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By combining the ideas of Nambu in his study of superconductivity and of Johnson, Baker, and Willey in

their approach to electrodynamics we construct a gauge theory of spontaneous symmetry breaking which is

free of elementary spin-zero fields. The theory contains two fermions and two vector mesons, one of which

acquires a mass via the Higgs mechanism. A formula for this vector-meson mass is derived which becomes

exact, and nonzero, in the limit as the strength of interaction is appropriately scaled to zero. The vacuum

energy is also discussed.

I. INTRODUCTION

The observation that a symmetry-violating solu-
tion of a Yang-Mills theory may lead via the Higgs
mechanism to a renormalizable field theory of
massive vector mesons coupled to nonconserved
currents has aroused a flurry of efforts to apply
these ideas to construct a unified theory of the
weak and electromagnetic interactions. ' To our
knowledge, essentially all such efforts in this re-
gard have utilized field theories with elementary
scalar fields whose nonzero vacuum expectation
values are the source of the symmetry breaking.
In this sense, these theories are analogous to the
many-body theory of Bose systems in the super-
fluid phase. However, in constrast with the situa-
tion in nonrel3tivistic many-body theory, where
the existence of an expectation value for the Bose
field follows from the repulsive nature of the po-
tential between the particles, ' the vacuum expecta-
tion value of the scalar field in the proposed field-
theoretical models follows only after it is essen-
tially put in by hand —by giving the mass term in
the free-particle Lagrangian the wrong sign. Fur-
thermore, since there is no suggestion from ob-
servation that scalar mesons play a significant
role in weak or electromagnetic phenomena, it is
generally necessary in constructing theories with
scalar mesons to arrange that their observable ef-
fects are sufficiently small, i.e., that their masses
are sufficiently large.

In this paper' we present a simple model field
theory in which the spontaneous symmetry break-
ing and the consequent massiveness of a vector
meson occur in a manner similar to the violation
of electric current conservation and the consequent
Meissner effect in the theory of superconductivity.
Indeed, our efforts to construct a theory of this
kind were inspired by the work of Nambu' concern-
ing the gauge invariance of the BCS theory of
superconductivity.

The specific model we study is presented in Sec.

II. It will be evident that this model is not intended
as a realistic theory of weak or electromagnetic
interactions. Rather, it is only an example of what
we feel is probably a large class of theories in
which the spontaneous symmetry breaking derives
from general features of an apparently symmetric
interaction, without the necessity of a mass term
with the wrong sign and without an elementary
scalar field having a vacuum expectation value.

The model we discuss has two spin- —,
' fermions

of equal bare mass and two massless vector me-
sons. The vector mesons are coupled to different
currents, each of which generates a separate O(2)
invariance of the theory. The first symmetry is
an invariance with respect to rotations of the two
fermion fields into each other, and it is this sym-
metry which is spontaneously violated, giving a
mass to the associated vector meson. The other
vector meson is coupled to the fermion number
current, whose conservation is unbroken. This
second vector meson plays the role in our model
which the phonon plays in the theory of supercon-
ductivity; it provides the force which allows a
nontrivial (i.e. , nonzero) solution to the homoge-
neous Dyson equation for the symmetry-violating
part of the fermion propagator.

In Sec. II we argue that the theory admits asym-
metric solutions. The character of the symmetry-
violating part of the fermion Green's function is
similar to the chir al- symmetry-breaking part
(i.e., mass term} of the electron Green's function
in the Baker- Johnson' approach to electrodynam-
ics. In particular, the scale of the symmetry-
violating part of the propagator at asymptotically
large momentum squared appears to be a free pa-
rameter, whereas the rate of decrease of this
quantity as a function of momentum squared is an
explicit function of the coupling constants.

In Sec. III we impose the Ward identity on the
vector-meson-fermion vertex function and show
that this function develops a pole at zero q'. This
pole generates a mass for the vector meson cou-
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pled to the violated current. A formula for the
self-energy of this meson at zero momentum is
derived.

Section IV is devoted to demonstrating that the
Goldstone excitation which accompanies the sym-
metry breaking does not occur as a pole in the
physical scattering amplitude. More specifically,
we exhibit a cancellation between a pole at q' =0
in the vector-meson exchange part of the scattering
amplitude and a corresponding pole in the vector-
meson irreducible part of this amplitude. "

In Sec. V we emphasize that the spontaneous sym-
metry breaking induced by the interaction leaves
a finite, residual effect even when the coupling
constants of this interaction are appropriately
scaled to zero. The approximation of retaining
only these zero-order effects of the interaction is
termed the "platform approximation" to convey
our impression (as yet not fully substantiated) that
from this platform the remaining effects of the
interaction can be calculated, in principle, as a
power series in the coupling constants. The con-
tent of the theory in this approximation is essen-
tially a free-field theory, but with the masses
altered from their original symmetric values. In
particular, the originally massless vector meson
coupled to the violated current has a mass which,
as we demonstrate, can be calculated exactly in
the platform approximation.

In Sec. VI we confront the question as to which
of the various solutions to the theory is the pre-
ferred one in the sense that it yields the lowest
vacuum energy —which in relativistic field theory
is the zero-temperature, zero-chemical-potential
limit of the thermodynamic potential. Somewhat to
our surprise, we are led to conclude that all the
solutions, including the symmetric solution, have
equal vacuum energy. We argue that this conclu-
sion is implied whenever there is a continuous
range of solutions characterized by a continuous
parameter. In the present model, this parameter
can be taken to be the apparently arbitrary scale
(zero for the symmetric solution) of the symmetry

violating part of the fermion propagator for asymp-
totically large momentum. The situation is thus
quite different from usual Higgs theories with sca-
lar fields, where the difference in vacuum energy
between the normal and spontaneously broken solu-
tions is nontrivial, both at the tree level and when
radiative corrections are included. '

II. THE MODEL

The model we study has the Lagrangian density

1 2 17 =-g —.y~ sq +mo g —«Fp„- «G~,

Fp v= 8pAv 8 v +p t

Gp = 8pB —8 „Bp,
and where v, is the 2&2 matrix

(2.1b)

(2.1c)

connecting P, and P, . The Lagrangian density is
locally invariant under rotations through an angle
8 in the plane of g, and g„

e& r28( (2.2a)

if simultaneously the vector field B undergoes the
gauge transformation

1
B~ Bp + —,Bp 6I. (2.2b)

We will look for solutions which violate this sym-
metry. The 2 in (2.la) is also invariant under P- e'"g, with a corresponding gauge translation of
A„; we do not break this symmetry, except that it
is always possible to add a mass term for A.„with-
out affecting either renormalizability or number
current conservation.

The Dyson equation for the fermion propagator
ls

+ ggypgA~ +g'gyp r~g Bp,
where g represents the two fields p, and p„where

d k d k
S '(p) =/+ mo+ig

(
«6&„(k)y&S(p —k)I'„(p —k, p)+ig"

(
)«b&„(k)y&rS(p k)I', (p-k-, p), (2.3)

where the last two terms on the right refer, respectively, to the two graphs in Fig. 1, and where b,"„„and
F„are the propagators and vertex functions of the indicated mesons. We want to know if there exists a
solution to this equation in which S '(p) has a part proportional to the matrix

0
3 0

and which therefore violates the O(2) symmetry of Eq. (2.2).
Let us begin by considering Eq. (2.3) to first order in g' and g". If we write

S-'(p) —p- m, =Z(p) =Z,(p)+r, Z„(p)

(2.4)

(2.5)
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and take A"„„sto be in the Landau gauge, the order g', g" version of Eq. (2.3) becomes

(2 )' ' " I' P'-& ~ ~.(P-~)l'- .'(P-~) "

and

,
( g 2 d k 6(( p k((kp/k Zy(P &)

2w)' k u
Lp p+~ +~ (p k)] Z (p y)

(2.6a)

(2.6b)

(2.7)

where e is positive, and m is some mass. Since
the large-p' behavior of the integral in (2.6b)
comes from large (p- k)', we check the consis-
tency of the ansatz (2.V) by substituting (2.7) into
the integrand in (2.6b), ignoring all but the (p' —p)'
in the denominator, and performing the integration.
The result is

(2.8)

Equations (2.7) and (2.8) can be made consistent
for c in the range 0 &c &1 providing

4@2
0 &g —g' (2.8)

which is not much of a restriction, except that it
requires g' to be larger than g". In particular,
the choice g=0 in Eq. (2.1a) would not have allowed
a symmetry-violating solution of the kind envis-
aged in Eq. (2.V).

As mentioned in Sec. I, for the asymptotic solu-
tion (2.7) the scale 6m is arbitrary, and it is this
feature which leads to our conclusion in Sec. VI
that the vacuum energy is independent of 6m. It
is natural at this point to wonder if this feature is

where we have projected out separately the part of
Z proportional to the unit matrix and the part pro-
portional to 7, .

Equation (2.6b) for the symmetry-violating part
of the fermion self-energy is similar in structure
to the equation for the chirally asymmetric part
of the inverse electron propagator in the Baker-
Johnson-Wiiley' approach to electrodynamics.
Guided by the work of these authors, we ask if
there is a solution to (2.6b) which for asymptotical-
ly large p' behaves like

also true for the exact solution to the nonlinear
equation (2.6b) and, for that matter, for the solu-
tion for the symmetry-violating part of the full
Dyson equation in (2.3). We have convinced our-
selves, albeit nonrigorously, that exact solutions
to (2.8b) exist with the asymptotic behavior in
(2.7) for a continuous range of 6m including 5m
=0. Concerning the full Dyson eqUation we have
little to say in this paper, except to mention that
we have given preliminary consideration to the
question of how the solution of the simple equation
(2.6b) could be extended to include corrections to
arbitrary order in g' and g", and that it is our
current impression that such an extension can be
realized with the asymptotic form for Z„ in (2.7)
and the arbitrary scale for 5m persisting to all
orders. Further comments in this regard are in-
cluded in Sec. V.

The Dyson equation in (2.6a) for the symmetric
self-energy Z, can presumably be solved iterative-
ly with standard techniques. ' We do not pursue
this question further here, except to observe that
there appears the attractive alternative that m,
could be chosen to be zero, and that the chirally
noninvariant part of Z, could be generated spon-
taneously in a manner similar to that which we
propose for g„. This idea, which of course is not
original here, ' leads to a spontaneous breakdown
of both chiral and scale invariance. Since the cur-
rents which generate these symmetries are gen-
erally associated with anomalies, one would not
expect a zero-mass bosori to accompany their
violation. " By contrast, we pursue in the subse-
quent sections the point of view that the breakdown
of the O(2) symmetry in Eq. (2.2) implied by a non-
zero Z„ is associated with a Goldstone excitation
which via the Higgs mechanism gets decoupled
from the S matrix by giving a mass to the B vector
meson of Eq. (2.1).

III. WARD IDENTITY AND B-MESON MASS

FIG. 1. The two contributions to the fermion self-
energy.

Stimulated by the existence of a Ward identity'
for the electric current vertex in the nonrelativis-
tic theory of superconductivity, and also by the
fact that in relativistic field theory there are no
anomalies to destroy the conservation of vector"
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(as opposed to axial-vector) currents, we assume
that the vertex function I'~ satisfies the conven-
tional Ward identity,

k„r„'(p- k, p) = ~,s '(p-) s —'(p-- k)~„ (3.1)

even when Z„ is nonzero. It is evident that the
right-hand side of (3.1) is not zero at k =0, if Z„
in (2.5) does not vanish. This observation forces
us to conclude that F„ is singular at k =0 such that

k„r'„(P-k,P) ~, ,=2i~, z„(P), (3.2)

where v, is the 2&&2 matrix

It is evident from (3.9) that the B meson acquires
a mass if II ~(0) is unequal to zero; that is, if the
coefficient of k„k„ in (3.8) has a pole at k' = 0.
But such a pole is implied by the presence of the
pole in I'„ indicated in (3.4). By inserting (3.4)
into (3.6) and isolating the pole in II&„, we obtain

II (0) = lim ——,g", „Tr[r,r„(p —k, p)

xs(p)g~, s(p- k)].
(3.10)

(3.3)

The vertex I'~ must essentially have the form

A formula for I'„(p —k, p) valid to first order in
k is obtained by differentiating (3.1) with respect
to k with r&~ given by (3.4),

T r„(p —k p) =2[s (p) T ] -zkys ys (p)7

r„'(p-k, p)=r„'(p-k, p)+i~, —„," r„'(p-k, p),
(3.4)

where I'& is regular at k'=0, and I'„satisfies

r„'(p-k, p) ~„,=2z„(p). (3.5)

The B-meson self-energy function II„„is shown
in Fig. 2. It is given by

+ contact terms, (3 6)

where the trace is over the eight-dimensional di-
rect-product space of the ~ and Dirac matrices.
The contact terms in (3.6) play no essential role in
the following except to guarantee that as a conse-
quence of (3.1)

(3.V)

That is, II~„must be of the form

n„„(a)=[~„. ',"; n, (a), (3.8)

where the vector-meson propagator is given in
terms of II by

g
( )

))v —k)k, /k' k)k~
k' + IIs(k') k

(3.9)

Here A, is a gauge parameter which is zero in the
Landau gauge.

s(p-k)

S(p)

FIG. 2. The B -vector-meson self-energy II».

4

11„'.(k) =-fg" 2,Tr[r,'(p-k, p)S(p)y„7,S(p- k)]

+ik, r', (p, p)+O(k') . (3.11)

Using this relation in (3.10) we obtain after some
algebra the equality

11s(0) =- zg d P
4 2p

+y, s(p)r,'(p, p)s( p) ~,],

(3.12)

which is applied in Sec. V to obtain an expression
for the B-meson mass. Remarkably this does not
vanish in the limit where the coupling constants
g' and. g" are scaled to zero [with g' & g" to sat-
isfy (2.9)], as we shall see in Sec. V.

IV. CANCELLATION OF THE
GOLDSTONE EXCITATION

The assumption that the Ward identity (3.1) is
valid, despite the apparent violation of the Py&7, $
current arising from a nonzero Z„, has been
shown in Sec. III to imply a pole at k' = 0 in the ver-
tex function I'~. This assumed validity of the Ward
identity is equivalent to the assumption that the
existence of a solution to the homogeneous Bethe-
Salpeter equation for the single-B-meson irreduc-
ible part of the fermion-antifermion scattering
amplitude, which follows from the existence of a
solution to the homogeneous Dyson equation for
the symmetry-violating part of the fermion prop-
agator, "reflects a pole in the Solution of the cor-
responding inhomogeneous Bethe-Salpeter equa-
tion. Conversely, this pole in I ~ indicates a solu-
tion to the homogeneous Dyson equation for this
vertex function. In this section we show that this
pole does not occur in the "physical" fermion-
fermion scattering amplitude. Specifically, we
demonstrate that the pole in the single-B-meson
irreducible part of the scattering amplitude cancels
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against a pole in the B-meson-exchange part of
this amplitude. This cancellation is similar to the
cancellation between a bound-state pole and the
pole due to an elementary particle with the same
quantum number s.'

We denote by 8 and Jl', respectively, the cou-
pling strengths of the gy~ r,P current and of the
fermion-antifermion state to this pole. As indi-
cated in Fig. 3, the single-fermion matrix ele-
ment of the current gy„~,g, which is related tor' by"

& p'I yy, .c I p& =.(p')r-;(p', p).(p), (4.1)

Here 0 =p-p' and the u(p) are the spinors for the
"physical" fermions,

8 '(p)u(p)=n(p)S '(p)=0 (4.3)

The Jl and A ' shown in Fig. 3 can be understood
in the sense of an effective Lagrangian by thinking
of the current Py„7,( as containing a piece propor-
tional to s„p,

Pyu7'. P=ftsl 0+''' (4.4)

with P the effective field for a massless scalar
meson coupled to the fermions by a term in the
effective Lagrangian

2',ff =A'gv;gQ. (4.5)

The effective interaction in (4.5) generates a pole
at zero momentum transfer squared in the single-
B-vector-meson irreducible part of the fermion-
fermion scattering amplitude T,. This pole term

thus has a pole which in terms of R and 8' is given
by

u(p')r„(p', p)u(p) lp.„=i''—," n(p')7, u(p)., kp

(4.2)

iRk

2i-i/k

FIG. 3. Diagrammatic representation of the pole in
the matrix element of Eqs. (4.1) and (4.2).

indicated in Fig. 4 is

&p, p.'IT, IP, P.&l,...
A/2. [n(pl) 7,~(PI)n(p,') ~1~(P2) —(Pl- P2)]k

(4.6)

The B-vector-meson-exchange part of the fermion-
fermion scattering amplitude, which we call T2,
is shown in Fig. 5 and is equal to

&P'P' I T. IP, P.&

=-~„',(u)[n(p,')r„'(p,', p, ) (p, )n(p,')r„(p,', p, ) (p, )

—(Px-P2)], (4.7)

where the B-meson propagator 4„,is given in Eq.
(3.9).

We wish to show that the pole at k' = 0 in (4.6)
cancels against a pole in (4.7) which exists be-
cause of the pole in r~s indicated in (4.2). As a
first step in isolating the pole part of (4.7) note
that the k&k, terms in ~&, contribute nothing be-
cause of the Ward identity (3.1) and the equalities
in (4.3). But then the pole part of r„(P,', P,),
which is proportional to k„, also gives nothing for
the same reasons. The pole part of (4.7) then
arises only from the pole part of I'„(p,', p, ), and
by appealing to (4.2) we have [k=p, -p,'=-(p, -p,')]

&Plp,'I7' lP P, &l„.=-ll '(o) (P.') r„'(p,', p, )+f&&'q,", (P,) (P,') If''~," ~ (p, )-'(pl-p, '),,kq, , kp

with II~ as given in (3.9). Finally, an application of the Ward identity and (4.3) once again eliminates
r~(p,', p, ) to leave

2 12

&Plp'IT IP P &l,.i. =- .0)&, [n(p,')~,~(p, )n(p,')7,~(p,)- (p,'- p,')],2 2 1 2 Pol g 0 k2

(4.8)

(4.9)

which shows, by comparing with (4.6), that the
pole parts of T, and T, cancel, providing

(4.11)

Z' = ri, (0) . (4.10) V. THE PLATFORM APPROXIMATION

But according to Eq. (3.8) Ils(0) is the coefficient
of -k&k, in the residue of the pole at k2 = 0 in II„,.
In Fig. 6 the pole part of II„,(k) is shown in terms
of A defined in (4.4), and it is easy to check that

In this section we apply Eq. (3.12) to obtain a
formula for the B-vector-meson mass which be-
cornes exact in the limit as the coupling constants
g' and g" approach zero in a manner that allows
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I
P2

P2 -Rk~
B

'~@~ pole-

-i/k 2
Rk„

'-i/k
FIG. 6. The pole in the B-meson self-energy 0».

FIG. 4. The pole in the single-B -meson irreducible
part of the fermion-fermion scattering amplitude.

the consistency of (2.7) and (2.8) to be maintained,
that is, as g' —g" approaches zero from the posi-
tive side. It is evident from Eq. (2.7) that in this
limit Z„goes to a constant 5m, and —so to speak-
the only effect of the vanishing interaction is to
leave the fermion masses split by an arbitrary
amount 25m and, as we shall see in Eq. (5.6), to
leave the B vector meson with a finite mass whose
value, for any nonzero choice of 6m, can be ar-
ranged completely arbitrarily, since [see Eq.
(5.6)] the ratio g"(g'-g") ' is unrestricted in
the limit as g' and g" approach zero.

We shall refer to the "platform approximation"
as the approximation of retaining only those fea-
tures of the coupling between the particles which
per sist when g' and g" go to zero in the sense
described. This terminology reflects our impres-
sion that these zero-order effects of the interac-
tion can serve as a platform from which the re-
maining effects of the coupling between the par-
ticles can be computed in a perturbation expansion
in g' and g". For example, after choosing a 5m
to determine the zero-order Z„ in Eq. (2.7), one
can substitute this Z„ into the right-hand side of
(2.6b) to generate the zero-order part of the left-
hand side identically and, in addition, a first-
order contribution to Z„arising from the nonas-
ymptotic region of the integration domain. This
first-order 5„ then generates a second-order con-
tribution when it is inserted into the right-hand
side of (2.6b), etc. Although no pitfalls have yet
appeared to us which would prohibit the imple-
mentation of this program to arbitrary order (i.e.,
in principle), we should emphasize that we have

not yet studied this problem in depth, and we can-
not at present assert that the asymmetric theory
discussed here is amenable to a finite perturba-
tion calculation to all orders in g' and g". This
question is of significance, since the theory it de-
scribes —a massive vector meson coupled to an
apparently nonconserved current —is certainly not
renormalizable as conventionally formulated.

We now apply (3.12) to calculate Ils(0) in the
platform approximation. Because of the explicit
g" in (3.12) we need only retain those parts of
S(P) and I'~ which are of zero order in the coupling
constants. Thus, referring to (2.5), we take

p2 E 1

S(p) = m, + p+ T,5m (5.1a)

~)',(P, P) =rx~, (5.1b)

~ 2 -2E'

=-2Tr y),y~~, '(5m)' ", (P'+ m, ') ',
(5.2b)

where in (5.2b) we have kept only the leading de-
pendence of [S(P)]' for large P (i.e., p ') together
with the term m0' to avoid a spurious infrared di-
vergence. Performing the trace in (5.2b) and sub-
stituting the result into (3.12) leads to

II,(0) = —16ig"(5m)'(m')"

d p
(2v)' (P'+ m.')'(P')" '

which upon integration gives

(5.3)

(5.4)

in the integrand of (3.12). Since we can also ignore
the derivative of the v, term in s~s(P), we have

Tr[r, S,S(P) +r,S(P)l „'(P,P)S(P)~,]

= Tr[-y), s(P)y„s(P) +y„s(P)y), T,s(P) ~,] (5.2a)

I
Pq

In the platform approximation g', g", and e all
go to zero such that

3
g' —g" 16m' (5.5)

I
P)

FIG. 5. The B -vector-meson exchange contribution
to the fermion-fermion scattering amplitude.

as required for the consistency of (2.4) and (2.8).
Thus, since II~(0) is the square of the B-meson
mass M~ in this limit, and since 5m is half the
fermion mass splitting m, —m„Eq. (5.5) becomes
in the platform approximation
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~B 3( 2 i 2) (~1 ~2) (6.6)

Observe that no such result could be obtained in a
conventional Higgs theory with scalar particles,
because of the arbitrariness of the coupling of the
scalar to the fermion fields. Indeed, one of the
major advances which follows from elimination of
the sealars is the large reduction in independent
parameters which can occur in the Lagrangian.

VI. THE VACUUM ENERGY

0, =0„(o); 0=0„(0)-0„(6m). (6.1)

It is easy to see (essentially because Trr2= 0) that
Q„ is an even function of 6m; we now argue that
there is no infinite part to the (6m)' term in Q.

Both in many-body systems and in Higgs theo-
ries with sealars, one argues that the preferred
solution (either normal or spontaneously broken)
is the one with the lowest ground-state energy.
The potential function which is minimized by an
appropriate choice of the vacuum expectation val-
ue of a Higgs scalar is essentially the vacuum en-
ergy difference for the normal and spontaneously
broken vacuum; it was used by Jona-Lasinio" for
the study of Goldstone theories, and the single-
loop approximation to it was studied by Coleman
and Weinberg for Higgs theories. '

Denote by Q„Q„ the sums of all connected vacu-
um graphs for the symmetry-preserving and sym-
metry-violating theories, respectively, divided by
a four-dimensional normalization volume, and let
0= 0, —0„. Then 0 is the energy difference (per
unit three-dimensional volume) between the nor-
mal and symmetry-violating vacuums. Both Q,
and Q„are quartieally divergent; our first task is
to argue that Q is finite; otherwise, it makes no
sense to compare the vacuum energy of the sys-
tems.

Let us consider Q, or Q„as a functional set of
all irreducible Green's functions, that is, the
proper self-energies, proper vertices, one-par-
ticle-irreducible four-point functions, etc. (as
well as the vacuum expectation value of scalar
fields, in the general case). It can be shown" that
the stationarity of 0, or 0„ to arbitrary variations
of these Green's functions yields the complete set
of Dyson equations for the normal theory or the
symmetry-violating theory, respectively. There
is only one symmetry-breaking parameter in our
theory, namely the scale factor Gm introduced in
Eq. (2.7) into the symmetry-violating self-energy
Z, . When 5m =0, we recover the normal theory.
Indicating explicitly the dependence of Q„on 6m
we have

The coefficient of (6m)' can be found by varying 0„
with respect to S„, I'„, etc. , and invoking station-
arity:

60„= 4 Tr d. PbS„(P)[LHS of Eq. (2.3)
—RHS of Eq. (2.3)j

~ ~ ~
V (6.2)

[recall that (2.3) is the Dyson equation for Z„].
For sufficiently small 5m, we have -AS„=S,Z„S, ;
moreover, at large p, the term in square brackets
in (6.2) vanishes identically for any 8m, because
it reduces to the linear homogeneous equation
based on (2.6b). One may now verify that the con-
tribution from asymptotically large p to (6.2) is in
fact finite.

All terms of 0((6m)') or higher in 0 arefinite, by
a naive power-counting argument, since Q has
dimension M . [Potential logarithmic divergences
in the (5m)' term are saved by the asymptotic de-
crease of Z„(p) -(p') '.j Thus we conclude that
Q, the difference of two quartically divergent ob-
jects, is finite.

However, a much stronger conclusion seems
warranted in the case at hand: It appears that Q
—=0. This conclusion is based on the following the-
orem: If Q„depends on a continuous symmetry-
breaking parameter &m which can be chosen ar-
bitrarily within a certain neighborhood of 5m =0,
then Q„ is independent of 5m. In this case, the
variation of Q„with respect to 6m vanishes iden-
tically, because the square brackets in (6.2) van-
ish identically for any 5m (and so for all the other
Dyson equations). A simpler proof invokes the
Feynman-Hellwarth theorem: Let

Z(6m) = &1((e(|l} (6.3)

be the vacuum energy (i.e., expectation) value of
H in the r1ormalized vacuum state (g}. Then we
have

(6.4)

because H is independent of 6m.
Thus, Q =0 if 5m can be chosen from a continu-

um of values. Otherwise, Q is finite. At the mo-
ment, it is an open question whether or not the full
Dyson equations [e.g. , (2.3)] determine that 5m/m
takes on discrete values. It is our current belief
that 5m can be chosen from a continuum, based
on studies of equations with nonlinearities similar
to those of (2.3); thus 0 =—0. Needless to say, this
is quite different from conventional Higgs theories.

One might question whether it makes physical
sense to compare the vacuum energies of two
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relativistic field theories, since there seems to
be no physical mechanism for causing transitions
between the two vacuums. However, all the re-
marks of this section hold for the ground-state
energy of a system of particles at finite density
and temperature, and in this case it is physically
possible for a phase transition to occur. Of
course, the required densities and temperatures
must be very high; the only possible relevant cir-
cumstances seem to be the first moment of the
"big-bang" model of the universe. Kirzhnits and
Linde'" have discussed the possibility of a phase
transition in conventional Higgs theories, at tem-
peratures comparable to particle masses. At the
moment, it seems unlikely that consideration of
finite temperature and density can change our con-
clusion that Q =—0, but it remains an interesting
and open question.

VII. CONCLUSIONS

It seems to be an important advance to rid spon-
taneously broken gauge theories (SBGT) of Higgs
scalars, for several reasons. The first is the
obvious consideration that no such scalars have
been observed„and in most SBGTs the scalar
masses are chosen to ensure unobservability for
many years to come. Perhaps more important,
there are no arbitrary parameters in g which
characterize the coupling of scalars to themselves
and to fermions, which ultimately allows for the
calculation of a larger number of symmetry-break-
ing effects than in more conventional Higgs theo-
ries.

Clearly, the model discussed here is too re-
strictive in a number of respects. We have dealt
explicitly only with the Abelian case, largely to
avoid the tedious complications of ghost scalars
which accompany closed loops of vector mesons. '
However, it is easy to generalize the treatment of
the linear, homogeneous equation for Z„by en-
larging the B meson and the fermion to multiplets
of fields. Then 5m becomes a matrix which can
be expanded into irreducible group representa-
tions, for each one of which there is a separate e,
as determined by Eq. (2.8). It is interesting to ob-
serve that the contribution to each e from the B
multiplet may have either sign (it is negative for
an Abelian case). For example, let the fermions

and Bmesons both be in an I= 1 representation of
O(3); then 6m can be I= I or I= 2. The B contri-
bution is positive for e, „but negative for c~,.
Likewise, if the fermions and B mesons are each
in an SU(3) octet, then e,~ and e,z have the same
positive contribution, while e» is negative. In the
absence of coupling to the singlet A meson, then,
in the first case I= 2 symmetry breaking is forbid-
den, and in the second case only octet symmetry
breaking is allowed. This is in satisfying agree-
ment with what appears to be happening in the real
world.

All our considerations have been based on the
assumption of specific asymptotic forms for the
propagation and vertex functions; specifically, we
assumed the meson propagators to go like k ' at
infinity. It is well known that this is true only if
the Gell-Mann-Low eigenvalue condition is satis-
fied, ' namely P(n, ) =0, where P is the coefficient
of k'Ink2 in Iis(k') for large k', and n, is the bare
fine-structure constant; P=0(n, ) for small o, If
P o 0, the vector propagators have the asymptotic
behavior k '[Q,C„(Pink')~], where the C„are un-
interesting numerical constants. If this asymptotic
form is used in the Iinearized version of Eq. (2.6)
for Z„„ the resulting equation for e is (schemati-
cally) e- (g' —g")E(P/e, P'/e). In consequence,
6 still scales with g' and g" if these coupling con-
stants are small, but the actual numerical value
of e depends on the C„. Thus violation of the Gell-
Mann-Low eigenvalue condition does not violate
the spirit of the platform approximation of Sec, V.

It remains to work out a systematic perturbation
theory, starting with the linearized platform ap-
proximation and going to higher orders in the sym-
metry-breaking parameter 5m. Such a perturba-
tion theory will be reminiscent of the insertion of
scalar tadpoles on fermion and vector lines, as in
the usual Higgs theories. However, there is a
difference: Our "tadpole" (e.g. , Z„) decreases at
large momenta.

Our considerations of the vacuum self-energy in
Sec. VI have been very brief. It is now clear, as
we shall discuss elsewhere, "that the techniques
alluded to there allow for a full statement of rel-
ativistic statistical mechanics, including vacuum
fluctuations, which is free of infinities. It is pos-
sible that this may find application in certain
astrophysical processes.
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This is the first in a series of papers on the 1arge-order behavior of perturbation theory for coupled
anharmonic oscillators. We exploit previously published dispersion techniques to convert the calculation
of perturbation theory in large order into a barrier-penetration problem. We then introduce new
semiclassical methods for describing tunneling through nonspherically symmetric, N-dimensional
potentials. To illustrate our new methods, we calculate the large-order behavior of perturbation theory
for a simple system of two equal-mass oscillators with quartic coupling. Our predictions are in complete
agreement with computer calculations. We then extend our results to oscillators with x' coupling,
X-oscillator systems, and some infinite-oscillator systems.

I. INTRODUCTION

In a recent paper Adler' argues that n, the phys-
ical charge on the electron, is an essential singu-
larity of the Gell-Mann-Low function. Since the
location of an essential singularity cannot be af-

fected by the low-order terms in a perturbation
expansion, an asymptotic study of perturbation
theory for quantum electrodynamics in extremely
large order seems indicated.

There has already been much work on the large-
order behavior of perturbation series in quantum


