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(n ) =Pn'f(n) is the qth moment of the multiplicity
distribution.
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Utilizing some assumptions about high-energy collisions that underlie thermodynamic and
hydrodynamic models of high-energy particle production, we find simple relationships
among the moments of the multiplicity distribution (N') that are reasonably well satisfied
by recent data from the National Accelerator Laboratory (NAL) on & production. Using
(Ã,h) =2 El,b we obtain a reasonable one-parameter fit to all the NAL multiplicity data
except f2 and f3 at 100, 200, and 300 GeV.

The hydrodynamical model of high-energy col-
lisions, first proposed by Landau, ' has recently
been applied to experimental results from the
National Accelerator Laboratory (NAL) and CERN
Intersecting Storage Rings (ISR), with considerable
success. Total multiplicities' and longitudinal
and transverse single-particle distributions2'
are well predicted by the model. In this note we
examine some new results on multiplicity distri-
butions of m at energies of 100, 200, and 300 GeV,
and show how they can be obtained from the hydro-
dynamic model. In fact, only two of its underlying
assumptions are necessary in what follows. These
are the following.

(a) Local statistical equilibrium: The fireball
produced in the collision is highly inhomogeneous,
but small regions of the fireball can be treated as

systems in statistical equilibrium, characterized
by a temperature T. Interactions between neigh-
boring regions can be neglected, except for those
implicit in determining the local temperature T
(i.e., the rest of the fireball acts as a heat bath
for each small region).

(b) The dynamics of each individual region
(which we call "secondary fireballs" in what fol-
lows) can be described by standard statistical
mechanics, in the simplest case that of an ideal
relativistic gas. Particle creation and interaction
between particle species are taken into account by
using a grand partition function for each species.

It follows from assumption (b) that to describe
pion production in each secondary fireball we need
only the well-known partition function for a rela-
tivistic Bose gas4:
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lnZ =kTQ ln(1 —eo' s'"'r) 84
n4=(kT) 4 lnZ

8p,

where
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kTV
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= A, P n'SC, (nZ, )

=(N4& -4&N'&(N) -3(N'&'

Z = (P'+ m, ')"'.
Expanding the logarithm, the integration can be
performed, and one obtains

3 oo

lng=
2 2 g„— e"" K ng„n

n=l

where

Z„=m, c'/kT

(2)

+12(N )(N) -6&N&',
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4, =(kT)', lnZ

= W Qn'Z, (nZ „)
= (N') —6 (N4)(N) —10(N')(N') + 20 (N')(N &'

+30(N ) (N) -60(N )(N&'+24(N)',

(Se)

and Z, (z) is the modified Bessel function of the
second kind.

From this one can obtain all properties of the
pion distribution for each secondary fireball, in
particular, correlations and fluctuations. Each
of these quantities is a linear function of lnZ, and
therefore proportional to the volume V of that
secondary fireball. It follows then from assump-
tion (a) that these properties are additive, and the
total particle distributions for the collision will be
obtained by summing over all secondary fireballs,
characterized by a certain temperature distribu-
tion T (as in Hagedorn's model') and/or by a ve-
locity distribution for the secondary fireballs (as
in the hydrodynamical model) in the c.m. system
of the collision. "' In the second case, the prop-
erties in which we are interested here, such as
(N), (N') (N)', etc-. , do not depend on the motion
of each secondary fireball, and we can consider
each one at rest in its own c.m. system.

The pion distribution from each secondary fire-
ball is characterized by the following (infinite) set
of quantities:

where

~V~ (07)

b2 =1.15(N&,

a =I..6(N&,

~, = 3.16(N),
n., =10.14(N&.

(4a)

(4b)

(4c)

(4d)

The ratios n.„/(N&, n=2, 3, . . . are therefore in-
dependent of V, and turn out to be rather insensi-
tive to the temperature T of the secondary fire-
ball, in the neighborhood of the critical tempera-
ture kT, = m, c' (see Table I).' This is especially
apparent for the lower moments, and as n in-
creases, the temperature dependence becomes
more important. For n& 5, it is sufficiently ac-
curate to assume a constant temperature for all
secondary fireballs, and fit this temperature to
the transverse-momentum distributions as was
done in Ref. 3. Choosing, therefore, T = T„we
find

(N& =kT lnZ—8

u=O

=A. +If,(nZ, )/n,
1

82
42=QT 2 lnZ

Bp.

=XQZ, (nZ„)

=(N') -&N&',

(Sa)

(Sb)

These relations, valid for each secondary fireball,
will then hold also for the fireball as a whole. To
confront the general assumptions (a) and (b) with
experiment, we need only to fit (N), the multi-
plicity at a certain energy. For a parametriza-
tion of the multiplicities, we mill later use the
prediction of the hydrodynamical model

&N& =kZ„,"',
fitting 4 at one point to explain all the data.

We rewrite Egs. (3) as follows:

8
&, =(kT)', lnZ

ep, u=0

= A QnZ, (nZ. )

=&N') -3&N'&&N&+2&N&',
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-12(N )(N) +6(N) +64,

(6s.)
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Using Eq. (4) and the experimental value of &N)
at each energy, we find the values of Table III, un-
der "Fit (a)."

We see that g„g„and &N)/(h. ,)"' are quite ac-
curately described by the dynamics of an ideal

It is important to notice that (6} follows simply
from statistical mechanics, regardless of the
specific form of the partition function. If interac-
tions between pal tlcles Rx'e included in Z this
will only modify the last term in each of Eqs. (6).
Tllel'efo1'8, 111 evaluating 'tl18 right-hand side of (6)
for each moment, we use the exPerinenta/ values
of the lower moments. In Table II, we give the
experimental values of the left-hand side of vari-
ous energies, and the cox'responding right-hand
side evRhlR'ted Rs explRilled, wl'th 4 fl'om Eq. (4).
Data are from Refs. 7-9.'o

We remark that in each case, 4, is a small frac-
tion of &N'), so that the relations are quite well
obeyed regardless of the specific form of Z. We
regard this as a striking confirmation of the as-
sumption of local statistical equilibrium and its
corolla. ry, additivity for all 4,.

Next we examine correlations. The parameters
of interest are

~, =&N') -&X)'

=1.15 &N),

TABLE II, Moments of the m multiplicity distribution.
The experimental data are from Refs. 7-9. The mo-
ments are calculated from Q a~c„ /o~, a~~ Theoretical
values are obtained from Eq. {6), using in each case the
experimental values of lower moments to calculate
higher ones.

Z),b (GeV)

303

Exp.
Th.

Exp ~

Th.

Ezp.
Th.

7.24 29.5
7.18 30.2

11.74 58.8
11.2 58.9

16.55 96.7
15.7 95.1

137.8
143.9

336.4
344.4

2128.6
2183

4840
4907

Bose gas. Our values for f, have the right order
of magnitude but the energy dependence is not mell
reproduced. This seems to indicate that correla-
tions due to interactions are present, and that the
temperature of the fireball may be slightly energy-
dependent. It will be interesting to see whether
the extra correlations can be obtained by including
specific z-m interactions in the partition function.
It is to be noticed that energy and charge conserva-
tion laws also impose correlations on the particle
distributions, but these are of the opposite sign,
indicating thRt g-7/' intex'Rctions mRy be even more
important.

The experimental values of f, are quite inaccu-
rate (a typical value is -0.4 t O.V), but seem to be
negative. This might mean that at these energies,
f, is determined mostly by these conservation
1Rws.

We will now use Eq. (5), a specific result of the
hydrodynamic model, to obtain one-parameter fits
to these quantities. Normalizing Eq. (5) to the
charged multiplicity at 100 GeV, we find &=2.
The number of x is obtained from charge con-
servation and the assumption that all negative
prongs Rx'e plons:

N = s(N,h-2).
This leads to

&N ) =E„,"'—i.

280
200
140
100

70

1.18
1,17
1.15
1.14
1.13

1.74
1.66
1.60
1.55
1.52

3.88
3.46
3.15
2.96
2.84

14.69
11.91
10.14
9.18
8.63

TABLE I, Temperature dependence of A~/(N) for an
ideal relativistic Bose gas, from Eq. (3),

I V (Mey) a,/(X) a,/(W) S4/QV) Z,/(cV )

D = ds = 1.15(E'i —1),

f, = 0.15(E"'—1),
&N )/D=o 9V(E' ~ —1)".'

g, =&N ),
g =E'~ -1.85E'~ +0.85,

f, =0.15(E"'—1) = f, .
In terms of these,

(Bb)

(Bc)

(Bd)

(Be)

(Bf)

(Bg)
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TABLE III. Correlation parameters for & multiplicity distributions. The experimental data
are from Hefs. 7-9. Fit (a) is obtained from Eq. (7) and the experimental value of g&-—(VQ at
each energy. Fit (b) is obtained from the parametrization given by Eq. (8). The over-all pa-
rameter is adjusted to g& at 102 GeV.

Z» (GeV} 6 =D2
2 (N )/D f2

102

205

Exp.
Fit (a)
Fit (b)

Exp.
Fit (a)
Fit (b)

Exp.
Fit (a)
Fit (b)

2.82

2.78

3e17

2.55
2.49
2.51

3.77
3.24
3.22

4 ~ 79
3.94
3.65

1.35
1.37
1.37

1.45
1.53
1.55

1.57
1.7
1.66

0.38
0.32
0.32

0.95
0.42
0.41

1.36
0.51
0.48

5.07
4.92
5.02

8.91
8.37
8.16

13.12
12e3

10.5

-0.5
0.32
0.32

102

0.42
0.4

-0.4
0.51
0.48

12.08
11.98
10.48

29.2
26.4
26.6

54
49.4
36.9

4's = f3+88'A'2 (8h)

These functions are compared with experiment in
Table III, under "Fit (b)." Data are from Refs.
'I-S. Typical experimental errors are 15-20%.

We see that this fit to all present data is quite
reasonable, except for the interaction-sensitive
parameters f, and f, .

The picture we have presented, that thermal
fluctuations alone cause correlations, cannot pos-
sibly be the whole story at MAL energies. At
finite energies when one integrates

d 6 ~ do' dQ

dp~dp2 0'

to get (n(n —1)) —(n)', one gets contributions not

only from the tmo-particle correlation functions
inside a single fireball, but also from the fact that
the integrals over the fireball velocities will have

different upper limits due to energy conservation.
Some crude attempt to do this in the thermody-
namic model has been done by Ranft and Ranft. "
Second, the ideal-Bose-gas correlation is ex-
tremely short-range in rapidity (i.e., a 5 func-
tion") and thus this model will suffer from the
same failures as the short-range correlation (SRC)
in rapidity models. Since Landau's model (just as
the multiperipheral model) neglects the leading
proton effects, it also neglects the small diffrac-
tive contributions. Thus it leads to f„=C„N just
as the SRC models do. This problem can be
"solved" in the manner of Frazer et al. by allow-
ing for some small leading particle (diffraction)
effect." The other possibility is that some Bose
condensation effects are occurring which prevent
the assumption used in Eq. (1) that g, = f(d'p/@') P'

These would lead to f, -(n)'/0+ C, (n), where k
is the number of cells of phase space available. "
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