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The charged-prong multiplicity ratios cr„/cr, nc, when considered as a function of the average

multiplicity (n), are shown to be well represented over a wide energy range by an empirical formula

having a single, energy-independent, free parameter. This representation is similar to the one used by

Bozoki and co-workers in 1968. It possesses the scaling property recently discussed by Koba, Nielsen,

and Olesen.

1 n
f(n)=( (2)

where C, and P are energy-independent, are satis-
fied remarkably well. He found that the factors
C, in (1) are statistically consistent with being
independent of energy over the energy range
covered, for q =2, 3, . . . , 10; the energy-averaged
values of C, that he reported' are given in Table I.
Furthermore, he found that the experimental val-
ues of (n) o„/o,.„„,when plotted against n/(n), ap-
pear to lie on a universal curve, which he fitted
with the empirical function'

P(x) = (3.79x+33.7x' —6.64x +0.332x )

&& exp(- 3.04x).

This function yields x'=47 for 50 data points and
three free parameters (five parameters and two
constraints introduced by the normalization con-
ditions on the function P).

Equations (1) and (2) were discussed recently

New experimental results on proton-proton
charged multiplicities at high energies have re-
cently been reported. These include data at inci-
dent momenta of 50 and 69 GeV/c from Serpukhov i

and at 102 (Ref. 2), 205 (Ref. 3), and 303 (Ref. 4)
GeV/c from Batavia. Slattery" has found that the
scaling relations'

(n ) = C (n)

and

on theoretical grounds by Koba, Nielsen, and
Olesen. e

The purpose of the present note is to report
that the empirical formula

f (n}= c 'n ' exp(-n'/2n~} (3)

can reproduce the experimental high-energy C,
values very well, and simultaneously yield a
reasonable fit to the multiplicity data on f (n) as a
function of (n), both at high and at relatively low

energies.
In Eq. (3), c is a normalization constant deter-

mined by the condition

(4)Q f(n) =1.
n

The parameter P is taken to be an energy-indepen-
dent constant, and the parameter ot is then deter-
mined as a function of (n) by the further normal-
ization condition

Qn f(n) =(n), (5)

which arises because we wish to treat (n) as an
independent variable. Thus our fit contains only

the single energy-independent parameter P.
This empirical representation of the multiplicity

data is very similar to the one introduced several
years ago by Boz6ki, Gombosi, Posch, and
Vanicsek, ' who obtained an excellent fit to emul-
sion and bubble-chamber data up to 30 GeV. The
principal difference is that these authors took
incident energy, rather than mean multiplicity (n),
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TABLE l. Values of reduced moments &, = (n')/(n)'.

Data '
1.2438 + 0.0056

1.813+ 0.020

2.973+ 0.057

5.36 + 0.15

10.43+ 0.39

21.6+ 1.1
47,0 + 2.8

107.4 + 7.8

252 + 22

Fit'

1.2448

1.807

2.950

5.30

10.30

21.5

47.6

111.2

273

~ Reference 5.
Equation (6) with P =2.215.

Therefore, the function (3) satisfies the condition
(1) with the constants C, given by

r(-,'. (p+q)) r (-,
'

p)
r(-,'(p+1)) r(-,'(p+1)) (6)

In particular, the function (3) [and, indeed, any
parametrization of the multiplicity distribution
satisfying the scaling relation (I)] has a constant
value at high energy for the ratio

It was first noted by Malhotra" in 1963 that this
ratio appears to approach a constant limit near
2.0 at high energy

In Table I, the column labeled "fit" gives the
values of C, computed for Eq. (3) in the high-
energy limit [i.e., from Eq. (6)j. The values are
given for the value P =2.215+0.015, which gives
the best fit to the C, ()('=2.8 for nine data points
and a one-parameter fit). Of course the various
moments may be expected to be strongly corre-

as the independent variable. In order to determine
the parameter n, they treated n as an empirically
fitted function of energy in the place of Eq. (5).
The parameter u is closely related to the mean
multiplicity (n), and in the present note we have
chosen to avoid the question of the functional
dependence of (n) on energy by treating (n) as the
independent variable.

The important feature of the empirical function
(3), used both in this note and in Ref. 9, is that it
satisfies the sealing relations (1) and (2). In fact,
as mentioned in Appendix 1 of Ref. 9, its moments
are given in the high-energy limit by

lated, so that once one fits the first few. moments
all the others fall into place automatically, but
even so, the fit is certainly satisfactory. The
value found for P is completely consistent with
the value P =2. 30 found in Ref. 9 by fitting lower-
energy data.

If, instead of fitting the moments, we fit the
multiplicity data directly, varying P to give the
best fit to the same data set from 50 to 300 GeV/c
that was used by Slattery, '*6'" we find the best
fit for P =2.125 +0.035, yielding y'=45. 7 for 50
data points and one parameter. However, we

prefer to use the value, P =2.215, that gives the
best fit to the C, and is more likely to correspond
to the ultimate asymptotic value of P. It yields
y2 = 52.1.

In Fig. 1 are plots of Eq. (3) for various n values
as a function of (n), using Eqs. (4) and (5) to deter-
mine c and a, for P =2,215. Also shown are the
experimental data" of Refs. 1-4, along with
additional bubble-chamber multiplicity data for
lower incident momenta: 4.00 (Ref. 13), 5.52 (Ref.
14), 10.01 (Ref. 15), and 16 (Ref. 16) GeV/c. It is
remarkable that a one-parameter fit can reproduce
so well a set of data covering a 100:1 range of
incident energy and a 1000:1 range of o„/e,„„.

The success of the fit in extrapolating downward
in energy encourages us to extrapolate upset"d
also. Therefore, Fig. 1 includes the extrapolated
values of Eq. (I) in the (n) range which may be
reached at the CERN Intersecting Storage Rings
(ISR).

No claim is made that Eq. (3) is uniquely deter-
mined by the data. In fact, it is clear that any
function having similar behavior in the n j(n) range
of existing data, no matter what its behavior at
large or small n/(n), will work Asi.mple example
is the "stretched Poisson distribution"

2+a(nI(n ~)+1+-a

(n) I"(s(n/(n)) + 1)

If the parameter a is set to 4.0, the C, values are
fitted satisfactorily (y'=5. 3), and the 50-300-
GeV/c data are fitted with )t' =85. The fit to the
lower-energy data is not as impressive as that in
Fig. 1, but the general trends are still reproduced.
Yet, the behavior for large and small n j(n) is quite
different from that of Eq. (3).

Clearly, new experimental measurements of
multiplicity distributions are needed to check the
validity for the scaling relations (1) and (2) over a
wider range, and for other than proton-proton
collisions. If the relations indeed hold, the new
measurements will help elucidate further the
nature of the function P(n/(n)) and the validity of
the empirical fit (3), both at small n/(n) (two
prongs at ISR energies) and at large n/(n) [counter
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-n charged particles+anything neutral, where n =2, 4,
6, ... and v2 does not include elastic scattering; e;„„
=Q„c„ is the total inelastic cross section; f(n) =o„/o;«&
is the multiplicity fraction for multiplicity n; and
(n ) =Pn'f(n) is the qth moment of the multiplicity
distribution.
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Utilizing some assumptions about high-energy collisions that underlie thermodynamic and
hydrodynamic models of high-energy particle production, we find simple relationships
among the moments of the multiplicity distribution (N') that are reasonably well satisfied
by recent data from the National Accelerator Laboratory (NAL) on & production. Using
(Ã,h) =2 El,b we obtain a reasonable one-parameter fit to all the NAL multiplicity data
except f2 and f3 at 100, 200, and 300 GeV.

The hydrodynamical model of high-energy col-
lisions, first proposed by Landau, ' has recently
been applied to experimental results from the
National Accelerator Laboratory (NAL) and CERN
Intersecting Storage Rings (ISR), with considerable
success. Total multiplicities' and longitudinal
and transverse single-particle distributions2'
are well predicted by the model. In this note we
examine some new results on multiplicity distri-
butions of m at energies of 100, 200, and 300 GeV,
and show how they can be obtained from the hydro-
dynamic model. In fact, only two of its underlying
assumptions are necessary in what follows. These
are the following.

(a) Local statistical equilibrium: The fireball
produced in the collision is highly inhomogeneous,
but small regions of the fireball can be treated as

systems in statistical equilibrium, characterized
by a temperature T. Interactions between neigh-
boring regions can be neglected, except for those
implicit in determining the local temperature T
(i.e., the rest of the fireball acts as a heat bath
for each small region).

(b) The dynamics of each individual region
(which we call "secondary fireballs" in what fol-
lows) can be described by standard statistical
mechanics, in the simplest case that of an ideal
relativistic gas. Particle creation and interaction
between particle species are taken into account by
using a grand partition function for each species.

It follows from assumption (b) that to describe
pion production in each secondary fireball we need
only the well-known partition function for a rela-
tivistic Bose gas4:


