv) + h, cos'( —,2 v) J+O((l —x)ln(1 —x) ),
d (1 —x')' 'Q', (x) sin'( —,'nv)

dx v(v+ 1) v (v+ 1)
(4.25)

where

h, = lj (I)+0(2) —lj (I —-'v) 0(2+ 'v), —-
h, = g(1) + p(2) —g(2 ——,

'
v) —g(1+ 2 v) .

(4.26)

Observe that the divergent terms in Eqs. (4.19)
and (4.25) just cancel.

Next, we combine all the expressions in Eqs.
(4.15) and (4.18)-(4.25) and obtain a finite result:
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1)

——,w tan(-, n v)
86 (d v v+1

——',k,sin'( —,'mv) ——,'k.,cos'(2n'v) (4.27)

[2j+2k(1+ @)'I'JC„,~ = (j + l)(2j+ 1)C„,,„,
+ (k+ 1)(2k+ 1)C„,. „,
+ n-l, j,k-2 + n-1,j -2,k

+ 2CCn-&, j -1,k-1
This expression can be simplified using Eq. (4.26)
and some well-known identities for the g function. "
Our final result for the second contribution to lnP
is

n-1

(Cu, o+ Cu o,) C

(4.33)

[y + g(v+ 1) ——,
'

v tan(-,'v v)],8ee (4.28) We solved Eq. (4.33) for c = 2 and a range of values
of (1+q)' ' and fit the values of A„ to the formula"

where y is Euler's constant (=0.5772156. . . ).
A„oo —F(n+ g)(-3K)" . (4.34)

E. The Rayleigh-Schrodinger Coefficients

Adding together the results in Eqs. (4.17) and
(4.28) completes the evaluation of lnP:

1 3 3AlnP= — 1+ ~71+——+y+((v+1)3ee 8~ 4n

——,'n tan( —,'vv) q'+ O(q')

(4.29)

where or =3 —c, o. = —,'(c+1), and v(v+1) =~/u.
It is more convenient to invert the expression in

curly brackets, to wit:

The values of K as a function of g are recorded in
Table I.

Several remarks should be made about the en-
tries in TableI. First, when(1+71)'"& wc =&2, k= 1

(to within the expected accuracy) and when (1+71)"I'
& I/Vc =I/v2, k=(1+q) 'I'. These are just the
values that we obtain from. , straight-line MPEP's
passing through the saddle points in Eqs. (4.2a)
and (4.2b). That is, the curved-path region lies,
as it should, for values of (1+q)'I' between v2 /2
and v2 . Second, when q =0 we have an equal-mass
potential and the results of BBW I as well as those
in Eq. (4.32) imply that k=1.5. This suggests that
near (1+q)' ' = 1 our numerical results in Table I

lnP = (-3mn[1 ——,'q+ Iq'+O(q') Jj ',
where we have introduced

(4.30) TABLE I. Numerical values of K as a function of g in
Eq. (4.34). These values are in good agreement with the
theoretical predictions in Eq. (4.35).

N 77 VI=~ + ——y+g(v+ 1) —,n tan——
8 4 2

(4.31) (1+n)

The barrier penetration factor P is just the geo-
metrical optics contribution to the imaginary part
of the energy. Thus, inserting P into the disper-
sion representation for A„[Eq. (2.4) of BBW I],
we find that the large-n behavior of the perturba-
tion series for the potential in Eq. (4.1) is

A„~ —[-3a(1 —~0+ 'll'I)]" I'(n+ —,') . (4.32)

This result is correct up to a multiplicative fac-
tor independent of n.

F. Computer Verification

To check Eq. (4.32) we calculated the first 65
A„on a CDC 6400 computer using a difference
equation. Generalizing the arguments of Sec. V
of BBW I slightly, we find that for the potential
in Eq. (4.1) the Ray1eigh-Schrodinger coefficients
are given by

A„= (-1)"(C„, ,+ C„, ,),
where

0.4
0.5
0.75
0.8
0.9
0.98
0 ~ 99
1.00
1,01
1.02
1.1
1.2
1.3
1.4
v2

1,5
1.7
1.8
1.9
2.0
2.1
2, 9
3.0
3.1

—0.84
—0.75
-0.4375
—0.36
-0.19
-0.0396
—0.0199

0.0
0.0201
0.0404
0.21
0.44
0.69
0.96
1.0
1.25
1.89
2.24
2.61
3.00
3,41
7,41
8,0
8.61

15.625 004
8.000 003
2.534 419
2.216 049
1.777 643
1,546 811
1.522 942
1.499 996
1.477 928
1.456 695
1.312 745
1.183367
1.092 641
1.038 811
1.032 995
1.004 064
0.999954
0.999 994
0.999 999
1.000 000
1.000 000
1,000 000
1.000 000
1.000 000
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are low by four parts in 1.5&&10'.

With this in mind, we proceed to compare our
theoretical and numerical data. Our theoretical
predictions from Eq. (4.32) take the form of a
Taylor series valid near g=0:

(4.35)

Equation (4.35) is obtained by evaluating the ex-
pression for 1 in Eq. (4.31) using c=2, a= s,
~u =- 1, and v = -0.5+ (P)' ~'.

There is no simple formula that fits the numeri-
cal data in Table I for W2& (1+iI)' '& v2 /2. We
can, however, compute the first three terms in
the Taylor series of K about (1+q)'~' = 1. Using
the five values for IC associated with (1+ii)"~'

=0.98, 0.99, 1.00, 1.01, and 1.02, and assuming
that the four parts in 1.5X10 discrepancy men-
tioned above hold for all these values of (1+@)'
we obtain the expansion It = 1.5 —~~[(i+i))' ' —I]
+ 4.388[(1+ii)'"—1]'+O([(1+ii)'~' —I]'). Rewriting
this as a power series in g, we obtain

g = & —&@+1.378'',
in complete agreement with the theoretical pre-
dictions in Eq. (4.35).
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APPENDIX

In this appendix we show that Eq. (2.18) is valid
whenever the path p(s) satisfies the classical equa-
tions of motion.

The classical equations are given in Sec. III as

2(V[V(s) J —&]0"(s)+ 0'(s)I.A'(s) ~ V[4(s)l]

V[y(s)+nX(s)J —E= V,(s)+n V, (s)+O(n'),

where X(s) is the unit normal vector

x =(-e2' 0&') ~

(A2)

Expanding the left-hand side of Eq. (A2) as a
power series in n, we find that

Vo(s) = V[y(s)J —Z,
(A3)

Now we take the scalar product of (Al) with X

and use X Q' =0 to obtain

But,

x, yll y lip I y/I

(A4)

(A6)

which is Eq. (2.18). It is clear then that Eq.
(2.18) is just the perpendicular component of the
equation of motion. The component of Eq. (Al)
parallel to the path (that is, parallel to P') is a
trivial identity because y" =1 and P'Q" =0. Thus,
Eq. (2.18) is valid if and only if Q is a, classical
path.

=v V[y(s)J. (Al)

The functions V,(s) and V, (s) which appear in Eq.
(2.18) are defined in Eq. (2.12) as

*Work supported in part by U. S. Atomic Energy Com-
mission under Contract No. AT(11-1)-3069. A Sloan
Foundation Research Trainee.

)Work supported in part by National Science Foundation
Grant No. GP 29463. A Sloan Foundation Fellow.

T. Banks, C. M. Bender, and T. T. Wu, preceding
paper, Phys. Rev. 0 8, 3346 (1973). Hereafter we
refer to this paper as BBW I.

As in BBW I, we call these paths "most probable
escape paths" (MPEP's).

See Ref. 3 of BBW I.
4Equation (2,3) is exactly true so long as the lines of

constant s, which are normal to the MPEP, do not
cross. Thus Eq. (2.3) is valid for ~n~ less than the
radius of curvature p

~ [see Eq. (2.5)].
Recali that the path length (dl) is given by dx~dx~g».
g» in the (x, y) coordinate system is the 2x2 unit
matrix. Thus dx~dx"g =(dx) +(dy) . In the (n, s)

system (dl) =gss(ds) +gnn(dn) +2gnsdsdn. Equation
(2.4) follows from Eq. (2.2).

6See Highex Transcendental Punctions (Bateman Manu-
script Project), edited by A. Erddlyi (Mcoraw-Hill,
New York, 1953), Vol. 1, p. 121, Eq. (1). This
work is referred to hereafter as BMP.

~BMP, Vol. 1, p. 163, Eqs. (8) and (10).
BMP, Vol. 1, p. 145, Eqs. (22) and (23). Equation
(23) has a misprint which we have corrected in the
text.

98ee BMP, Vol. 1, p. 169, Eq. (1).
See Ref. 7,
BMP, Vol. 1, p. 144, Eq. (12). There is an error in
this equation which we have corrected in the text.
BMP, Vol. 1, p. 110, Eq. (12).

~3BMP, Vo].. 1, Sec. (1.7.1).
The number of entries in the matrix Cn j A, grows
as n and the convolution term in Eq. (4.33) requires
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C„~ & for all n less than the order of perturbation
theory computed. The limitations of the core memory
prevent a calculation of A„ for n) 20. To go to order
65 in perturbation theory we retain only the first and

last terms in the convolution sum. This is a good
approximation for n large and is justified in Ref. 9 of
BBEV I. This approximation accounts for the four parts
in 1.5x10"' error in Table I.
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A first-order Lagrangian formulation is given for a spin-one field in which the usual antisymmetric field

tensor is replaced by a symmetrical one. Despite this seemingly major modification, the construction is such

that the equation)s of motion and the canonical commutation relations are identical to those which pertain to
the usual description if one requires that only the four-vector part of the field participate in the coupling.
Differences arise, however, when one considers more general interactions. Thus, in the case of minimal

coupling to an electromagnetic field it is found that the g factor is opposite in sign to the usual one for a
vector meson. More surprising is the fact that the energy-momentum tensor for the free field contains
additional terms which violate the minimal form of the Dirac-Schwinger covariance condition. Although

Schwinger has shown that fields of spin greater than unity generally require the nonminimal form, this

paper demonstrates for the first time the fact that even a lower-spin field need not satisfy the covariance
condition in its simplest form.

I. THE SYMMETRIC-TENSOR THEORY

The conventional theory of the spin-one field
(particularly in the zero-mass limit) is doubtless
the best-known and most widely discussed of all
field theories. In its first-order form it is de-
scribed by the Lagrangian '

thereby suggesting the possibility of a somewhat
different description.

There does in fact exist another formulation in
which the antisymmetric tensor +"' is replaced
by a symmetric one G"'. This is therefore a
fourteen-component theory in contrast to the ten
components which appear in the Lagrangian (1.1).
The relevant Lagrangian in this case (including a
coupling to j~) is

——
p, '8"B +j"8 L =g G"'Gq„—2G"'(BqB, + B,B~)+GsqB" —4G

E"'= & a" a'Z~

p Xil~+ jj'
(1.2)

where j" is a (not necessarily conserved) current
and all operator products are assumed to be sym-
metrized. The resulting equations of motion are
readily seen to be

(1.4)

where we have included a scalar G for conve-
nience. It will be seen that the equations of motion
imply that G is the trace of G"' and thus the whole
theory could equally well be written in an explicit
fourteen-component form as

The elimination of F"' from the set (1.2) leads to
the familiar second-order form

(—8'+ y')B" + 9"(BB)=j", . (1.3)

appropriate to a current-coupled vector-meson
field. Although it is doubtful that there exists a
compelling alternative to Eq. (1.3) as a descriptior.
of a spin-one object, the first-order form (1.2)
appears to be considerably more open to doubt,

——,'(g, „G~")'——.'i 'B"B,+j~B„,

rather than the fifteen-component form (1.4). The
equations of motion implied by (1.4) are

GPP gP~v + gP@P

e„G"'= p. 'B"+ e"G+j",
G=2e aj"


