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Gravitational-wave observations can be powerful tools in the testing of relativistic theories of gravity—
perhaps the only tools for distinguishing between certain extant theories in the foreseeable future. In this
paper we examine gravitational radiation in the far field using a formalism that encompasses all "metric
theories of gravity. " There are six possible modes of polarization, which can be completely resolved by
feasible experiments. We set forth a theoretical framework for classification of waves and theories, based on
the Lorentz transformation properties of the six modes. We also show in detail how the six modes may be
experimentally identified and to what extent such information limits the "correct" theory of gravity.

I. INTRODUCTION

Within the past few years, as experimental
tests of gravity have been analyzed and refined,
and as gravitation theories have been systemati-
cally compared, ' Inost extant theories have been
ruled out. Indeed, analysis of data from existing
"solar system" experiments promises to distin-
guish more and more clearly between the theories
that today remain viable. [For example, within
the next two years, a search for the Nordtvedt
effect' in lunar laser-ranging data' should either
rule out general-relativity theory (GRT), » or place
a limit of co & 30 on the Dicke coupling constant of
Dicke-Brans-Jordan theory '] An elega. nt theoret-
ical formalism, the "parametrized post-Newtonian"
(PPN) framework, ' exists for analysis of metric
theories' in the limit of weak gravitation and slow
motion. All gravitation experiments that have
played key roles in ruling out theories, except the
E5tvos-Dicke experiment, ' fall within the PPN
framework. The Eotv5s-Dicke experiment itself
probably forces the "correct" theory of gravity to
be a metric theory" and, in fact, there are no
known complete' nonmetric theories which do not
violate the Ebtvbs-Dicke experiment.

But the PPN framework has fundamental limita-
tions. In the last year or so, new metric theories
of gravity, ""with widely varying structures,
have been invented which are virtually indistin-
guishable from one another and from GHT in the
post-Newtonian limit. Existing and proposed solar-
system experiments cannot hope to distinguish be-
tween such theories in the foreseeable future.

There is, however, a strong element of hope: that
new theories' ' and GRT differ markedly in the
observable properties of their gravitational waves.
With this motivation, we have embarked upon a
program to develop a theoretical foundation for
the analysis of gravitational waves in arbitrary
metric theories of gravity —a foundation which is
theory-independent and analogous to the PPN
framework. (Gravitational-wave phenomena fall
outside of the PPN framework. ) We feel that ex-
periments to detect gravitational waves from as-
tronomical sources can prove to be a powerful
experimental tool, in the foreseeable future, for
ruling out gravitation theories.

The idea of building a theory-independent frame-
work for analyzing gravitational-wave experi-
ments was first conceived of by Wagoner. ' At
about the same time, and independently, our
group was analyzing the gravitational -wave prop-
erties of a particular metric theory —one that two
of us had recently invented. " When our analysis
was near completion (several months after we
learned of Wagoner's ideas), we suddenly realized
that our theory exhibits the most general type of
gravitational wave admitted by any metric theory-
and that, therefore, with a mere change of view-
point, our analysis would become the general
framework that Wagoner had proposed construct-
ing. Upon contacting Wagoner we discovered that
he and Will had already proceeded a long way
toward the construction of this same framework.
We therefore published a brief account of the
framework jointly with them. " This paper pre-
sents a more detailed account of our "Caltech"
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version of the framework.
In a future paper we hope to treat the generation

of waves by particular sources in arbitrary theo-
ries and thereby "move in from the far field. "

Our fundamental results are that the most gen-
eral null or nearly null wave has six independent
polarization modes, which can be classified ac-
cording to their behavior under Lorentz trans-
formations. Various theories admit some subset
(perhaps all) of the six possible modes. If the
wave direction is known, the modes can be re-
solved uniquely by feasible experiments; if the
direction of the wave is not known, partial but not
complete resolution can be obtained. In either
case detection information limits the correct the-
ory of gravity.

Section II summarizes the properties of the gen-
eral waves, while Sec. III gives the details of
derivations. Section IV discusses application to
particular theories and their classification within
the formalism; Sec. V gives a complete prescrip-
tion of how to analyze and classify waves that are
observed by means of gravitational-wave detectors.
(For a review of the prospects of gravitational-
wave astronomy, we refer the reader to Ref. 16.)

tailed structure of field equations, and is there-
fore theory-dependent. Emission will not be treat-
ed in this paper.

Consider an experiment employing matter of
negligible self-gravity in a local region to mea-
sure the static or wavelike gravitational fields
from faraway sources. One cannot define the
absolute acceleration due to gravity at a point in
the region (Einstein's equivalence principle' ); only
the relative, tidal acceleration between two points
has observable significance. The Riemann tensor
Riem, formed from g, determines these relative
accelerations, and is the sole locally observable
imprint of gravity.

Consider a freely falling observer at any fidu-
cial point P in the region. Let him set up an ap-
proximately Lorentz, normal coordinate system

{Hj ={t,x' jI,

with P as origin. For a particle with spatial co-
ordinates x' at rest or with nonrelativistic velocity
in the region, the acceleration relative to P is
(for sufficiently small jr' ~)

uGR A %-
logo

II. PROPERTIES AND CLASSIFICATION OF
WEAK, PLANE, NULL WAVES:

A SUMMARY OF RESULTS

A. Definition of Gravitational Waves in Metric Theories

In any metric theory of gravity, ' just as in GRT,
the response of matter to gravity is determined
solely by a universal, covariant coupling to the
physical metric g (Einstein's equivalence prin-
ciple'). The equation of motion of matter is given

by 17

V ~ T=O,

where V is the covariant derivative associated
with g, and T is the matter stress-energy tensor.
This equation ensures that test particles and pho-
tons travel along timelike and null geodesics of

L, respectively. Metric theories differ only in the
manner that matter acts back to generate g—i.e.,
only in their gravitational field equations. Some
theories postulate auxiliary gravitational fields,
such as the scalar field Q in Dicke-Brans-Jordan
theory, ' which enter into the field equations but do
not act on matter directly.

It is the universality of the coupling to the metric
that permits a theory-independent discussion of
the propagation and detection of gravitational
waves for metric theories. On the other hand, the
emission of gravitational waves involves the de-

where B«&o are so-called "electric" components
of the Riem due to waves or other external grav-
itational influences.

A gravitational wave in a metric theory involves
the metric field g and any auxiliary gravitational
fields that might exist. But the resultant Riem is
the only measurable field. So for this paper we
define a "gravitational wave" in terms of its Riem:
A "weak, plane, null wave" in a metric theory is
a weak, propagating, vacuum gravitational field
characterized, in some nearly Lorentz coordinate
system, by a linearized Riem with components
that depend only upon a null "retarded time, "
u-=t-z/c:

B„„„-R~„„(u).

Vu, which is proportional to the wave vector, is
null with respect to the physical metric g. Vu V'n

=0. In u= t s/c, c is th-e speed of light, and the
coordinates are oriented such that the wave travels
in the +z direction.

Two restrictions appear in this definition: (i)
Waves must travel at exactly the local speed of
light; (ii) waves must be exactly plane. These
restrictions turn out to be good approximations in
feasible experiments for all viable metric theories
of gravity; see Secs. III and IV for a discussion
of these points.

The fundamental properties of these waves fol-
low immediately from the algebraic and differen-
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tial identities that Riem obeys. There are six
algebraically independent components of Riem in
vacuum (Sec. III proves this assertion and suc-
ceeding ones), which correspond to six modes of
polarization. In a given, nearly Lorentz coordi-
nate frame of the above type, we group these six
components into amplitudes of definite helicity s
(where s =0, + 1,+ 2) under rotations about the
z axis. There arise two real amplitudes

@,(u) =-+R„„(u),
e, (u) = --,'R + ,'z R-„„,
e, (u) =-R„,„,+R„„,+ 2IR„„„
422(u) = -R„o„o-R,o„o .

(2a)

(2b)

(2c)

components of Riem, which govern relative ac-
celerations through Eg. (1), by

e, (u) (s =0), C»(u) (s =0),

and two complex amplitudes

e, (u) (s =+ 1), e, (u) (s =~ 2) .

Here and throughout this paper one complex am-
plitude is equivalent to two real amplitudes. We
will always describe a gravitational wave by its
six amplitudes f4'„4'„44,4'»} in the six polariza-
tion modes of a given coordinate frame,

These amplitudes are related to the "electric"

Figure 1 shows the displacement that each polar-
ization mode induces on a sphere of test particles;
4, and 4» are purely transverse, 4, is purely long-
itudinal, and 4, is mixed. If an experimenter knows
the wave direction, he can uniquely determine
$4'„4'„44, 4,J by measuring the driving forces in@
his detector (see Sec. V for further details), and

he can reconstruct Riem. Therefore, currently
feasible dectors can obtain all the measurable in-
formation in the most general wave permitted by
any metric theory.

B. Lorentz-Invariant E(2) Classification of Plane Waves
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FIG. 1. The six polarization modes of weak, plane,
null gravitational wave permitted in the generic metric
theory of gravity. Shown is the displacement that each
mode induces on a sphere of test particles. The wave is
propagating in the + z direction (arrow at upper right)
and has time dependence cosa'. The solid line is a
snapshot at ~t = 0, the broken line one at ~t = ~. There
is no displacement perpendicular to the plane of the fig-
ure.

In any metric theory, the local nongravitational
laws of physics are those of special relativity. So
it is fruitful to sort waves into I orentz-invariant
classes, depending on the behavior of the ampli-
tudes under Lorentz trans formations. Observers
in different Lorentz frames (e.g., in relative
motion) can then agree on the classification of any
wave.

Rather than use the entire Lorentz group re-
lating observers in all frames, we choose a re-
stricted set of standard observers such that (i)
each observer sees the wave traveling in his +z
direction, and (ii) each observer sees the same
Doppler shift, e.g., each measures the same fre-
quency for a monochromatic wave. These stand-
ard observers are related by the subgroup of
Lorentz transformations that leaves the vector
Vu invariant [little group, E(2)]. The parts of
the Lorentz group left out of the little group are:
(a) [owing to requirement (i)] pure rotations of
Vu which merely change the direction of wave
propagation, and (b) [owing to requirement (ii)]
pure boosts along Vu which merely change the
observed frequency and scale each amplitude up
or down independently. Without requirement (ii),
different observers would see the wave traveling
along the +z direction, but generally at different
Doppler shifts. The subgroup relating the stand-
ard observers would be bigger (four-dimensional),
but the invariant classes would be the same.

The six amplitudes (4'„4'„4~,4») of a wave are
generally observer-dependent; their transforma-
tion law is given in Sec. III. However, there
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are certain invariant statements about them that
are true for all standard observers if they are
true for any one. These statements characterize
invariant 'E(2) classes of waves (Notation is ex-
plained in Sec. III):

Class XI~. 0',$0. All standard observers mea-
sure the same nonzero amplitude in the 4, mode.
(But the presence or absence of all other modes
is observer-dependent. )

Class III~. 4', —= 0 g4, . All standard observers
measure the absence of 4, and the presence of 4, .
(But the presence or absence of 4', and 4» is ob-
server-dependent. )

Class Nz. 4', —= 0—=4', ; 4, g 0/4». Presence or
absence of all modes is independent of observer.

Class ~z 4, =—0 —=4'„4,g 0 —=4». Independent of
observer.

Class Oq. 4, =0-=4,; 4~=—0/4». Independent of
observer.

Class 00. 4', =—O=C, ; 4, =—0—=4'». Independent of
observer. All standard observers measure no
wave.

Class II, is the most general. As one demands
that successive amplitudes vanish identically, one
descends to less and less general classes. Figure
2 exhibits these relations of generality among the
classes. In this paper, "more (or less) general"
for classes always refers to Fig. 2. (For ex-
ample: 0, is less general than N„ III„and II„
but neither more nor less general than N, .) The
E(2) class of a particular metric theory is defined
as the class of its most general wave (see Sec. IV
for illustrations).

III. DERIVATIONS

This section may be skipped without essential
loss of continuity.

A. Tetrad Components of Riem for Waves

A quasiorthonormal, null-tetrad basis" is es-
pecially suitable for discussing null waves. At any
point P, the null tetrad (k, l, m, m) is related to the
Cartesian tetrad introduced in Sec. II by

k=(2) '"(ep+ e;),
f =(2) '"(ep-e;),
m = (2) "'(e„- +ie;),
m =(2) '"(e; ie;). -

(Sb)

(3c)

(2d)

Throughout this section we follow Sec. II in ori-
enting the axes such that the wave travels in the
+z direction; u —= f -z/c. Equivalently, we choose
k, one of the tetrad legs, proportional to the vec-
tor Vu. It is easily verified from Eqs. (2) that
the tetrad vectors obey the relations

The fundamental theoretical implication of our
'

paper is that the class of the correct theory of
gravity is at least as general as the class of any
observed wave.

Once theorists are confident of a particular
classical theory of gravity, they will wish to quan-
tize it. Then it should be possible to associate
the amplitudes (4„4„4'„4»)with massless quanta
of definite and Lorentz-invariant helicity. Section
III demonstrates that the helicity content of class
II, is not Lorentz-invariant, nor is that of III,.
Furthermore, an associated pathology arises for
these classes: The amplitudes form a nonunita~y
representation of the inhomogeneous Lorentz
group, contradicting the tenets of relativistic quan-
tum mechanics. " Attempts to quantize theories of
class II, or III, will therefore face grave difficul-
ties.

These difficulties do not arise for theories of
class N, or less general: There, 4'~ and 4» act
like massless quantum fields with s =+ 2 and 0.

-0 ~ l =nz m=1, (4)

FIG. 2. The E(2) classes of weak, plane, null waves,
displayed in order of increasing generality toward the
top. Descending along a line represents specializing
the class by demanding that some amplitude vanish for
all observers. One class is said to be more general than
another if it is possible to descend from one to the other
along lines.

while all other dot products vanish.
We adopt the following notation for null-tetrad

components of tensors X:

P Ir a. ..
Xgyg ~ ~ o +ppg ~ o ~ 0 5 C

where (a, b, , . .c. ) range over (k, f, m, m).
Central to our later discussions will be the

transformation properties of the components of
Riem under the action of some subgroup of the
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Poincard group. In view of this, we first split
Riem into irreducible parts: the Weyl tensor,
the traceless Ricci tensor, and the Ricci scalar.
We follow Newman and Penrose" in naming their
tetrad components 4, 4, and A, respectively.

In general, the ten 0's, nine 4's, and A are all
algebraically independent. When we restrict our-
selves to nearly plane waves, however, we find
that the differential and algebraic properties of
Riem reduce the number of independent compo-
nents to six by the following arguments.

Consider a weak, plane, null wave. It is charac-
terized by the fact that the components of its Riem
are functions of the retarded time u only. Of their
derivatives, only those with respect to the re-
tarded time u will be nonvanishing:

(6)

where (a, b, c,d) range over (k, l, m, m), while

(P, p, x, . . . ) range over (k, m, m) only.
The covariant differential Bianchi identities and

the symmetry properties of R„, , are necessary
and sufficient to guarantee that the linearized
Riem is derivable from a metric perturbation, "

Using Eq. (6) we see that these identities imply
the relations

—n
~ab[Pq, l ~

—0 = 3 aha (6)

where / is a fixed index. Equation (8) implies
that

4 =4=00 I

6 &lul~ r

1
+3 2 +lklm ~

+4 +lmlm ~

(ii) traceless Ricci tensor:

(1Oa)

(10b)

(1Oc)

(10d)

00 OI IO 02 20

@22 +lmlm &

(11a)

(11 )

+abPq ~Pqab

except for a trivial, nonwavelike constant. Con-
sequently, all nonvanishing components of Riem
must have the form 8»„. Taking into account the
symmetries of Riem, we thus see that there are
only six independent, nonvanishing components.
Corresponding simplifications are induced among
the Newman-Penrose quantities. For a plane wave,
they are"

(i) Weyl tensor:

II 2 2P

I2 2I 3

(iii) Ricci scalar:

(11c)

(11d)

(12)

m' =e'~(m+ nk),

m'=e '~(m + nk),

l'=l +em+am+en&,

(13a)

(13b)

(13c)

(1M)

where e is an arbitrary complex number that pro-
duces null rotations, " (particular combinations of
boosts and rotations), while cp, which ranges
from 0 to 27t, is an arbitrary real phase that pro-
duces a rotation about e;. The transformations
described in Eqs. (13) form a subgroup of the
Lorentz group which is globally isomorphic to the
abstract Lie group E(2), the group of proper rigid
motions in the Euclidean 2-plane. In the latter
group, q represents the rotations in the plane and
n the translations. We denote a particular ele-
ment of E(2) in Eqs. (13) by (y, n). The law of
composition is (y', )n(y, n) =(y'+y, n'+ e'"'n).

The transformation induced on the amplitudes of

As indicated in Sec. II, we shall choose the set
f4'„4'„4'4, 4») (4', and%~ complex) to describe, in
a given null frame, the six independent compo-
nents of a wave in the generic metric theory. Equa-
tions (10) and (11) give the members of this set in
terms of the null-tetrad components of the Rie-
mann tensor. Equations (2) give the members of
the set in terms of the directly observable "elec-
tric" components of the Riemann tensor.

In those cases where one calculates the Rie-
mann tensor from a metric perturbation h&„2I
Eq. (7), the relation between (@„4'„4'4,C») and
derivatives of k„„may be found in Appendix A.

B. Behavior of Tetrad Components Under
Lorentz Transformation

Consider two standard observers 0 and 0', with
tetrads (k, l, m, m, ) and (k', l', m', m'); then k=k'
~ Vu. Suppose 0 has measured the amplitudes
f4„4„4'„4»}of a wave; how do we predict the
amplitudes fC,', 4,', 4'4', C,', ) measured by 0'?

In group-theoretic language, we are asking the
transformation properties of the amplitudes under
the little group of Lorentz transformations that
leaves the wave vector fixed. The various group
representations formed by the amplitudes f4'„4'„
4'4, 4») provide us with a means for classifying
waves.

The most general proper Lorentz transformation
relating the tetrads that keep 0 fixed is"
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a wave by (y, n) is

@,' =e '~(C, + Sn4, ),
4," =e ""(4',+4'', + 6n'4', ),
C,', =4„+2n4, + 2n4, + 6nn4, .

(14a)

(14b)

(14c)

(14d)

Now consider a set of observers related to one
another by z-axis rotations (cp, 0). A quantity M
that transforms under these rotations hs I'
= exp(is y)M is said to have helicity s as seen by
these observers. We see from Eqs. (14) that
the amplitudes {4'„4'„O'„C,j are helicity eigen-
states. Furthermore, their helicity values can
be read off easily from Eqs. (14) (setting n=0=n):

4,: s=0,

4,: s=-1,
44'. s = -2,
4». s=0 .

4~: s=+1,
%4.'s=+2,

(16a)

(Isb)

(Isc)

(15d)

C. E(2) Classification of Waves

It is evident from Eqs. (14) that the various
amplitudes {O'„O'„C~,4») cannot be specified in an
observer-independent manner. [Example: 0 may
measure a wave to have as its only nonvanishing

amplitude@, (helicity 0), while 0', in relative
motion with respect to 0, may conclude that the
wave has, in addition, 4, and 44 components
(helicities 0, 1, and 2).] We classify waves in
an E(2)-invariant manner by uncovering all rep-
resentations of E(2) embodied in Eqs. (14), Each
such representation, in which certain of the am-
plitudes {4'„4'„4~,C»j vanish identically, is a
distinct, invariant class. The name of each class
is composed of the Petrov type of its nonvanish-
ing Weyl tensor" (except that we do not distinguish
between II and D) and the maximum number of
nonvanishing amplitudes {4„4'„4'~,4») as seen by
any observer (dimension of representation). Both
the Petrov type and the dimension of representa-
tion are independent of observer.

The various classes were delineated in Sec.
II; they are

Class II6. 4', $0.
Class III~. 4', = 0/4'~.
These two classes form reducible, indecompos-

able representations of E(2). (See Appendix B for
a brief resumd of the relevant group-theoretic
concepts. ) The maximal invariant proper sub-
space is the three-dimensional one spanned by 4,
and 4». The helicity content of classes II, and
III, is observer-dependent.

Class Nz. 4', —= 0 —= 4'„@,g 0 g 4» .
Class Nz. @,=-0 -=4„4,$0=-4» .
Class 0~. 4', —= 0=—4'„44 =0 $4».
Classes N» N» and 0, form decomposable rep-

resentations of E(2) which decompose into one-
dimensional invariant subspaces spanned by%4
and 4», respectively. Each of these invariant
subspaces forms a unitary, massless-particle
represehtation of definite, Lorentz-invariant,
helicity (spin). The are well studied as they oc-
cur in relativistic quantum field theory. "

Class 00. %2 3y 4 0=—42, .
Class 0, forms the trivial representation.
The foregoing classification scheme is patterned

closely after Wigner's classic analysis" of wave
functions of relativistic quantum particles as
members of unitary, irreducible representations
of the Poincard group. " Wigner showed that each
such wave function may be taken to have a definite
four-momentum q, and to transform as a member
of some unitary, irreducible representation of
the little group that leaves q invariant. One de-
termines the "spin" of the particle from the eigen-
values of the helicity operator and its square; the
spin of the particle is completely determined once
the representation formed by its associated wave
functions under the little group is known.

For our gravitational waves, Vu is null and
nonvanishing, and the little group is E(2). Un-
fortunately, Wigner's analysis does not apply since
we are not restricted to unitary representations
of E(2). In fact, as we have seen, the representa-
tions generated by {4'„4„4'4,4»} are, in general,
nonunitary and indecomposable. The amplitudes
in classes II, and III, cannot be identified with
massless particle fields. Consequently, it is
impossible to give a spin decomposition for these
waves.

A representation which is reducible and inde-
composable can never be unitary. This applies
to the little group E(2), and hence also to the
Poincard group. In relativistic quantum theory,
all invariance groups must be realized by unitary
representations. " We therefore obtain the fol-
lowing result: If a theory is of class II, or III„ it
is impossible to quantize it in a way that is Poin-
card-invariant with respect to the local Lorentz
metric.

D. Spherical Waves

Thus far, we have based our discussions on the
properties of plane waves. The most physically
satisfactory definition of a radiation field is one
that carries energy off to infinity from a bounded
source. For metric theories of gravity, this cor-
responds to that part of the Riemann tensor that
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falls off as 1/(distance) asymptotically. Far
away from radiating sources, one may locally
approximate these approximately spherical waves
as plane waves. The following argument shows in
a theory-independent manner that the plane-wave
approximation will not affect the classification
scheme.

Adopt a (u,r, 8, cp) coordinate system in the wave
zone, which is assumed to be almost Minkowskian.
The line element is given by

d s' = -dye —2du dr +y'(d8' + sin'8 dy ') .

Place the origin of the coordinate system some-
where inside the source. Single out the 1/r part
of the outgoing spherical waves:

R,~ ~
= —S,~,„(u,8, y) + 0 —

~

1 1

In the wave zone, observer O(r =r„8=y =0) car-
ries with himself a Cartesian tetrad (et, e„-, eg, e;)
oriented such that e; is along the incident direction
of the wave. The two coordinate systems are re-
lated by

(18a)

R(y8yg R0 Bye(B)

where

Q~Q Bg =0 ~

(21a)

(21b)

This is indeed the proper approach, since the
physical metric is associated with the physical
local Lorentz frames, which are in turn the basis
for our classification scheme. In some theories
of gravity, ' '" however, gravitational waves trav-
el along null geodesics of a flat space, global,
background metric q, while electromagnetic waves
(and neutrinos) travel along null geodesics of the
physical metric g. Equations (21) are then not
rigorously satisfied. On the other hand, if g dif-
fers from q locally by only a small amount in the
above-mentioned theories, Eqs. (21) are approxi-
mately correct and all of the formalism developed
in Secs. II and III is applicable to a high degree of
accuracy. Call such a theory a two-metric theory
(not to be confused with a two-tensor theory,
which contains two dynamical fields). In all such
two-metric theories that we have studied, present
experimental limits on "preferred-frame ef-
fects"'" require, in the mean rest frame of the
solar system,

8+ Xo (18b)
~a~a -nne~ (10-.

in. BI
(22)

q=—+0
o 7'o

Thus 0 would measure

+abed ~ abed +& ~
0 2

where Iq„BI refers to the magnitude of a typical
element of q 6, etc. In fact, if the difference be-
tween g„& and g„~ is due entirely to solar system
or galactic matter, then the 10 ' in Eq. (22) be-
comes 10~. Equation (22) is equivalent to the
relation, again as measured in the mean rest frame
of the sola, r system,

The differential Bianchi identities then imply

0 =R,~p....)
=O(l/ro'), if c t l, (20a)

11
0 —R bQ i] S Qpg g

+ O(1/VQ )
0

(20b)

where semicolon and comma denote eovariant and
partial diffe rentiation, respectively. It follows
immediately from Eqs. (20) that the classification
scheme based on the I/r part of the Riemann ten-
sor is identical to that based on the plane waves.

IV. APPLICATIONS TO PARTICULAR THEORIES-

A. Two-Metric Theories

In all of the preceding discussion we have as-
sumed that the components of the Riemann tensor
are functions of the retarded time associated with
the "physical metric" g 8„ i.e.,

Ic, -c.- I

c
where c and c, are the speeds of gravitational
and electromagnetic waves, respectively. Thus,
for all Lorentz observers who move at low speeds
(v« c) with respect to the mean rest frame of the
solar system, two-metric theories tha, t are viable
Iin the sense of no preferred frame effects and so
compliance with Eq. (22)] may be included in the
formalism of Secs. II and III.

A further important point is that Eq. (23), a
distinctive feature of two-metric theories, sug-
gests that a search for time delays between simul-
taneously emitted gravitational and electromagnet-
ic bursts could prove a valuable experimental
tool. An experimental limit of & 10 ' for Ic,-c, I/
c would disprove most two-metrie theories and
would stringently constrain future theory-building.
If current experimental efforts continue unabated,
by 1980 one may detect gravitational-wave bursts
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from supernovas in the Virgo cluster (-3 super-
novas per year). Then a limit of

(25a) is"
+y, e (25d)

~c, c, -~/cS10 '&&(time-lag precision)/(1 week)

will be possible.

B. Degrees of Freedom Versus Polarization Modes

%Ye have enumerated the various independent
gravitational wave modes in the general metric
theory. This does not mean, however, that for a
given theory the maximum number of nonvanishing
modes for any observer is equal to the number of
dynamical degrees of freedom" in the gravitation-
al field. For a given theory, there may be fewer
or more degrees of freedom than the number of
modes; if fewer, amplitudes in the various modes
are linearly dependent in a manner dictated by the
detailed structure of the theory (see discussion
following Sec. IVC 4 below).

C. Classification of Particular Theories

Table I gives the E(2) classification (see Secs.
II and III) of some metric theories in the literature
(some of which have already been ruled out, e.g. ,
the conformally flat and stratified theories"). The
classification procedure involves examining the
far-field, linearized, vacuum field equations of a
theory and is illustrated below by several ex-
amples. In the examples, the relevant approxi-
mated vacuum equations of a theory will be quoted
whenever necessary.

R„&= -+0 p, e —g Q'8 . (25f)

Thus R» is the only nonvanishing tetrad com-
ponent of the Ricci tensor and one can conclude
that

ol

Rlklk lkfm Rlkfm Rtmgm &

4, =4, =0, C„and@,0 .

(25g)

(25h)

Therefore for the Dicke-Brans-Jordan theory, the
E(2) class&+ cation is N,

'

3. 8'i ll -¹rdtvedt Theory

K~ =0, (26a)
1 y y 1 y, 68-—Rg &= Z

y
KB'y + Zy Ky

&
——g &Ky &Ky'

+ —,'(K~(K„8+Ks „) K„(K~ s+ K-()'~)

—K (Kr + K '~)] (26b)

The plane-wave solution to Eq. (26a) is

where yo and y, are constants and the wave vector
q is null. The quantity yo is the cosmological
boundary value of the scalar field, and cp, is a
small amplitude of a wave (work only to first order
in 9),). Then from Eq. (25c).

(25e)

and Eq. (25b) yields

K„=A~ e'~'~+ &~, (26c)

R~6=0 .
1. General Relativity

(24a)

R lklk Rlmlm 1 k'~ R lklm (24b)

From Eqs. (10), (11), and (A3) one can deduce
that

R =0=4, . (26d)

where A and B„are constant vectors and the
wave vector q is null. Again, assume A. is small
and work only to linear order in that quantity. The
vector B is of cosmological origin. Taking the
trace of Eq. (26b) and using Eqs. (26c), (A2b), and

(A4), we obtain

42 =43= 422=0. (24c)
Equation (26b) then reads

Since there are no further constraints, C~@ 0 and
the E(2) classification is Nz

R„8=e'~'~[(q A) q(„Bs) -(B q)A(„q8)] . (26e)

Equation (26e) indicates the relations

2. Dickie -Brans- Jordan Theory

Op =0, (25a)

&u8 28ns& =—~q)'(q'.a9'. s 2&as&.y
&' )

R, ~0, R,-~O,
or, from Eqs. (A3),

4, g0, 4» 0.

(2M)

(26g)

'q '(qs zsII,"q—„), .,
(25c)R = cuP cP yP'

The monochromatic plane wave solution to Eq.

Using Eqs. (26g), Eq. (26d), and the fact that
there are no other constraints on the Riemann ten-
sor (4', 40), one concludes that for the Will-Nordt-
vedt theory, the E(2) classification is III&.
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TABLE I. E(2) classification of various metric theories of gravity. See Sec. IV.

Theory
E(2) Degrees of

class freedom c =c,m?
Currently Equal to GRT in

viable? PPN limit ?

QRT4

Dicke-Brans- Jordan

N2 yes

yes

yes

yes

yes

no

Conformally flat theories28 0&

Stratified theories 8

Will-Nordtvedt~~

Lightman-Lee~3

Hellings-Nor dtvedt~2

yes

yes

no

no

yes

no

no

yes

yes

yes

yes

no

no

yes

yes

yes

yes

If a theory can be made to coincide with GRT in the PPN limit by a particular choice of
arbitrary constants and/or possible cosmological boundary values, we put a "yes" in this
column.

"Typical of scalar-tensor theories. ~

~ Depends on the particular theory.

or

4. Stratified Theoyies22

Hy =0,
g=ehh&+&7I+ (e2&&&& e2"i&&) dt gl dt

ehhri + (ehf ehh)50 50

(27a)

(27b)

(27c)

in a particular coordinate system, where f and 12

are given, unequal functions of the scalar field (It)

and dt is a timelike one-form. The wave solution
to Eq. (27a) is

The reason for this apparent paradox is that the
"prior geometric"' one-form d t introduces another
vector into the problem in addition to the wave vec-
tor q—a vector which transforms in a complicated
way under the Lorentz transformations which leave
q fixed. The Ricci tensor does not "point" only
along the q direction [cf. Eq. (27e)] and any pure
mode feeds all the other modes under Lorentz
transformations.

V. EXPERIMENTAL DETECTION AND
CLASSIFICATION OF WAVES

V
= %+V&e (27d) A. The Ideal Detection Experiment

Ash = (p, e' [(f'+ g') 'qsqh

-2(f'-g') q'&'(sqs) ], (27e)

where f'= df/dq, etc F-rom E. q. (27e) one finds

R = -2 y, (f'-g')e' '~(q')2 XO.— (27f)

From Eq. (27f), one concludes that 42 NO [cf. Eq.
(A4)], and consequently, for stratified theories,
the E(2) classift'cation is 1I~.

Here we have a perfect example of a discrepancy
between the number of dynamical degrees of free-
dom and the number of nonzero modes in the E(2)
classification. Stratified theories clearly have
only one dynamical degree of freedom, arising
from the scalar field y —yet some Lorentz ob-
servers see all six gravitational wave modes.

as in Eq. (25d) and one can compute the Riemann
tensor from g„s using Eqs. (Al), (27c), and (271).
Contraction with g„& then gives the linearized Ricci
tensor:

An experimenter attempting any foreseeable ex-
periment to detect gravitational waves" faces two
fundamental limitations which hinder the E(2)
classification of detected waves: (i) He can mea-
sure only the six "electric" components JR)gyo of
Riem, not all twenty, "s,nd (ii) he may not know

the wave direction a pro~i; he may be hoping to
infer it from his data, as does Weber. " We will
find that the consequences of these limitations are
that the experimenter can generally classify a
wave unambiguously only if he knows the direction
a priori, and that he can neuex determine the di-
rection using a single detector. Other limitations
(antenna pattern, noise, time resolution, band-
width, need for coincidence detection) complicate
the task further, but to treat the heart of the clas-
sification problem, we will ignore them.

Consider an ideal detection experiment: The
experimenter uses the coordinate system of Sec.
II. He measures the relative accelerations of test
masses and obtains via Eq. (l) the six components
P ]0 g 0 of Riem, with perfect accuracy and infinite
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time resolution. He expresses his data as a 3X 3,
symmetric, "driving-force matrix" S (t), with
components

P, $, t)=-e, (u),

P, (k, t) = Rem, (u)-,

ps(k, t) =Im)I)3(u),

P4(k, t ) = Re%~(u),

ps (k, t) -=1m', (u),

P,$, t)-=C„(u) .

(28a)

(28b)

(28c)

(28d)

(28e)

(28f)

Let the index A. =1, 2, . . . , 6 run over these six
modes. The amplitudes P„(k, t) are real.

For the case k= er, Eqs. (2) imply

2(P, + Ps)
1
2P5

S„(t)-=E„„(u);
here t is his proper time, and he takes his spatial
origin at his detector, so t=u.

The experimenter knows, by time coherence of
the signal or by some other means, that the wave
originates in a single, localized source. He
denotes the wave direction (which he may or may
not know a Priori) by a spatial unit vector k. (In
previous sections we have taken k=e;; here it
is arbitrary. )

Let us rename, for this section only, the am-
plitudes of a wave with direction R, measured at
the detector:

For any other R, just rotate these matrices: I et
R be a 3x3 rotation matrix" that takes e; into %:

%=Re; .

Define unit polarization matrices Z~$) for wave
direction% by

E~$) =Lt E„(e;)E
Then for any S(t) and any %, there is the unique
representation

S(t) =Q P„(k, t)E (k);
A

(31)

the amplitudes P„(k, t) may be extracted from S(t)
by

P„$, t) =C„Trace(E„(k)S(t)),-

where C„are normalization constants:

„—(„)—)-, 2, 2, 2) .
Equation (32) follows from Eq. (31) and an orthog-
onality property of the Z„(k):

C„Trace(E„(k)Ze(k)) = 5» .

Equations (31) and (32) embody an important
principle: Any measured S(t) can be represented
uniquely as a superposition of the six modes be-
longing to any arbitrary wave direction k. Equa-
tion (32) specifies the amplitude in each mode of
this wave. This wave is generally of class II„but
it can be less general for certain S(t) and certain k.

The classification procedure now splits into two
cases: k known and% unknown.

1
2&5 2(t 2 Ps) 2P3

2p, -6p,

or

S(t) =QP„(e;, t)E„(e,-), (29)
A

where "basis polarization matrices" Z„(e;) belong-
ing to wave direction 2 = e; are defined by

000 001
Z, (e;) =-8 0 0 0 I, E,(e;) =-2 0 0 0

(001) I, loof
000 1 0 0

E (e )=2 001 I, E~(e )= —— 0 -10
(010) (0 0 OJ

(30)

010 100
E,(e;) = — 1 0 0, Es(e;) = —— 0 1 0

(000 j (000)
Equation (29) represents S(t) as a superposition
of modes with k = e;.

Do driving forces remain in a fixed line' ?

Yes [No

Do driving forces remain in a fixed plane&

z IYes 5. No

Are drivinq forces "pure
monopole' ?

a. i. Yes INo

Are driving forces
"pure quadrupole" 7

')~
I
Yes

Is there a fixed k, k l ep, Is there a fixed k

such that koS(t)ok=-0'? such that koS(t)ok=07
I

b I b

No

FIG. 3. Prescription for finding possible E(2) classes
for a wave of unknown direction k, given the driving-
force matrix S(t). Boxes contain tests involving S(t)
and circles contain possible classes. See text of Sec. V.
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B. The Case of Known Direction

The experimenter knows % a priori if the source
of a gravitational wave that he detects can be iden-
tified with an object observed by means of electro-
magnetic radiation (light, radio, x ray). There are
also purely gravitational methods for determining
k. For example, if several detectors a distance
~ D apart, each with time resolution «D/c,
detect a sharp wave burst with pulse width «D/c,
then experimenters can determine k from the
relative time of arrival at each detector. For D
- radius of Earth. D/c-13 msec.

Knowing k, the experimenter extracts from S(t)
the amplitudes P~$, t) by Eq. (32). Knowing the
amplitudes, he classifies the wave unambiguously,
using the prescription given in Sec. II. The theo-
retical implications of his results are discussed in
Sec. VE below.

C. The Case of Unknown Direction

If the experimenter does not know k a pro~i, he
cannot hope to determine it from S(t ) without fur-
ther assumptions; he can fit S(t) equally well for
any k in the sky by using Eqs. (31) and (32).
Neither can he extract the p„unambiguously. How-
ever, knowledge of S(t) always provides informa-
tion which limits the E(2) class of the wave and al-
so the class of the correct theory of gravity (see
Sec. VE below).

He limits the possible class of the wave in the
following way: For each arbitrary k in the sky,
he computes the p„(k, t) via Eq. (32) and determines
the E(2) class associated with that k. By letting
% range all over the sky, he obtains the set of
possible E(2) classes for that wave.

For a given S(t), the following recipe yields a
complete analysis of the possible E(2) classes of
the wave: One distinguishes several cases ac-
cording to the form of S(t). Figure 3 diagrams this
recipe as a flow chart.

Case 4. Driving forces remain in a fixed line.
There is a fixed coordinate system in which

but none in which Eq. (33) holds. The wave may
always be II, . In addition, two separate deter-
minations must be made: (a) Can the wave be 0„
N„or N, ? (b) Can the wave be III,?

Test 2a. For o„N„or N3.
(i). Driving forces are "pure monopole":

X(t) = v(t)-, p. (t)= 0. - (35)

The pattern of forces is as in Fig. 1(c); but the
wave need not be pure 4». Conclusion: The wave
may be 0,. (Furthermore, the wave cannot be
III„ test 2.b is always failed. )

(ii) Driving forces are "pure quadrupole":

~(t)-=-v(f). (36)

k S(t) %=—0 . (3'I)

The complete set of possibilities for Case 2 is II,
plus the outcomes of test 2a and test 2b.

Case 3. Driving forces do not remain in any
fixed plane: Equation (34) does not hold in any
fixed coordinate system. The wave may always
be II, . It may be III, if, and only if, there exists
a fixed unit vector % such that

k S(t) k=—0 . (38)

Note that when the driving forces do not occur
in one plane and Eq. (38) is violated, the wave
must be II,.

The pattern of forces is as in Fig. 1(a) (and the
principal axes may rotate with time in the trans-
verse plane); but propagation direction need not
be as in Fig. 1(a). Conclusion: The wave may be
N~.

(iii) Driving forces are neither "pure monopole"
nor "pure quadrupole": Neither Eq (35).nor Eq.
(36) holds. Conclusion: The wave may be N, .

Test 2b. For III,: The wave may be III, if, and
only if, there exists a fixed unit vector % not nor-
mal to the plane of the forces [i.e.,

k+e;,
in the coordinates of Eq. (34)] such that

~~(f) 00)
S(t)=

i
0 00
0 00/

(33)

(X(t) V(f) oi
S(t) =

i
p, (t) v(t) 0

0 0 0/
(34)

The pattern of forces is as in Fig. 1(d); but prop-
agation direction need not be as in Fig. 1(d). Con-
clusion: The wave is II, or N, .

Case Z. Driving forces remain in a fixed plane.
There is a fixed coordinate system in which

D. Guessing'

We have emphasized that % can never be ex-
tracted from S(t). However, the fact that a cer-
tain S(t) can be fitted by a wave of a certain class
less general than II, must weigh as strong circum-
stantial evidence that the wave is actually of that
class. If one is willing to assume that the sim-
plest allowed classification is correct, the k is
generally fixed uniquely (up to an inevitable anti-
podal ambiguity, k- -k).

Referring to the recipe above, the information
that one can guess in this way is as follows.
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Case l. If the wave is N„k lies anywhere in
the plane spanned by e„- and e; in the coordinates
of Eq. (33).

Case 2. If the wave is O„N„or N„R is nor-
mal to the plane of the forces:

8yq
—~(g„q sy+ gsy„q -fhy sq

—hgq„y) . (Al)

Tetrad components of Riemann tensor in terms
of Agg

'.

k=a eg,
in the coordinates of Eq. (34). If the wave is III„
k is as in Etl. (37).

Case 3. If the wave is III„k is as in Eq. (38).
One can never limit the direction of a II, wave

in this may.

E. Theoretical Implications of Experimental Results

2 6 +lklk 12 41
I I
2 Rlklm 4 ~km ~

I
C'22 = —Rlmlm —2 &mm

(where h-=d'k/du').
Tetrad components of Ricci tensor:

(A2a)

(A2b)

(A2c)

(A2d)

The E(2) class of the correct theory of gravity is
at least as general as that of any observed wave:
This is always the fundamental implication of any
observation. We must always qualify, "at least
as general, "because in any particular theory a
particular source may couple poorly or not at all
to some of the admissable modes, and therefore
it may radiate only special classes of waves. But
the observation of a wave of a certain class al-
ways rules out all theories of less general
classes.

If the wave direction is unknown, an observed
wave cannot be classified unambiguously (except
for some waves of class II,). However, there is
always a least general possible class for each
such wave, which limits the correct theory.

There are still sharper implications for particu-
lar theories. In the case of a well-understood
source (e.g. , binary star system), each particular
theory should make a precise prediction about the
mixture of modes radiated, leading to a crucial
test. We shall discuss this point in a future paper.
In the case of a theory for which the number of
degrees of freedom is less than the dimension of
the E(2) class (see Sec. IVB), the various ad-
missable modes should appear only in definite
mixtures for any source, again leading to a crucial
test. Finally, the difference in propagation speed
for light and for gravitational waves leads to a
crucial test for,~~, any theories (see Sec. IVA).
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APPENDIX A: USEFUL FORMULAS
FOR PLANE WAVES

General linearized Riemann tensor in terms of
flat space perturbation h„„:

R l l 2R l ffil %

Rlm Rlklm

Ricci scalar:

R = -2Rlk = -2Rlkl k ~

(A3a)

(A3b)

(A3c)

(A3d)

(A4)

APPENDIX B: INDECOMPOSABLE

GROUP REPRESENTATIONS

Let G be a group and 9 a linear representation
of G on a linear space V. 9 is reducible, if it has
an invariant proper subspace, VICV. 9 is de-
comPosable, if V is the direct sum of invariant
proper subspaces. A decomposable representa-
tion is always reducible but not vice versa; 9 is
indecomposable, if it is reducible but not de-
composable. 9 is decomposable, if, and only if,
the re is a basis of V for which each gEG is rep-
resented by a block-triangular matrix

with not all g, vanishing.
Indecomposable representations never occur for

a finite group G, for finite-dimensional represen-
tations of a semisimple Lie group G, or for uni-
tary representations of any Lie group G. Because
of these facts, physicists are not well acquainted
with indecomposable representations. For a
physicist, indecomposable representations have
two unplea. sant attributes: (i) They are always
nonunitary, and (ii) there is no analog of Schur's
lemma: An invariant operator is not generally
constant on an indecomposable representation;
e.g., "spin" is undefined. (See Ref. 27 or Ref.
34 for a discussion of these concepts. )

For waves of E(2) class II, or III„we deal
with six- or five-dimensional indecomposable
representations of E(2). The only finite-dimen-
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sional decomposable representations of E(2) de-
compose to the familiar one-dimensional unitary
representations that describe a massless quantum

particle of integral or half-integral helicity" ";
some of these representations arise for E(2)
classes N„N„and 0,.
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3 All of the coordinate components of Riemann and Ricci
tensors are real, and one should always take the real
part of expressions for these quantities. The reader
should not confuse this with the complex tetrad com-
ponents, obtained by projecting real coordinate com-
ponents onto complex basis vectors.
Detectors have been proposed that measure the "mag-
netic" components R;0,~, but none seem practical; see
Ref. 16, also F. B. Estabrook and H. D. Wahlquist, J.
Math. Phys. 5, 1629 (1964). Using such a detector in
conjunction with a conventional one, an experimenter
could uniquely classify any wave and determine its
direction.
J. Weber, Phys. Rev. Lett. 22, 1302 (1969); 24, 276
(1970); 25, 180 (1970).
There is actually a one-parameter family of such R;
the members differ only in a final rotation about k.
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This final rotation only changes the phase of 03 and 44
and hence cannot change the ultimate classification.

34H. Weyl, The Theory of GrouPs and Quantum Mechan-

ics (Dover, New York, 1931), Chap. III, Sec. 4. Weyl
says "completely reducible" where we say "decompos-
able. "
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A triangular interferometer passes two beams around the interferometer in opposite directions. A portion

of the optical path contains a piece of glass. If the phase velocity of light is anisotropic, the fringe pattern

will shift as the interferometer is rotated relative to the fixed stars. The interferometer is sensitive to

anisotropies that behave as the first or third Legendre polynomials, P,(cosg) and P,(cos(II), where 4' is the

angle between a preferred direction in space and the direction of light propagation. The maximum change in

the speed of light is less than 0.03 + 2.5 cm/sec for the P, anistropy, and is less than 0.7 + 0.45 cm/sec

for the P, anisotropy. If an ether wind can be described by a Fresnel dragging coefficient when light passes

through glass, the ether wind would be detectable by this experiment. This experiment sets an upper limit of
0.045 + 3.8 cm/sec for the ether wind at the surface of the earth. This is about one-millionth of the earth' s

orbital velocity.

I. INTRODUCTION

A basic assumption of relativity theory is that,
in an inertial frame, the speed of light is the
same in all directions. Though the weight of ex-
perimental evidence can strongly support this
assumption, such an assumption can never be
proven true. The possibility always exists that
there is an unthought-of anisotropy, or that the
anisotropy lies below experimental error. This
paper describes an interferometer used to search
for several anisotropies.

Figure 1 shows the interferometer used. Light
entering the interferometer from the light source
is split by the beam splitter into two beams which
travel around the interferometer in opposite di-
rections. These two beams recombine on the beam
splitter, and a fringe pattern is formed by the
lens. When the glass is present, both beams pass
through the glass. During data runs, the apparatus
is rotated to different orientations. If a detectable
anisotropy exists, the fringe pattern will shift
as the interferometer is rotated.

Shifts of the fringe position are analyzed for
anisotropies that behave as

P, (cosg) = cosp,

PB(cosp) = 2(5 cos Q —3 cos Q)

=~8(5cos3$+3cos P).

In these expressions, c(p) is the vacuum phase
velocity of light in a direction that makes an angle
(II) with a presumed single preferred direction in
space. The constant c, is the average speed of
light. The parameters b, and b, are small num-
bers which are a measure of the size of the an-
isotropy. Later it will be shown that the P, anisot-
ropy can be seen both with and without the glass
being present in the interferometer, whereas the
P, anisotropy can be seen only when the glass is
present. The use of the index of refraction to
measure the P, anisotropy will be discussed in
Sec. II of this paper and also in Sec. II of the
following paper. ' The final results of this experi-
ment will be expressed as upper limits on b, and

b3.

II. THEORY

( )
=—[1+biPi(cosf)+b~P3(COSQ)],

where

The physical observable is the position of the
fringe pattern. Since fringe shifts are caused by
changes in the optical path length, one needs to


