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This is the first in a series of papers on the 1arge-order behavior of perturbation theory for coupled
anharmonic oscillators. We exploit previously published dispersion techniques to convert the calculation
of perturbation theory in large order into a barrier-penetration problem. We then introduce new
semiclassical methods for describing tunneling through nonspherically symmetric, N-dimensional
potentials. To illustrate our new methods, we calculate the large-order behavior of perturbation theory
for a simple system of two equal-mass oscillators with quartic coupling. Our predictions are in complete
agreement with computer calculations. We then extend our results to oscillators with x' coupling,
X-oscillator systems, and some infinite-oscillator systems.

I. INTRODUCTION

In a recent paper Adler' argues that n, the phys-
ical charge on the electron, is an essential singu-
larity of the Gell-Mann-Low function. Since the
location of an essential singularity cannot be af-

fected by the low-order terms in a perturbation
expansion, an asymptotic study of perturbation
theory for quantum electrodynamics in extremely
large order seems indicated.

There has already been much work on the large-
order behavior of perturbation series in quantum
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field theory. ' However, these papers are con-
cerned with determining whether diagrammatic
perturbation theory converges or diverges and are
satisfied with order-by-order bounds on the terms
in the perturbation series. What is required now
is a precise analytic study of the behavior of per-
turbation theory in large order and not just upper
and lower bounds.

Our general approach to perturbation theory in
large order is guided by recent successful studies
(which we review later) of perturbation theory for
the anharmonic oscillator. We hope to extend and

apply this work to the perturbation series encoun-
tered in quantum field theory. A (Q'), quantum
field theory is a good model with which to begin
because, unlike four-dimensional quantum electro-
dynamics, its perturbation series are finite order
by order. Moreover, Glimm and Jaffe' have shown
that, with spatial and ultraviolet cutoffs, this field
theory is equivalent to a finite system of coupled
anharmonic oscillators (modes). Our goal is to
find the large-order behavior of perturbation the-
ory for this system as a function of the two cutoffs,
remove the ultraviolet and spatial cutoffs, and,
assuming that this limit exists (we see no reason
why it should not), thereby obtain the answer. We
have not solved this problem, but we do report
major progress toward that goal. We have devel-
oped new mathematical techniques for investigating
the large-order behavior of perturbation theory for
coupled oscillator systems. Specifically, we have
developed very general multidimensional semi-
classical techniques4 for treating nonspherically

symmetric potentials such as those encountered in
the cutoff (P'), model.

The purpose of the first paper in this series is
to explain our new methods in detail in the limited
context of equal-mass oscillators. (Our second
paper deals with the more difficult problem of un-
equal-mass oscillators. ) We begin by solving the
two-mode oscillator defined by

E(A, ) = 1 + g A „A." .
n=1

(1.3)

+-,'Z g a,, x, 'x, '-E(X} y(x, }=0. (1.4)
t, J=l

In addition, we exhibit some matrices fa, , ) for
which the limit N-~ may be taken, and explicitly
compute the large-order behavior of the ground-
state energy perturbation series for those infinite

systems.
Before discussing more fully the content and re-

sults of this paper, we briefly review what is
known about the one-oscillator problem so that
this paper will be reasonably self-contained. In
early computer studies" of the ground-state en-
ergy of the anharmonic oscillator, an extraordi-
narily simple behavior was observed for perturba-
tion theory in large order. In particular, for the
anharmonic oscillator defined by

and

[ d'/dx'+x'/-4+~'/4 —E(X)]P(x) =0 (1.5)

lim g(x) = 0,

and the ground-state energy perturbation series
defined by

E(~) =-,'+ g A„e,
n=/

(1.7)

a numerical fit to A„ for large n was found to be

Our goal is to predict the behavior of A„ for large
n as a function of a, b, and c. We solve this prob-
lem in Secs. II-VI. The solution is a discontinuous
function of a, b, and c, and the discontinuities have
an interesting physical explanation. In Sec. VII we

hope to whet the reader's appetite by giving a par-
tial solution of the N-mode oscillator defined by

2 2
1 2 1+4X +4/Bx A„=—,q, (—3)"I'(n+ —', ) 1+0 (1 8)

+X(ax'+by'+ 2cx'y')/4 —E(&) P(x, y) = o,

(1.1)

where

»m 4(x, y) =0, r =(x, y).
Ir I~~

(1.2)

We assume that a&0, b &0, and c ~ -lab, making
the potential bounded below. Then it is possible to
satisfy Eq. (1.2) and P is a bound-state wave func-
tion with E(A) its associated energy eigenvalue.
The perturbation series for the ground-state ener-
gy is given by'

Later, methods were developed that explain this
behavior analytically. " Indeed, two completely
independent techniques were developed which pre-
dict formulas similar to Eq. (1.8) for all energy
levels of al/ anharmonic oscillators having Xx'
interactions. Analogous results for anharmonic
oscillators with arbitrary polynomial interactions
were also obtained and the effect of Wick ordering
on perturbation theory in large order was deter-
mined. " Moreover, higher-order corrections
[O(l/n) terms] were also calculated and these also
agree with computer calculations. "
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4„--[48c/sin(w v)]"'(-3)"I (n +-,')/w, (1.9)

where v(v + 1) = 2c; for c & 1,

A„--[48c/sin(wv)]"'[(-3c —6)/2] "I"(n+—,')/w,

(1.10)

where v(v+1}=2c =(3 —c)/(1+c); and for c =1,

The anharmonic oscillator suggests how pertur-
bation theory might behave in a (P'), field theory
because it is also a quantum field theory. Equa-
tions (1.5) and (1.6) can be reinterpreted as de-
scribing a P field theory in one-dimensional
space-time. " For more complicated systems
such as those defined in Eqs. (1.1) and (1.2} and in

Eq. (1.4), A„behaves for large n very much like
the A„ in Eq. (1.8). We would not be very sur-
prised to find that the ground-state energy pertur-
bation series for a (Q ), field theory behaves simi-
larly.

We now give a more detailed outline of this pa-
per. Section II employs dispersion techniques to
reduce the problem of finding the leading large-n
behavior of A„ to that of solving a quantum-me-
chanical barrier-penetration problem. The barri-
er penetration is then treated semiclassically. In
Secs. III and IV we develop those semiclassical
methods needed to solve Eqs. (1.1) and (1.2) for
the special case where a =b =1. In Sec. III we
solve the problem approximately using geometri-
cal optics, and in Sec. IV we find the precise lead-
ing behavior of A„ for large n using physical op-
tics. The notions of geometrical and physical op-
tics are discussed in detail. The results are as
follows: For -1 ~ c & 1,

II. DISPERSION RELATION

In this section we reduce the problem of finding
the large-order behavior of the Rayleigh-Schro-
dinger coefficients to a semiclassical barrier-
penetration problem. This reduction is necessary
because, as we explain below, a direct analysis of
the difference equation which generates the pertur-
bation series is too difficult.

In general, the Rayleigh-Schrodinger coefficients
[such as those defined in Eq. (1.3)] for a perturba-
tion problem in quantum mechanics may be com-
puted from a recursion relation which gives the
nth coefficient in terms of its predecessors and
integrals over all the lower-order contributions to
the wave function. The special form of the unper-
turbed wave function for the harmonic oscillator
and our choice of a polynomial perturbing potential
[see Eqs. (1.1) and (1.4)] enable us to reduce the
recursion relation to a single nonlinear partial dif-
ference equation. This difference equation, which
we derive and discuss in detail in Secs. V and VI,
may be solved on a computer.

The corresponding but much simpler difference
equation for a single anharmonic oscillator can
actually be solved approximately. "However, for
a system of coupled anharmonic oscillators, the
'indices in the difference equation proliferate and
the relevant approximation techniques become un-
wieldy, even for the two-mode oscillator. With
this difficulty in mind, we have developed in a
previous paper a rather indirect, but physically
intuitive, method for computing the large-n behav-
ior of A„which generalizes immediately to the
many-coupled oscillator problem. This method
rests on Eq. (2.4).

Equation (2.4) may be derived by assuming a
once-subtracted dispersion relation for E(A.):

The discontinuity at c =1 is caused by a kind of
constructive interference.

The calculation for the special spherically sym-
metric case (c =1) is done in Appendix A. Appen-
dix A actually treats the more general case of N
oscillators with spherically symmetric coupling.
In Appendix B we repeat the calculations of Sec. IV
for a system of two coupled oscillators with 2N or-
der rather than quartic coupling.

The predictions in Eqs. (1.9)-(1.11) are com-
pared with computer calculations in Sec. V and we
observe spectacular ag|eement. Section VI gener-
alizes the results in Eqs. (1.9)-(1.11) to the case
where a and b are not 1. Again the theoretical and
numerical calculations agree. Finally, in Sec. VII
we investigate Eq. (1.4). In Appendix C we discuss
some properties of equal-mass N-oscillator sys-
tems that are more general than those in Eq. (1.4).

(2.1)

where

(2.2)

and

D(A) —= lim [F(A+ie) —E(A. —ie)]. (2.3)

D(x)x "dx. (2.4)

The proof of Eq. (2.1}for the one-mode oscillator
is outlined in Sec. II of BW II. Although there is

From Eq. (2.1) we obtain an exact expression for
the nth Rayleigh-Schrodinger coefficient after ex-
panding (x —A.) ' and comparing with Eq. (1.3). We
find that
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as yet no proof, it is intuitively reasonable that
Eq. (2.1) is valid for the Ã-mode oscillator. How-
ever, a proof would require that E(X) be analytic
in the cut A. plane. Analyticity has only been
proved" in the region shown in Fig. 1. Fortunate-
ly, analyticity in this region is sufficient to rigor-
ously establish Eq. (2.4) for large n."

Equation (2.4) may be understood as follows.
When A, is negative, the perturbing potential in Eq.
(1.1) becomes repulsive. The states that were
found for A. & 0 now decay. Decaying states have
complex eigenvalues and the imaginary part of the
eigenvalue is inversely proportional to the lifetime
of the state. Equation (2.4) relates 2„ to the in-
verse moments of the imaginary part of E(X) and
thus to the lifetime of the decaying state. For
large n, the integral is dominated by small nega-
tive values of x. Thus, the large-order behavior
of A„ is related to the imaginary part of E(X) for
small negative coupling constant.

It is interesting to note that if the perturbing po-
tential is dominated by the unperturbed potential
when A. gets small enough, all states will be bound
for such values of A.. We then have ImE(&) =0 for
!X! sufficiently small. In this case, Eq. (2.4) tells
us that lim„„A„=O, and the perturbation series
converges. Thus, Eq. (2.4) quantifies Dyson's"
old argument about the divergence of perturbation
theory. We emphasize the similarity between the
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FIG. 1. The domain of analyticity of E(A) rigorously
established by Simon. 8 P) is analytic except on the cut
along the negative real axis and in the shaded region.
The contour appropriate for proving Eq. (2.4) is indicated
by a dashed line.

above discussion and that given by Adler in Sec. V A

of Ref. 1.
Equation (2.4) relates the computation of A„ to

the familiar quantum-mechanical barrier-penetra-
tion problems as follows. Generalizing the argu-
ments of the Appendix in Ref. 9 we can express
imZ(~) a.s

J;,S dr

where J is the probability current,

J —= ~&i(t/ *V/ —g Vg *),

(2.5)

(2 5)

and S is the boundary of volume V. We take 8 to
lie outside the barrier so that there are no points
outside of S where the probability current can re-
flect back toward the origin. Thus J measures de-
cay of the state by expressing the flow of probabil-
ity density out to !r! =~.

Equations (2.4) and (2.5) relate A„ to the per-
turbed wave function for small negative A..

III. GEOMETRICAL OPTICS

A. Discussion of Method of Solution

In Sec. II we reduced the calculation of the large-
order behavior of perturbation theory to the famil-
iar quantum-me"hanical problem of tunneling
through a nonspherical N-dimensional potential
barrier. We propose a method for solving this
problem which rests on a simple physical picture.
A particle in an unstable state centered at the ori-
gin will ultimately penetrate the barrier and es-
cape to infinity. The total amplitude for escape is
the sum of the amplitudes over all possible paths
of escape. We will show that there exist most
probable escape paths (MPEP's) and that the rela-
tive amplitude to escape along other paths is ex-
ponentially small. The dominant contribution to
the escape amplitude comes from regions, which
we call tubes, surrounding the MPEP's. The
probability current is negligible outside of these
tubes during tunneling and flows outward in narrow
beams. We will show that for a system without a
rotational symmetry the number of tubes is finite
and that they are, well separated. We will then use
semiclassical (WEB-related) methods to approxi-
mate the solutions to the Schrodinger equation
[Eq. (1.1)] within these tubes.

We have introduced the notion of a tube in order
to reduce our nonspherical multidimensional prob-
lem to one which is approximately one-dimensional.
It is natural to try to solve a tunneling problem us-
ing WKB techniques. ' There has been much work
on the problem of WKB approximations to many-
dimensional systems. " The zeroth-order WKB
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equation for the phase 5 of a wave function with en-
ergy I: is"

(VS) = V —E. (3 1)

—exp — (V —E)
N

(3.2)

where J (E —V)'" is the classical action and the
normalization factor N depends only on the end
points of the path. The total amplitude is just the
sum of Fq. (3.2) over all paths P

In the tunneling region, (V —E) is positive, and
the amplitude is exponentially damped. Therefore,
the dominant contribution to the amplitude comes
from regions near the paths which minimize the
action integral and thus satisfy

(3.3)

The Euler-Lagrange equations following from Eq.
(3.3) are"

where s is the path length. All solutions of Eq.
(3.4) are local stationary points of the action.
However, we are interested in the global minima.
This will eliminate all except a discrete" set of
paths which are just the MPEP's.

Once we have found a set of MPEP's, we must
find approximate solutions to the Schrodinger
equation along these trajectories. As in any semi-
classical or ray description of a wave phenomenon,
we must distinguish two levels of approximation.
At the first level, called geometrical optics or the
eikonal approximation, the phase of the wave func-
tion is approximated by a line integral along the
trajectory, while its amplitude is assumed to be

This is just the Hamilton-Jacobi equation for a
classical system with Hamiltonian p'+ t/'. In one
dimension it reduces to (dS/dx)' = V —E, whose so-
lution is S=+f(V —8)'". For the general multidi-
mensional case it is a nonlinear partial differential
equation. Of course, if the Hamiltonian has a con-
tinuous symmetry, Eq. (3.1) will be separable.
However, Eq. (3.1) is nontrivial in general. The
new multidimensional techniques which we have
discovered simplify the problem of solving Eq.
(3.1) because now we need to solve it only in a
small, approximately one-dimensional region. Our
technique is expressly designed to deal with prob-
lems which do not have continuous symmetries,
and is thus comPlementary to the separation of
variables idea.

We briefly review the path-integral formalism.
The amplitude for a particle of energy E to take a
particular path P in a potential t/' is

constant. This is just zeroth-order WKB. The
second level, called physical optics or first-order
WKB, takes into account the variation of the am-
plitude and the spread of the wave function into the
region around the trajectory. Thus, physical op-
tics is characterized by a set of tubes through
which most of the probability current flows.

These two levels of approximation are clearly
distinguished in our results for the large-order
behavior of perturbation theory. We find that in
general for large n

A, „-KL"I'(Mn+ J)r 1 +0(1/n)] . (3.6)

The constants I., M, and J are determined by geo™
metrical optics alone. Physical optics is needed
to find the value of K.

—= —,x —e (x 3 + cxy ) = 0,
BP
Bx

(3.6)
= py —&(y +cx y) = 0.

By

Equations (3.6) have nine solutions, namely,

B. Determination of Most Probable Escape Paths

The program we outlined in part A of this section
for finding the MPEP's is of course very difficult.
It involves actually finding closed-form solutions
to Eq. (3.4) and explicitly selecting those solutions
which minimize f(V -E)"'. Fortunately, in many
cases, a heuristic argument enables us to guess
the most probable paths without solving Eq. (3.4)
and these turn out to be straight lines. In fact, it
is generally true that the MPEP's for the equal-
mass oscillators defined in Eq. (1.4) are straight
lines. The more difficult problem of unequal-mass
oscillators, which have curved MPEP's, will be
discussed in the next paper of this series. " It is
easy to show that the straight MPEP's satisfy Eq.
(3.4), but we have no way of proving that they are
global minima of the action. The only convincing
evidence we have for this is the excellent, ".gree-
ment of our results with our computer calculations.

In this section we use geometrical optics to treat
the special case of Eq. (1.1) for which a =b = 1.
This simplifies the notation without obscuring any
of the important features of the problem. In Sec.
IV we use physical optics to treat this same case.
Equation (1.1) is solved in general in Sec. VI.

We expect a straight MPEP to satisfy certain
reasonable criteria. It should be a "path of least
resistance" to tunneling and thus should pass
through a saddle point of the potential V=4x +4y2
——,'e(x'+y'+2cx'y'). The saddle point should be
oriented along the path (which is a radial line). A
saddle point of t/' satisfies the equations
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(3.7)

2 —E(3x +cy )
-2ccxy

-2ccxy
—,
' —e(3y'+ cx') (3.8}

It follows that (0, 0} is not a saddle point, that
(+(2e) '", 0) and (0, +(2e) '") are acceptable sad-
dle points when -1 &c&1, and a([2(c+1)e] "',
+[2(c+1)e] "') are acceptable saddle points when
c&1. When c =1, there are no saddle points. This
is the spherically symmetric case where all
straight-line paths contribute equally to the ampli-
tude and it is treated separately in Appendix A.

It is now easy to show that radial lines through
the saddle points are solutions of Eq. (3.4)."
Equation (3.4) reduces to

+ ( [2(c + I )c] "' +[ 2 (c + I )e] "')
To identify those critical points in Eq. (3.7)

which are radially oriented saddle points, we com-
pute the Hessian matrix H (matrix of second par-
tial derivatives). We demand that H have one posi-
tive and one negative eigenvalue at the critical
point and further require that the eigenvector hav-
ing negative eigenvalue must lie along the radial
line connecting the critical point with the origin.
We find that

wave function g(x, y) in the tunneling region on the
MPEP is given by

Sp
—f ' (v-z) &~2 as

We are ignoring all paths except the four MPEP's.
E is the unperturbed value of the energy, namely,
unity. The integral is taken along the MPEP from
the inner turning point s, =O(1) (solution of V —E
= 0) to the argument of g(x, y).

We are interested in computing the current flow-
ing out to infinity. Since the distant turning point
s, =0(e "') is the last place where the current can
be reflected back toward the origin, we compute
the current at a point just beyond s, . The total
current J is the sum of the currents along each
MPEP. J is proportional to

Sy

exp -2 (V -E)"'ds
Sp

for each MPEP. This reduces to

8y

exp -2 gs —468 Q —1 ds
Sp

where n =cos'6+sin'0+2c sin'0cos'6P, and 8 is the
angle between the MPEP and the x axis. Computing
the above integral approximately gives

-1/2 -1/(3 En)

for each MPEP. From Eqs. (2.4) and (2.5) we thus
obtain

dy dx Bp dy B I/' BV——+ I

ds ds Bx ds By By

(3.9)

because our straight-line paths have the property
that

d2y
s' ds'

—- =0.

p

A ~ de(-e) "
n

~ I (n+2)(-3o.)". (3.11)

When -1 ~c&1, the MPEP's are along the axes
and e =1. When c &1, the MPEP's are at 45' to
the axes and n = —,'(c+1). Thus, for large n,

Equation (3.9) is satisfied by (dx/ds, dy/ds)
= (0, +I), (+I, 0), and (+M2/2, + v 2 /2) because of
three properties of V:

and

A„~ [-3(c+1)/2]"I"(n+-,'), c & 1.
(3.12)

By =0
By y-p

B t/'
=0

x=p

~V ~V
when x =ay.

BX

(3.10)

C. Geometrical Optics

We outline here a brief and heuristic treatment.
A careful and mathematically detailed approach is
given in Sec. IV. We follow method 2 of the Appen-
dix of BW II. Up to multiplicative constants the

Equation (3.12) is continuous in c at c = 1.
Equation (3.12) clearly illustrates the phenome-

non of decouPling that takes place in the large-or-
der behavior of perturbation theory. When the cou-
pling of the oscillators is strong enough (c &1), A„
depends on the coupling term. But when -1 & c & 1,
the system seems to behave as if the oscillators
were completely uncoupled. Actually, when c & 1
the multiplicative constant K, which we will deter-
mine in Sec. IV, still depends on c. Nevertheless,
the decoupling of the dominant behavior of A„ for
large n is quite remarkable and is typical of the
simplification that we observe in large order.
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x+y
X X ~ 4

(4 2)

Equation (4.2) converts Eq. (4.1) into

2 28 B
+ x +4 4

—4E' x +y +2 x y —E =0.

We then make the additional transformations

c- c = (3 —c)/(1+ c),
e- e =e(1+c)/2,

and observe that c &1 implies that
~
c ~& 1.

(4 3)

(4.4)

IV. PHYSICAL OPTICS

In this section we use physical optics to approxi-
mate the imaginary part of the ground-state energy
for the system

2 2
1 2 1 2

2 +4x +4yBx By

--,'x(x +X'+2cx'X') —4I4=0. (4.1)

We will solve the problem explicitly only for -1
&c& I. When c&1 we use the following symmetry
transformation to reduce the problem back to the
c &1 case".

x exp — (-,'t' —,'ct ' ——', )"'dt-
' Pp

(4.8)

We have chosen the lower end point of the integral
arbitrarily. The new equation satisfied by y is

(x —cx ) )(„—)(qy +(4y —
2 —2ecx y )g = 0.

The change of scale

Ex =z

(4.9)

(4.10)

eliminates all reference to e from Eq. (4.9) and
gives

z(1 —z')"'y, —y,„+(—'y' ——,
' ——'cy'z')y = 0. (4.11)

In Eq. (4.8) we factored off the rapidly changing
geometrical optics behavior. Equation (4.11) con-
tains the next-order correction to this behavior
mhich me have referred to as physical optics; that
is, Eq. (4.11), when solved, will provide the mul-
tiplicative constants that mere missing in Eq.
(3.12). However, there are no further approxima-
tions to be made because all quantities in Eq. (4.11)
are of order unity. Equation (4.11) must now be
solved exactly.

The change of variables

where we have neglected ey4 compared with y'. As
in BW II, we seek a solution which is exponentially
decaying with increasing x in the tunneling region.
Thus, we factor off a decreasing %KB-type func-
tion of the x variable:

(4 2 . (~ 4 )-(/4

A. The Physical-Optics Approximation

w =(1 —z')"'

is useful because the resulting equation,

(4.12)

2 2

+4x + —,y —1 $ =02 1 2

Bx By
(4 5)

whose solution is the unperturbed ground-state
wave function

e-(& +W ) /4 (4 8)

We have freely chosen the normalization of (t), .
In Region II, we approximate Eq. (4.1) by

2 2

+4X +4y 46(x +2CX y ) —1 $ = 0)1 2 1 2 1 4 2 2

Bx By

(4.7)

We will solve Eq. (4.1) in a tube of thickness O(1)
surrounding the positive x axis. (The x axis is an
MPEP when ]c~&1.) To do so, we break the tube
into two regions: Region I, where y =O(1) and x

and Region II, where y =O(1) and e "'&x
Notice that the regions overlap.

In Region I we approximate Eq. (4.1) by

(u' —I))( —g„+[-,'y' —
z

——,'cy'(1-w')]g =0.

(4.13)

no longer contains a square-root term.
One strategy for solving Eq. (4.13) is to trans-

form the dependent variable so that a Fourier
transform in the y variable gives a (hopefully sol-
uble) first-order partial differential equation. Of
course, an immediate Fourier transform of Eq.
(4.13) is useless because of the y' term. We are
thus led to the substitution

-~ f(t0)/4A (4.14)

The undetermined function f (w) will be chosen to
eliminate the y' term from the differential equation
for A. It mill then be profitable to Fourier trans-
form that equation because the highest power of y
will be one. The above constraint on f(w) takes
the form of a Riccati equation:

-(w' —1)f '(w) -f'(u))+1 —2c+2cw'=0.
(4.15)
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When Eq. (4.15}is satisfied, the equation for A
simplifies to

stant, it is straightforward to solve for B(w). We
obtain (omitting a multiplicative constant)

(w —1)A„-A,„+yf(w)A, + —,'[f (w) —1]A =0. B(w) =u "'[(1—w)/(1, + w)]'". (4.25)

f (w ) = (w' —1)u'(w )/u(w ) .
We obtain

(4.17)

(4.16)

First we solve Eq. (4.15). A standard substitu-
tion which linearizes the Riccati equation is

Note that as w - 1, B(w) - a finite constant [see
Eq. (4.31)]. Thus, it is possible to match g, and
g„asymptotically in the overlap region.

We have now solved Eq. (4.1) in Region II up to
an over-all multiplicative constant P. Our final re-
sult is

1(1-u )M" —2wu'+u(2c —,=0.
1 -zv' (4.18) P(lx2 1~x4 1) 1/4

We gratefully recognize that Eq. (4.18) is the as-
sociated Legendre equation. " Solutions to this
equation are

u(w) =P,"(w), Q,"(w),

where

v(v+1) =2c, i/,
2 =1.

For definiteness we choose

u(w) =P, '(w).

(4.19)

(4.20)

(4.21}

Next, we return to Eq. (4.16) and complete its
solution. It is clear that the strategy of the sub-
stitution in Eq. (4.14) has succeeded; that is, if we

Fourier transform in the y variable, the resulting
equation mill be first order and should yield to the
method of characteristics. However, we are for-
tunate that there is an even simpler approach. We

change to new independent variables

(w, y)- (w, s =y/u(w)) . (4.22)

In terms of these variables, Eq. (4.16) becomes

(w' —1)u'(w)A + —,'u'(w)[f(w) —1]A =A„,

(4.23}

which is separable.
We now argue that the separation constant for

Eq. (4.23) is 0. To justify this contention explicitly
we separate

A(w, s) =B(w)C(s). (4.24)

For separation constant o.2, the equation for C(s)
is C "(s)=nC(s), whose solution is C(s) ~cosh(/2s)
=cosh[o.y/u(w)]. Here we have kept only the even
solution in y because only an even solution can be
matched to g, in Eq. (4.6). However, u(w) in Eq.
(4.21) vanishes [see Eq. (4.29)] at w =1.and w & 1 is
in the overlap of Regions I and II [see Eqs. (4.10)
and (4.12}]. Therefore, there is no asymptotic
match of /jI across Regions I and II unless, of
course, +2=0.

Having shown that n2 =0 and thus that C(s) is con-

x exp — (-', t' —,'et ' —',—)'"-dt

x exp[-y'f(w)/4][u(w)] '"-

x [(I -w)/(1+ w )]"4. (4.26)

B. Asymptotic Matching of Regions I and II

We now determine P by requiring that g, in Eq.
(4.6) and tj/n in Eq. (4.26) become asymptotically
equal in the overlap of Regions I and II. In this
overlap region, x is large compared with 1 but
small compared with c ' . Thus, we approximate

(1 2 1 4 1)-1/4 (1 )-1/2 (4.27)

It is easy to identify the physical meaning of the
three types of terms in Eq. (4.26). There is a rap-
idly varying term from geometrical optics and
several slowly varying terms that do not depend
on y. These describe the amplitude along the
MPEP. Finally, the term exp[ y'f (w-)/4] de-
scribes the falloff of probability current in the
tube surrounding the x axis. A quick calculation
shows that as x approaches the turning line [the
line along which V(x, y) -E =0] at the end of the
tunnel near x= e '", I approaches 0, and, for
positive c, the tube gradually widens. At the turn-
ing line the tube flares out like the bell of a trum-
pet. When -1 &c&0, the tube narrows asm-0.
When c = 0, the thickness of the tube is constant
along its length.

It might appear that our solution Eq. (4.26} is
the result of an amazing sequence of lucky substi-
tutions whose application is rather limited. Actu-
ally these techniques immediately generalize to
all straight-line path problems [see Secs. V-VII
and Appendix 8]. Moreover, when we study an
arbitrary curved-path problem in our next paper"
we show that factoring off the geometrical optics
behavior always leads to a Riccati equation whose
solution is related to the thickness of the tube. So,
on the contrary, the substitutions we have made
are both natural and general.



3354 THOMAS BANKS, CARL M. BENDER, AND TAI TSUN WU

x

vP

(t' —2)' 4t —'—'x' + —', Inx+ —' +0 —,
)

.x'

From Eqs. (4.17) and (4.36) we have

f (0) cos(-', w v) r(-'2 +-', v)i'(2 +-', v)
2 sin(-,'w v) I'(-,' v) I (1+—,

'
v)

(4.37)

Finally, we combine Eqs. (4.33)-(4.35) and obtain

(4.28)

Also, in the overlap of Regions I and II, M -1.
Thus, we use"

u(u/) =P, '(u/)-2 1/2(I -Q/)"2, when Q/ -1.

J(y) = e ""e "'exp[ -y'f (0)/2]/u(0),

with u(0) and f (0)/2 given above.

D. Computation of ImE

(4.38)

Equation (4.29) implies that

(Q/' —1)u'(u/)
u(Q/)

(4.29)

(4.30)

(4.31)

To calculate ImE, we use Eq. (2.5) and proceed
to evaluate the integrals in the denominator and
numerator in turn.

The integral in the denominator is done by re-
placing g with (C(, in Eq. (4.6) and allowing V, the
region of integration, to be unbounded. This is a
good approximation because the dominant contribu-
tion comes from Region I. We obtain

Combining Eqs. (4.26)-(4.31) gives

/( -(~2+22)/4 1/4~2~u (4.32)
(t 4'(r/dV-2w.

"v
(4.39)

Thus, comparing Eqs. (4.32) and Eq. (4.6) gives

p
2-1/2 -1/4 (4.33)

Now (t( in Region II is completely determined rela-
tive to the normalization of (t( in Region I.

. I
x exp — (t' —et' —2)"'dt

vp
(4.34)

x is the distant zero of the integrand. Note that J
is a function of y only.

The evaluation of the integral is given in BW II
as

x 1

exp — (t' —et —2)"'dt -e ""2(e/c)"2.
&2

(4.35)

To compute u(0) and f (0) we use the formulas"

u(0) =P, '(0) =-,'w 1/2sin(2'wv)r('2wv)/I (2'+ —,'v),

u'{0) = P, '(Q/)
d

de
= -w '"cos(-,'wv) I'(-2'+-2' v)/r(1+-2' v).

(4.36)

C. Determination of the Probability Current J(x)

In the Appendix of BW II we developed a trick
(referred to there as Method 2) for evaluating the
probability current for values of x further from
the origin than the turning line without ever doing
turning -point analysis. Without further explanation
we use this technique to obtain the magnitude of
the probability current emerging from the end of
the tube along the positive x axis:

J( ) P2c-2 / (0) /2Q-1{0)

The integral in the numerator is a surface inte-
gral which reduces to an integral over y. We allow
the end points of the integral to be unbounded, use
Eq. (4.38), and find that

-1/3 e -1/2

J
i df- ' '

d e-"/("/'
8 Q(0)

2m

ef (0)u'(0)

1/2

(4.40)

ImZ = 2 1t 2 e ""[ v(v + 1)/e sin(w v)j'" . (4.41)

We have multiplied by an extra factor of 4 to ob-
tain Eq. (4.41) because the contributions to the in-
tegral for ImE come from four equal tubes. As
much current flows out along the positive x axis as
along the negative x axis and symmetrically along
the y axis in both directions.

E. Perturbation Theory in Large Order

From Eqs. (2.4) and (4.41), we have for large n

v(v+1)w
sin(wv)

-1/24 n-2/2( 1)n+1-x „, doe
7T o

2cw v 6= 2 . „,(—1)""3"I'(n+ —,') . (4.42a)sin wv

Equation (4.42a) is valid for c&1, v(v+1) =2c.
When c & 1, we use Eqs. (1.3) and (4.4) to obtain

After using Eqs. (4.36) and (4.37), Eq. (4.40) sim-
plifies drastically. From this result and Eqs. (2.5)
and (4.39) we have finally
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2m "' 6 n formula similar to but slightly less general than
that in Eq. (3.5):

(4%2b}

where v(a+I) =2c =(3 —c)/(I+c).
For c =1, we cite the result in Eq. (A18), to wit:

„,n(-3p) I'(n+-, ) 1+—+ —+ —+-n 1 ~& Y2 ~3 Y4

m

(5.1)

A„-(-1)" ' —3" I'(n+ 1) .

F. Discussion

(4.42c) The relevant numerical techniques are discussed
in BW I, Appendixes D and E.

The actual difference equation that was solved is

(2i+2j)C„;,——(i +1)(2i +1)C„;„,.

We can immediately verify Eq. (4.42a) for the
case c =0~ v=0. As v-0, the quantity in square
brackets approaches unity and we obtain exactly
twice the result in Eq. (1.8). This is because now
we have two uncoupled anharmonic oscillators.

The other and more interesting limit to investi-
gate is c-1~ v- 1. Now the term in square
brackets blows up. This singularity corresponds
with the onset of spherical symmetry. Recall that
our analytical procedures necessarily break down
for that case because there are no isolated
MPEP's —all radial paths are equally probable.
The sudden increase from four to an infinite num-
ber of MPEP's allows the probability current to
escape to infinity faster, reducing the lifetime of
the unstable state. %e thus observe a constructive
interference phenomenon which causes an enhance-
ment in the rate of divergence of perturbation the-
ory —A„ in Eq. (4.42c} is larger than'„ in Eqs.
(4.42a) and (4.42b) by a factor of n'".

One encounters many similar phenomena in op-
tics. Consider, for example, a light beam parallel
to the z axis and incident upon a flat elliptical plate
centered about and perpendicular to the ~ axis. %e
use ray tracing to determine the amplitude of the
scattered wave at a point on the z axis behind the
ellipse. Only two rays scattering off the edge of
the ellipse, namely, those at the ends of the minor
axes, contribute appreciably to the amplitude.
However, when the lengths of the major and minor
axes become equal, the scattering amplitude suf-
fers a discontinuous jump because of constructive
interference. All rays scattering off the edge of
the now circular disk contribute equally to the
scattered wave.

%e describe the numerical verification of Eq.
(4.42) in Sec. V.

V. COMPARISON VfITH NUMERICAL DATA

In this section we verify the theoretical predic-
tions in Eqs. (4.42a) and (4.42b). We have run a
computer program which calculates A.„ to 55th or-
der in perturbation theory by solving a difference
equation. It then fits (to six significant figures)
the raw Bayleigh-Schrodinger coefficients to a

+(j+1)(2j+1)C„;„,
+QCn-y, i-2, y +6Cn-y, i, g-2

+2cC„,;, g, —QD„,C ;)q,

(5.2)

where

C„, ,+C„, , = D„=(-1)""A„, (5 3)

Co, p, o=1~

C p p 0 for n& 0

C„;,=0 for i+ j&2n,

C„;,=0 for i&0 or j&0.
Equation (5.2) is derived by substituting

Z(X) =1 —P D„(-~)",
n=l

)t(x) =e '* " '"I)+ pa„(x, ))(-x)"I,n=l
2'

(5 4)

(5 5)

n =$-8vc/cos[-,'m(1+8c)"']j'",
P=1, (5.7)

where we have eliminated v in favor of c using
Eq. (4.20). For c&1, a =5 =1,

8w(c —3) 1/2

(1+c)cos[))(25—Vc)'"(4+4c) '"]

p = (c + 1)/2,
(5.8)

where we have used Eq. (4.4). For a =5 =1 the val-
ues of n and P in Table I agree to six places with

&.(x, y) = g (-'x')'(2y')'C. „,~ (5 8)
i, )=p

into Eq. (1.1) and collecting powers of (-,'x')', (-,'y')',
and X".

The numerical predictions for n and P for vari-
ous values of a, b, and c are given in Table I. The
predictions in Eq. (4.42) are as follows: For -1
+c&1, a=b=1,
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TABLE I. Numerical values of 0, and P in Eq. {5.1) for
various values of a, b, and c in Eq. {1.1). The theoreti-
cal predictions in Eqs. {4.42a) and {4.42b) and the numer-
ical calculations of n and P agree to six figures, which
was the available limit of computer accuracy. Some val-
ues of n were not computed.

saddle points of V by solving

—=
2 x —E (Qx +cxy ) = 0,Bx

BP—=-,'y —e(by'+CX'y) =0
Bp

and requiring that the Hessian matrix
-1
-0.5
-0.25

1

-0.05
-0.005

0
0.005
0.05
0.1
8
0.25

3
0.5

1.5
2
2.5
3
5

33

1.582 42
1.705 41
1.903 78
1.990 02
2.000 00
2.010 02
2.104 10

2.383 99
2.623 72
2.907 40
3.672 06

4.338 36
2.907 40
2.322 11
2.000 00
1.472 28

1.000 00
1.000 00
1.000 00
1.000 00
1.000 00
1.000 00
1.000 00
1.000 00
1.000 00
1.000 00
1,000 00
1.000 00
1.000 00
1.000 00

1.250 00
1.500 00
1.750 00
2.000 00
3.000 00

17.0000

—,
' —E (3cx ' + cy')

-2cxpE
-2cxg 6

—,
' —~(3by'+ cx')

D =ab —c =Det a c
c b

(6.1a)

have negative determinant.
The critical points are (0, 0), (0, a(2bc) "'),

(+(2ae) ' ', 0), and ai[2c(c' —ab)] "'((c—b)'"
+(c -a)"'). (0, +(2bc) ") are saddle points if
c/b &1 and (+(2am) "', 0) are saddle points if c/a
& 1. If c & max(a, b) then the off-axis critical points
are saddle points. (Recall that for the Hamiltonian
to be bounded below we must have a ) 0, b ~ 0, and
c & —v'ab. ) All of the saddle points are radially
directed.

As in Sec. IV, the off-axis case can be reduced
to the case c/a&1 by a rotation. To simplify the
algebra we introduce the following notation:

0.25
1
5
0.25
1
5
0.25
1

2.000 00
2.000 00
3.285 74
3.000 00
3.000 00
3.666 67
5.000 00
5.000 00

1 c
D, =b —c =Det

a 1
D =a -c =Det

1

S =D& + D2 =a +b —2c .
Then a suitable rotation is

(6.1b)

(6.1c)

(6.1d)

the expressions in Eqs. (5.7) and (5.8). Note that
when the argument of the cosine function becomes
imaginary, cos is replaced by cosh. The function
in the curly brackets is always positive.

We have done one further and rather amusing
numerical calculation which does not appear in
Table I. We computed A„ for c = -5. This problem
has no apparent physical significance because the
Hamiltonian is not bounded below, and therefore
has no discrete eigenvalues. Nevertheless, the
perturbation series is still well defined and we
found that P = -2.00000. This result agrees with

P in Eq. (5.8).
In Sec. VI we obtain theoretical values for n and

P when a, b W 1 and compare these with the data in
Table I.

VI. THE CASEa, b A I

The generalization of the discussion of Secs. III
and IV to the case where a, b c 1 in Ecl. (1.1) is en-
tirely straightforward. As before, we find the

x = (D,/S)"'x+ (D,/S)"'y,

y =+(D,/S)"'x+(D, /S)"'y .
In terms of the new variables the potential is

V= —,'(x'+y') ——,'e(ax'+by'+2c x'y'),
where

a =D/S,

b =- [(D, —D2)2 + D] /S,

c =3D/S —2c.
Observe that

(6.2)

(6.3)

(6.4)

e-(» 2+&2)/4
I (6.5)

2D, D~c —a=2D/S-2C= ' ' &0
7

when a & 0, b & 0, and c & max(a, b )
Without loss of generality, then, we assume

c(a. We will solve the Schrodinger equation in a
narrow tube surrounding the x axis. In Region I
where 0 ~x&a ' ' we have
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In Region II, e "'&x& e '" and we can approxi-
mate the differential equation by

2 2

2
Q y2

+ —,x ——,e(ax +2cx y ) —E g =0.2 1 4 2 2
II

P=a,

-2pc 1/2

a cos[ -', 7)'(1 + 8c/a)'"]
(6.9)

The substitutions

aE'

c/a- c

(6.6}

(6.7)

for the case a&b &0, a&c & —v ab.
There is a factor of 2 missing from the expres-

sion for n in Eq. (6.9) relative to Eq. (5.7) because
the contribution from the tube along the y axis is
negligible when a & b. When b & a, we have similar
results:

reduce Eq. (6.6) to Eq. (4.7), which has already
been solved.

We therefore immediately deduce that the large-
order behavior of perturbation theory is

-27)c
b cos[ —', w(1 +8c/b)"']

J

P=b,
(6.10)

where

(6.8) where b&a&0, b&c ~ —v'ab.
For the off-axis case we use Eq. (6.4) to deduce

that

1/2

8)) (2ac + 2b c —Sab —c')
( (ab —c')caa( '-, c(25 —16c(a ab —26)/(ab —c'))"*]I

ab —c'
a+b —2c '

(6.11)

where a&0, b &0, c&max(a, b).
The results in Eqs. (6.9)-(6.11) agree to six places with the numbers in Table I.

VII. GENERALIZATION TO N DIMENSIONS

N N

V=+4xg +4k. Q a;, x; x, (7.1}

where a;& is a real symmetric matrix. The Ham-
iltonian in (7.1) must be bounded below, and there-
fore a must satisfy

It is natural to try to extend the techniques we
have developed for two-mode oscillators to more
complicated problems. In this section we will
show that such an extension is possible for a large
class of N-mode equal-mass oscillator systems.
Our aim will be to present a brief overview of what
can be accomplished in N dimensions, and we will
not dwell on algebraic or numerical details.

We begin by studying systems having potentials
of the form

Thus

x;=0,
or

N—=pa, , x,'.
g=l

(7.4)

D,
2e det(a)

i~

If this is to correspond to a point in real space we
must have

We will first consider the case where all x; WO.

Then Eq. (7.4) has a solution if a is nonsingular.
We define D; to be the determinant of the matrix
obtained from a by replacing each element of the
ith column by one. Then g& a;, D& = det(a} for all i,
and

a;;y;y& & 0 for y; & 0. (7.2)
D

&0, 1 &i &N.
det(a) (7.6)

When A. = -e(e & 0) the critical points of V are the
solutions of

Of course there are 2 ' vectors which satisfy Eq.
(7.5) because we can choose the sign of each com-
ponent of x; independently.

The Hessian matrix at the critical point is

l 2= —,x- —ex ~a x2 t
/=1

(7.3)
Using Eq. (7.5) we can rewrite this as

(7.7)
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H;, =-2ex;x, a;&

/D D S1/2t()1 9U7 (7.8)

where o; is the sign of x;. Note that D; D, is al-
ways positive [see Eq. (7.6)]. Equations (7.3) and
(7.8) imply that

HtJV, D~ 1/2=-gt Dt 1/2) (7.9)

which means that the radial line through each crit-
ical point is one of the critical point's principal
axes. Furthermore, the minus sign in Eq. (7.9)
implies that along this radial line, V has a maxi-
mum at the critical point. Thus if all the other
eigenvalues of H at the critical point are positive,
we have a radially directed saddle point.

A necessary condition for H to have one negative
and N-1 positive eigenvalues is

Using Eq. (7.6) we see that

detH & 0 ~ (-1)"det(a) & 0. (7.11)

In two dimensions, Eq. (7.11) is indeed satisfied
by the off-axis saddle points that we discussed in
Sec. VI. In fact this condition and Eq. (7.6) imply
that c &max(a, 5), which we have shown to be a nec-
essary and sufficient condition for an off-axis sad-
dle point in two dimensions. In higher dimensions
however, we can have detH&0 without having one
negative and R-1 positive eigenvalues. It is dif-
ficult to give a simple necessary and sufficient
condition for saddle points in the generaI N-dimen-
sional case.

If several of the x; are zero the procedure for
finding a saddle point is slightly more complicated.
We choose to label the axes so that the first Mx;
are zero. Then, the condition for a critical point
becomes

detH& 0.

detH = [-det(a)] "det[o;o, (D; D,.)"'a,, ]

(7.10) x. =0t )

N

a„.x, , 2 —M+1
9 =b1+1

(7.12)

= -[-det(a)] ' ll D; .
The discussion proceeds as before in the subspace
of nonzero components. We find that the Hessian
matrix is given by

2
—, -~ ~~ a„x,

N
1 2

-26xt x~ at~

where the x s are the solutions of Eq. ('7. 1.2).
Thus, in addition to the usual conditions on the
E-M dimensional matrix x; x,. a;, , we must have

2
—e ~a;qxq &0, 1=1).. . , M.2

kf+ 1

The special case of an on-axis critical point,
where all but one of the x; vanish, is important be-
cause any other configuration can be reduced to
this one by a rotation. Here the condition for a
saddle point becomes

2
—caNxN &0, i =1, . . . , jV —1

where

1
XN

2caNN

It is now easy to generalize the arguments of
Secs. IV and VI to compute the contribution to the

large-order behavior of perturbation theory from
this saddle point. We observe that in the tube
where e '--&x„&e ' ', x; =O(1), igiV, we can
make the approximation

N-12~~g ~ a, , x,- x,. -—,exN z aN; x, +~eaNNx„
) =1

Following the procedure of Sec. IV, we factor a
rapidly varying WEB function of the xN variable
[see Eq. (4.8)] out of the wave function and neglect
all terms in the resulting equation which vanish as
e- 0. After a simple change of variables [see Eq.
(4.12)], we obtain a partial differential equation
which must be solved exactly:

(zu' —1)y + g —,+-', x
t=1 t

'" x (1 —zv') y =0.
2aNN



COUPLED ANHABMONIC OSCILLATORS. I. EQUAL-MASS CASE 3359

The ansatz
N-1

y = A exp --,' g f; (w )x

generates N-1 Biccati equations whose solutions
govern the thickness of the tube of probability cur-
rent in the directions perpendicular to the MPEP.
Then the change of variables

$0=28~

s; =x;/u;(v), 1 &i &N-1

with

f; = (w' —1)u,' (m)/u;(~)

reduces the equation for A to one that is separable:
N-1

1 82
(w' —1)A. + —,

' g t f;(se) —1]A= g, , A. .
4=1 l=1

Finally, we require that the wave function in the
tunneling region match to a harmonic-oscillator
wave function (the solution of the Schrodinger
equation near the origin). As in Sec. IV, this im-
plies thatA is a function only of m. It is then easy
to determine the probability current and evaluate
the dispersion integral. The resulting contribution
to the large-order behavior of perturbation theory
is

We choose the first N-1 column vectors of A to
lie along the other principal axes of the saddle
point. In the new coordinate system V will no
longer have the simple form in Eq. (7.1). It will
contain terms like x& 'x, . However, it is easy to
see that there are no terms of the form x~'X,. (jxN)
or x„'x,. x,. (i,j xN). Such terms would give a non-
vanishing contribution to O'V/Bx„ax~ or to O'V/
sx; BX, at the critical point. (The coordinates of
the critical point are xi =0, 1 &j &N —1, X„x0.)
Thus V has the form

. N N-1
v= r i;'--,'—',c a„„x„+ra,„x, x„'+5),

k=1

where b depends at most linearly on xN. In the
tube where 7, =O(1), 1 &i &N-1, and e "' &xN
(c "', we can clearly approximate Vby neglect-
ing b entirely.

We then use Eq. (V.14) to compute the large-or-
der behavior of perturbation theory as before. The
computation of a;N for all i is a tedious algebraic
problem. Still it is easy to find the value of a»,
the coefficient of X„ in Q;, a, ~ x, 'x,.'. Using Eq.
(7.15) it is

DaD
NN ij

t

), gD, det(a)

det(a)

x M6m '"(-Sas„)"r(n+-,'), (7.14)

x, =Pa, , x, ,

(7.15)

where v;(v, +1)=2a;~/a„~.
This expression will be equal to the true large-

order behavior if the xN axis is the MPEP. How-
ever, as we mentioned above, we can use Eq.
(7.14) even if the dominant saddle point does not
lie on this axis. As an example, let us consider
the case of a dominant critical point whose coordi-
nates are nonvanishing. Then the following rota-
tion will align the radial line through the saddle
point with the XN axis:

Thus, the large-order behavior of perturbation
theory is

(7.16)

The constant K„may be determined from Eq. (7.14)
once we have computed a;N for i 4 N. The factor
2" ' reflects the possible choices of the sign of x,
in Eq. (V.5). Similar formulas exist for the case
where some of the x; vanish at the dominant saddle
point.

Equation (7.14) may also be used to find the
large-order behavior of the perturbation series
for systems having an infinite number of degrees
of freedom. As an example, consider the sequence
of potentials

N NV'"'=-'Px '--,'~ g x 'x' (7.1V)
&=1 f, /=1

$wj

The critical points of V~"' are given by
N

5=1

& +(N)
0= =-', x, --,'cx, P x,',

8x~
(7.18)
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whose solutions are

x; =0 or x; ' =[2m(M —1)] '. (7.19)

M is the number of nonzero x;. Note that M can
never be one, so Eq. (7.19) always. makes sense.
The Hessian matrix is

0 1 1 11011
1 1 0 1

1 1 1 0

a,',"' =-
(

"
)

-2ex, x, +3&6„(x,.'). (7.20)

Observe from Eq. (7.20) that we cannot have a sad-
dle point if any of the x; vanish because Eq. (7.1'3)

is violated. Hence, all x, t 0 and

2(N- 1) (N 1) '-
where 0; is the sign of x;. The eigenvalues of this
matrix are —,

' —N/(N-1), which is negative, and 2/
(N-l), the latter having multiplicity N 1. Th-ere-
fore, we have a saddle point. There is a different
saddle point for each of the 2 ' choices of sign
for x;.

To determine the large-order behavior of per-
turbation theory for this system, we must compute
D',"' and det[a"'] [see Eq. (7.16)]. The matrix a~"'

is given by

Thus,

and

a',"'=(-1)" ', 1&i &N.

a]g = 1 &i &N-1(g) N- 3
kN

(g) N- 1
NN

(7.21)

Therefore, from Eqs. (7.14) and (7.21), the large-
order behavior of perturbation theory is

We can also compute a;„because the potential is
so symmetric. We find that

-8w(N-3)/(N-1) ' '
N —1

cos —,
'

m(1 —16/9(N —1)) 'i' -3 r(n+-,') .
N

(7.22)

Now consider the limit as N- ~. This limit de-
fines an infinite-mode oscillator system which,
strictly speaking, is some nonlocal field theory.
The leading contribution to Eq. (7.22) which comes
from geometrical optics remains finite in this
limit:

N-1
I"(n+-,')- (-3)"1'(n+-,') .

However, the constant from physical optics blows
up. The divergence of this constant derives from
two sources The fa.ctor (v'8v)" ' occurs in any
N-mode problem in which no axis passes through
the dominant saddle point. The vanishing of the
cosine term as N- ~ is a more singular diver-
gence of the form N"/ . It reflects the disappear-
ance of the saddle point. The extreme symmetry
of the potential makes the saddle become flat as N
becomes large. This kind of symmetry is not
present in potentials arising from (P"), quantum
field theories.

It is amusing that we can eliminate this diver-
gence by a mass renormalization. We will argue
that by adding a lower-order mass term to the po-
tential we can ensure that the N- ~ limit of A.„"
exists. Consider the effect of adding a term of the
form

N

p{N) 1~ 2
i

4=1

Because this term is at most O(1) in the tunneling
region, it cannot affect the determination of the
MPEP. This term is merely a correction of
O(e) to the mass, and thus can actually be viewed
as a mass renormalization. Following the scaling
arguments of Sec. VII, Ref. 9, we find that this
term contributes an over-all multiplicative con-
stant (independent of n) to the large order growt-h

of perturbation theory, namely,

2(N-1)

On the other hand, we easily determine from Eq.
(7.22) that the two large Ndivergences -which we
discussed give precisely

[6(N- 3)]'

Hence, if we choose

N —1
ln(6N -18), (7.23)

then the limit N- ~ may be taken. We obtain the
remarkable result that the large-order behavior of
the Rayleigh-Schrodinger coefficients A„ for the
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ground-state energy perturbation series of the in-
finite-mode system described by the potential

N oo

V= lim —,'(1 —«)(" ] p «, + «p «' «i
N~~ i=1 i, 5=1

(7.24)

is

A„-—r6 v '~ (-3)"I'(n+ —,'},
where N-~ in such a way that A.N is small. This
is precisely the result in Eq. (1.8) for the one-
mode anharmonic oscillator. Of course, it can be
argued that the choice of the potential in Eq. (7.24)
is somewhat contrived. Nonetheless, we feel that
Eq. (7.25) is just one more example of the extraor-
dinary simplification that takes place in the large-
order limit of perturbation theory.

We could solve this problem by removing the first
derivative term from Eq. (A2) by making a suitable
transformation and then using %KB in the same
manner as in the body of this paper. However, we
prefer a much simpler approach. We will convert
Eq. (A2) into a partial difference equation which
has already been solved asymptotically in BW II.

To transform Eq. (A2) into a partial difference
equation, we substitute the expression

00 2n

()(«)=« ""I(«Q(-«)'Q (-,'«')'c„,
I

(A4)
n=l j=l

and Eq. (A3) into Eq. (A2) and collect powers of
r'/2 and -X. The coefficient of ( r2')~ and (-X)"
is the desired difference equation:

2j C„;=(j +1)(2j +N)C„&„+C„»,
n-1

Cp~lCn-p, g ~~

~ (A5)
APPENDIX A: OSCILLATORS WITH SPHERICAL

SYMMETRY

Here we investigate the ground-state-energy per-
turbation series for spherically coupled oscillators.
This special case obtains when we choose c =1 in
Eq. (1.4). However, a spherically symmetric con-
figuration of oscillators is so easy to treat that we
immediately generalize from the two-mode prob-
lem of Eq. (1.4) to the N-mode problem, which we

define by the equation

+ 4Xi + 4A.

—z(«)I ((«, )=0, (A()

where lim(„, , „]j)=0.
We use spherical symmetry to transform Eq.

(A1) to N-dimensional spherical coordinates.
Moreover, we seek a wave function g which de-
pends only on x, the radial coordinate, because
the ground-state wave function has no angular de-
pendence. We thus reduce Eq. (A1} to the ordinary
differential equation

d N —1 d—+ ,'r '+ ,'Zr' —Z(X-) -y(r) =0,

with initial value Co, =1 and boundary condition

C„,. t 0 for n) 1 and 1 (j (2n; Cn,. = 0 otherwise.
C„ is related to Cn j by

Cn =NCn, (A6)

C, = D. , /l.jI (j+.'~)l .
The equation satisfied by D„, is

(A8)

(j+-.&- I)(j+-.&-2)
n, j tl, j+I . 2(j 2) n-l, j-2 '

(A9)

Next, we replace Eq. (A9) by a new approximate
equation satisfied by a new dependent variable
E„)'.

Following Sec. VI A of BW II, we approxi-
mate Eq. (A5) by dropping the nonlinear convolu-
tion term. As was argued there, the neglected
term does not affect the leading asymptotic behav-
ior of Cn, for large n. Thus, the equation to be
solved is

2jC„&=(j +1)(2j+N)C„&+,+C„, &, . (A7)

We put Eq. (A7) into a more useful form by sub-
stituting

(A2) &n, y =En, ,+i+~2(j+& —1)&n i y2 ~-. (A10)
where

2xi

Our problem is to compute the eigenvalue E(A.)
perturbatively in large order. We expand E(A.) into
the perturbation series

Equation (A10) is derived by approximating the co-
efficient of D„», in Eq. (A9) for large j, keeping
terms of orders j and 1 and neglecting terms of
order j

We must introduce an extra condition which fixes
the multiplicative scale of E„,because Eq. (A10)
is homogeneous; to wit, we require that

z(~) =-',x- g(-~)"c„.
n=l

lim E„,„/D„,„=1.
n~ c)o

(A11)
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From Eq. (A10) we easily deduce that

E„,„=E, ,r( n+-,'(N+I)) jr(-,'(N+1)). (A12)

Ep 0 is the multiplic ative factor which adj usts the
scale of E„,. Also, from Eqs. (A7) and (A8) we

have

D„,„=2nr(2n+-', N)4-"/n! .

Combining Eqs. (All)-(A1S) gives

z, , = r(-'. (N+1)) 2""~-'".

(Al 8)

(A14)

Finally, we recall that Sec. VI H of BW II
gives a complete treatment of the asymptotic be-
havior of solutions for difference equations like
that in Eq. (A10). It is shown there that for large
Sp

S"'"'r (n+-.'N}
"2M~r(-'(N+ I)) (A15)

Thus, we combine Eqs. (A6), (A8), and (A15) to
obtain

C„-r(n+-,'N)S" 6"",v '/r (-'. N)- (A16)

This is the precise leading asymptotic behavior of
C„ for large n and is the general result we have
sought.

Two special cases of this equation are note-

worthy. For the one-mode oscillator (N=1), the
coefficients of the ground-state-energy perturba-
tion series grow like

C -6'"7/-'"S" r(n+-', ), (A17)

which agrees with Eq. (1.8).
Second, the coefficients for the two-mode oscil-

lator (N=2) diverge like

C- —3 ntn+& (A18)

APPENDIX 8: NONQUARTIC COUPLING

To demonstrate that the analytical methods of
Sec. IV are easily generalized to more difficult
problems, we treat the two-mode, nonquartically
coupled oscillator. This system is defined by the
equation

as in Eqs. (1.11) and (4.42c).
observe also that the rate of divergence of per-

turbation theory increases with increasing N:
I (n+ ,'N)-I'(—n)n" '. This is a phenomenon charac-
teristic only of spherically symmetrically coupled
oscillators. As is shown in Sec. IV, it results
physically from a kind of constructive interfer-
ence.

8 8

8y2, +—'x'+ —,'y'+X2 "(x'"+cx'" 'y'+dx'" 'y'+ ~ ~ +dx'y'" '+cx'y'" '+y ")—E(x) /=0. (Bl)

Corresponding to Eq. (4.1) we have

8 8
+gx +4y —6 2 (x +CX y +' ~ ) —1 (=0.

8x 8g

As in Sec. IV, we solve Eq. (B2) in a tube surrounding the positive x axis. In Region I we obtain the
same result as in Eq. (4.6) and in Region II we make a substitution similar to that in Eq. (4.8):

I x
(1 2 ~//-12 // 2N 1)-l/4 e -(1t2 ~// 12 //t2// 1)1/2dt-

vP
(as)

In the resulting differential equation for g we let

(B4)

and obtain

(1 22 N2// -2
)
1/2-

+ 4y N~ y 2 X2

Equation (B5), like Eq. (4.11), must be solved
exactly —there are no further approximations.

To simplify Eq. (B5), we let

(1 22-// 2Ã -2)1/2

which gives

(N-1)(~' —') x.—x„
+[-,'y' - -,

' - -,'c(1 —~')y'1 X = o (B7)
The substitution

(B8)

leads to a Riccati equation that is almost identical
to that in Eq. (4.15):

(N 1)(a' —1)f—'(e)-f'(&u) +1 —c+cuP -=0.

(B9)

To linearize Eq. (B9), we let

f (~) = (N - 1)(~' —l)u'(~)/u(~) .

As in Sec. IV, u(&u) satisfies a I,egendre equation:
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u(~) =P„"(~),

where p = -1j(N - 1) and v( v+ 1)= c/(N - 1)'.
When Eq. (89) is satisfied, A solves a much

simpler equation than Eq. (87), namely,

(N- l)((u' —1)A„-A„+yf((u)A, +-,'[f(&u)-1]A =O.

(812)

The substitution (co, y)-(co, s =y/u(&u)) reduces
Eq. (812) to one that is separable:

(N-1)(uP —1)u'(u))A + 2u'((o)[f (u)) —1]A = A„.
(813)

f(o) =2(1-N)

sin[w(v+p)/2]r(I +~v+ —,
'

p.)r(1+~v ——,'p)
cos[w(g + v)/2]r(-', + 2 v —

2 p)r(-', +-', v+-', p)

(821)

Equations (819) and (821) are now used to deter-
mine J(x), and then ImE, and finally the behavior
of A.„ for large n. %e jump immediately to the fi-
nal answer because the calculation is relatively
easy and the techniques are described in Sec. IV.
Our result is that for large n,

X-1A„- -(2K) „,(-2)-"r(nN- n+-,')
The argument given in Sec. IV that the separation
constant for Eq. (4.23) vanishes also holds for Eq.
(813). It follows that, up to an arbitrary multipli-
cative constant p, where

-r(2N/(N 1)) rtN Ii+1/2

r'(N/(v —1)) (822)

A =P[u(~)] "'[(1—~)/(I+~)]"""". (814) r(1+ v —V)r(-v —u)
r(1 —v)r(-//) (823)

This completes the solution of Eq. (82).
We determine p by asymptotically matching p in

Region II to g in Region I. In the matching region,
(d -1, and we have

P-»o/-»((g) (—
' —'~)&~ »/ /r(N/(N I))

(815)

From Eq (815). we have for &u-1

A —pr "'(N/(N- 1)),

f(~)-1. (816)

In the matching region we also have formulas
similar to those in Eqs. (4.27) and (4.28) from
which we conclude that [see Eq. (83)]

q/ 2&/2 &/4 " /4 (817)

From Eqs. (816) and (817) and Eq. (4.6), we ob-
tain the generalization of Eq. (4.33):

Finally, we check (822) and (823) in three im
portant limiting cases. First, we let v- 0. In this
limit K in Eq. (823) is 1. Thus, A„ in Eq. (822) is
exactly tsvice the theoretical prediction for the
large-order behavior of perturbation theory for the
x'" oscillator. ' This is reasonable because when
v = 0, c = 0, and we have two noninteracting x' os-
cillators.

Second, we pick X=2, when p, =-1. In this case

K =[ r(2+ v)I"(1 —v)]"'

which further simplifies to

K = [ v(v+1)7//sin(~v)].

Here we recover the same result as in Eq. (4.42a).
Third, we expect to find a singularity in K when

Eq. (81) has spherical symmetry because of
constructive interference. Hence we investigate
the limit C- N. Solving v(v+1) =N/(N- 1)' gives

P =e "'(2r(N/(N-1))} (BIS) v, , =1/(N- 1), -N/(N- 1).

Continuing to follow Sec. lV, we use the formu-
las"

pp(O) 2p -i/2 v(v+ 4) r(a + a v+ a I)
2 I'(1 + ~ v —,' p)'—,

(819)

Pfl(x) —2//+ lv 1/2d
dx ~ Q

7/(v+ p. ) I'(1+—,'v+-,'p, )
r(l+lv-lu) '

(82O)

from which i. follows that

But, p, = 1/(N 1), so-—
u+p, =0, 1+v2 p, =0.

APPENDIX C

Our discussion of E-dimensional oscillators in
Sec. VII was incomplete because we did not show
that straight lines through radially directed saddle
points were solutions of the classical orbit equa-

Thus, one of the two I" functions in Eq. (823) blows
up and K is indeed singular.

We conclude that the results in Eqs. (822) and
(823) are quite reasonable and attest to the gener-
alizability of the methods introduced in Sec. DT.
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4+5 +
2

+i ~ ~ . s ~+i
iI, . . ., i2@

(c1)

The interaction term is the most general 2Mth-
order homogeneous polynomial, subject to the re-
striction that V be bounded below for A. &0. Then
we have the following theorem: If A, =-c, e &0,
then the radial line through any critical point of V
is a solution of the classical equations [Eq. (3.4)].
Furthermore, this radial line is a principal axis
of the critical point and V reaches a maximum at
the critical point along this line.

Proof: Let a=(a„. . . , a„) be a critical point of
V. Then,

xi =a.
1—2a ~ —E' A i . . . ; a; ~ ~ a; =0.

2 2N 2 2'
'2 ~ '''«2N

(c2)

The radial line through a; is

x;(s)=
i

'i s. (c3)

Using Eqs. (C2) and (C3) we can evaluate the ex-
pressions in Eq. (3.4) in terms of s:

V, v(x, (s)) =
2 a ~s

tions, and we did not give criteria for the exis-
tence of saddle points. The purpose of this appen-
dix is to remedy these omissions.

Consider an N-dimensional potential of the form

Thus,

Q H;q xq(s) =
~

~'(1 —M);

that is, x;(s) is an eigenvector of H with eigenvalue
1 —M and by definition it is a principal axis of the
critical point. Because 1 —M is less than 0, the
critical point is a maximum along the x; direction.
This completes the proof.

Next we will show that for almost all values of
the parameters of V in Eq. (C1) there is at least
one radially directed saddle point.

Let us first review the results that we obtained
in two dimensions. For the potential V =-,'(x'+y')
——,'~(ax'+2cx'y'+by'), there are three distinct
possibilities:

cuba,

c+b,
a=b=c,
a=e&b.

(C7a)

(C7b)

(C7c)

In the first case we found that V always has a
radial saddle point. The second case is spherical-
ly symmetric and is treated by separation of vari-
ables in Appendix A. The third case was not treat-
ed in See. VI, but it is easy to see that there is a
degenerate critical point along the x axis (the Hes-
sian has a zero eigenvalue). We will see that a
similar trichotomy occurs for the general potential
in Eq. (C1).

Let us consider an arbitrary unit vector u and
study the variation of V along the radial line
through u:

(C3)

s;s s;( s )'" '
(C4)

where xj =xuj and

T(u) = g A;, . . . ; u;, ~ ~ ~ u, ,„.
and

Then
&r" ~ ~ ~ '2~

s2N-I
+i S ~i Xi S 2S

i

Thus

(C5)

and

,'r —er'" 'T(-u),
9'v (c9)

x (s) Q x, '(s)V; x, (s) =- V; V(x;(s)),

and x, (s) satisfies Eq. (3.4), the equation of motion
Next, to show that the radial line x, (s) is a prin-

cipal axis of the critical point, we compute the
Hessian matrix H; j..

, =-,' —e(2M —1)r' 'T(u).8+

Thus V has a maximum on this ra,dial line at

Z/(2u-2)

2m T(u)

(C10)

(c11)
82 V ()

S

~(2Af -I) a ~ ~ .a2 Sj 'j'3' ' S2~ '3 S2V '
S3«' ' '«S2N

Equation (Cll) defines an N-1 dimensional hyper-
surface B. It is easy to show that V attains a min-
imum on B. If T(u) does not vanish anywhere, then
the hypersurface is compact and, because V is
continuous, a minimum exists. If T does vanish,
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it can only do so for a finite number of vectors u.
Therefore consider a small cone of solid angles
around each such u. These cones will intersect B
in a finite number of small patches, and the com-
plement of these patches B' is compact. Thus V
has a minimum on B'. Since we can choose the
opening angle of the cones to be as small as we

wish, the point where V has a minimum is sepa-
rated from the patches by a finite distance. (Oth-
erwise the minimum would lie along one of the di-
rections where T vanishes; but this mould be ab-
surd because V-+~ in such a direction. )

There are now two possibilities. Either the min-
imum of V is isolated or else V attains its mini-
mum on some connected subset of V. The latter
case corresponds to Eq. (C7b) and is exceptional
in the sense that we can make the minimum iso-
lated by changing the interaction term A, . . .;

infinitesimally and we will therefore not consider
it further.

If the minimum is isolated, then we have a radi-
ally directed saddle point because, by construc-
tion, V has a maximum along the radial direction
and a minimum in all other directions. As we have
shown above, the radial direction is one of the
principal axes of the saddle point. The saddle
point may of course be degenerate as in Eq. (C7c).
(The WEB methods which we have introduced de-
pend on the existence of a nondegenerate saddle
point. ) However, since degeneracy is also ex-
tremely exceptional, there is almost always a sad-
dle point.

We conclude finally that the straight-line %KB
methods which we have introduced in this paper
are applicable to almost all potentials of the form
in Eq. (Cl).
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We develop a general formalism for calculating the large-order behavior of perturbation theory for
quantized systems of unequal-mass coupled anharmonic oscillators. Our technique is based on a
generalization of the semiclassical approximation which was used to study equal-mass oscillators in the
first paper of this series. The unequal-mass problem is much more difficult because the path which
minimizes the classical action is not a straight line. Assuming that this tunneling path is known, we
derive a general expression for the physical-optics approximation to the wave function of a tunneling
particle. This derivation rests on the construction of a WKB approximation in curved space. We thus

completely reduce the general quantum problem to the much simpler classical one of determining the
path. Then we present a perturbation scheme for finding the classical path for systems of oscillators
~hose masses only differ by a small amount. Finally, we illustrate our techniques by solving a
two-mode unequal-mass oscillator and comparing these results with a computer calculation. Our
theoretical predictions and numerical calculations agree.

r. wTRoDUcrroN

In the first paper of this series, ' we developed
a method for computing the large-order behavior
of the perturbation series for the ground-state
energy of a system of N equal-mass coupled an-
harmonic oscillators. The method employs an
extension of the semiclassical (WEB) approxima-
tion to multidimensional systems. However„be-
fore we can make the %KB approximation we must
find the particular solutions of the classical orbit
equations which make the action integral j(V- E)'~'
both a local and global minimum. ' ln general, it
is very difficult to solve the classical equations,
but in BBW I it was shown that for equal-mass
oscillators the MPEP's are straight lines. In the

present paper we will investigate the more diffi-
cult problem of computing the large-order behav-
ior of perturbation theory for systems whose
MPEP's are not straight lines. To demonstrate
that our techniques work in such situations, we
completely reduce the calculation of the large-
order behavior of perturbation theory to the clas-
sical task of finding the MPEP.

Our interest in curved-path problems is not
merely academic, for we are ultimately interested
in quantum field theoretic perturbation series.
The (P')„ field theory with spatial and ultraviolet
cutoffs is equivalent' to a system of unequal mass
anharmonic oscillators. The "masses" in this
case are just the energies of the modes of the
field. It therefore seems likely that any attempt


