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A five-parameter solution of the combined Einstein-Maxwell equations is given which describes a source

containing mass, electric charge, magnetic dipole, higher multipole moments of all three kinds, and angular

momentum. The solution is obtained by using Kinnersley's method of generating stationary

Einstein-Maxwell fields from known solutions of the Einstein-Maxwell equations. We start with a

two-parameter solution of a system having mass and a magnetic dipole moment discovered by Misra,

Pandey, Srivastava, and Tripathi. All solutions discussed in this paper are asymptotically flat, and all have

infinite red-shift surfaces that are singular. Possible relevance of these solutions to black-hole physics is

remarked upon.

I. INTRODUCTION

A solution is presented of the combined Einstein-
Maxwell field equations which depends on five
parameters: m, e, ~c~, c„, P. c is a complex
parameter, c„ its real value, and ~c~ its absolute
value. The first three parameters represent re-
spectively the mass, the magnetic dipole moment,
and the electric charge; the last two describe the
angular momentum of a central source. The source

has, in addition to these poles, a mass quadrupole, a
magnetic quadrupole, an electric dipole, and higher
multipole moments whose values are determined by
the five parameters. The mass parameter m must
have a nonzero value or the solution collapses to
flat space. If m does not vanish, interesting spe-
cial cases occur even when only one of the other
parameters e, ~c~, c„, and p is not zero. If only
m and e do not vanish, the system has a mass pole
and higher mass multipoles, a magnetic dipole but
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II. THE MPST SOLUTION

A detailed derivation of the MPST solution is
presented in their paper. ' For the sake of com-
pleteness we briefly outline their method. We
consider a static axially symmetric metric ex-
pressed as

e2K h2
d s' =fd t ' — [(dx')'+ (dx')'] ——d y', (2.1)

and describe the electromagnetic field by the com-
plex Maxwell tensor'

no other magnetic poles, no electric charge or
poles, and no angular momentum. When m and

~
c

~
alone are nonvanishing, the system has mass

and electric charge poles and higher multipoles,
but no magnetic dipoles or multipoles and no angu-
lar momentum. If only m and p survive, the sys-
tem has mass and angular momentum. Each solu-
tion has a singularity on a closed bounded surface
as well as other singularities within this surface.

The five-parameter solution is generated by
applying the solution-generating mechanism of
Kinnersley' to a solution found by Misra, Pandey,
Srivastava, and Tripathi' (MPST). The latter is a
two-parameter solution of the Einstein-Maxwell
fields describing the system mentioned above with
m and e nonvanishing, while

~
c ~, c„and p are

zero. In Sec. 0 we briefly review the method by
which MPST found their solution and write the
metric they discovered. In Sec. III we briefly re-
view Kinnersley's method of generating solutions
of the Einstein-MaxweD theory from other solu-
tions. In. Secs. IV and V we apply Kinnersley's
method to the MPST solution to obtain the space-
time we are discussing. We then discuss our solu-
tion and its properties in somewhat more detail.

Define

g =g„+ig]. (2.4)

MPST consider situations such that g„ is propor-
tional to g, in the following way'.

g, = ccosp,

h, = csinp,
(2 5)

where p is a constant. Changing the value of p
corresponds to performing a duality rotation' on
the system. MPST introduce a complex function
$ defined by

(2.6)

They then show that the entire set of coupled
Einstein-Maxwell equations are satisfied if

g
= —e'"cothP,

providing P satisfies the Laplace equation

v /=0.

(2.8)

(2.9)

Hence any axially symmetric real solution of the
Laplace equation in three-space generates static,
axially symmetric solutions of the Einstein-Max-
well equations. Working in spheroidal coordinates
which are related to cylindrical coordinates by

(2.7)

A bar over a quantity denotes complex conjugation;
it is understood that the usual three-dimensional
vector calculus and differential operator V is used
in the flat x', x', p space. It is obvious that if $ is
any solution, so is e'"$, where o/ is a real con-
stant. In the case of a constant-phase solution, one
may introduce a real function g such that4

$~, -Fp, +s *Fp, . (2.2)

*F„„is the dual of the usual Maxwell tensor F„,.
(Greek indices run from 0 to 3; Latin indices from
1 to 3.) Let h„and h, denote respectively the usual
electrostatic and magnetic scalar potentials so that

MPST find the solution of Eq. (2.7):

g =Xcosx+i/1 sinx.

(2.10)

(2.11)
gg

Fw

(2.3)

MPST now define tanx= e, secx—= m and change the
scale so that length is measured in units of (m'
—e')"'. When the entire metric is reconstructed,
it becomes

r +e' cos 8 —2mr (r —2mr+e' cos'8)'(r'+e' cos'8)2 dr'
+e cos 8 (r' —2mr+e'cos 8+m sin 8) r —2mr+e

(r' +e' cos'8)'(r' —2mr +e')
sin Odh,(r' —2mr +e' cos'8)' (2.12)
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where "spherical" coordinates r and 8 are used,
defined by

r —= X(m' —e')"'+m,
cos8=—p, .

The electromagnetic potential is given by

i2me cosa
y +e cose

(2.13)

(2.14)

It has been chosen purely imaginary so that the
solution describes a magnetic dipole (as can be
seen in its asymptotic form, r- ~). After a duality
transformation it could equally represent an elec-
tric dipole, or both a magnetic and an electric
dipole. %'e shall consider it to be a magnetic di-
pole, with 2me being the dipole moment.

The MPST solution is given by the metric (2.12)
and the potential (2.14). From this solution,
using the Kinnersley technique, we generate other
solutions.

III. KINNERSLEY S METHOD OF GENERATING

STATIONARY EINSTEIN-MAXWELL FIELDS

Kinnersley' has shown how to generate a five-
parameter family of solutions given a single solu-
tion. We apply Kinnersley's method to the two-
parameter solution of MPST to obtain a new solu-
tion. It turns out that the new solution will have
three additional physically interesting parameters
for a total of five. We start with the line element
expressed in the form

from 9 and g to a new set of Ernst and electro-
magnetic potentials, 9' and g'. From (3.4) and
the new 9' one calculates a new f' and tt', and
then from (3.3) and (3.2) a new &u'. The new solu-
tion is given by the metric f', v', and h&„=h»,
with the new electromagnetic field determined
from $'. Kinnersley lists five canonical classes
of transformations for going from 8 and g to 9'
and 8'.

Under a Class-I transformation,

g g'=g+a,
9- 8' =9 —2ag —aa.

Under a Class-II transformation,

g g'=g,
9- 9' =9+ia.

(3.5)

(3.6)

a is complex and cy is real. Transformations of
Classes I and II leave both the electromagnetic
field and the geometry unchanged. They corre-
spond to electromagnetic and gravitational gauge
transformations.

Under a Class-III transformation,

9-9'=(bb) '9,
S- S =(bb-')S. (3.7)

When b has absolute value unity the transformation
is a duality rotation which does not affect the ge-
ometry, but can change electric fields into mag-
netic fields or vice versa. If bb 4 1, the transfor-
mation (3.7) amounts to a rescaling:

d s' =f(dt + (o,dx')' —~dx'dx'. (3.1} ds'-ds" =(bb) 'ds'. (3.8)

Henceforth, V denotes the covariant derivative
operator in the three-space 0 with metric tensor
h». Define a twist vector

~ =f'V x ~+i(SVS —gVS) . (3 2)

The Einstein-Maxwell equations show' that the
curl of v vanishes, and hence a scalar "twist po-
tential" g can be introduced such that

r —= Vg.

Now introduce the "Ernst potential"

(3.3)

9=f Sg+ig. — — (3.4)

We shall say that a system has twist if Vx &

does not vanish. The Kinnersley method of gener-
ating solutions may now be described quite simply.
Given a solution of the stationary Einstein-Maxwell
equations, f, &o&, and h» can be determined from
the metric. The complex potential g can be de-
termined from the electromagnetic field; g from
Eqs. (3.2) and (3.3). This permits one to calculate
9 from (3.4). Kinnersley shows how to transform

Under a Class-IV transformation,

9
1+ip9

'

g
g pi=

(3 9)

p is a real parameter and these transformations
map static fields into stationary ones.

Under a Class-V transformation,

9-9' = 9
1 —2cg —cce'

8+c9$-8'=
~

(3.10)

c is a complex parameter, ' Class-V transforma--
tions do not preserve vacuum.

We shall apply transformation Classes IV and V
to the MPST solution to obtain a new solution.
Transformations of Class III will also be used for
rescaling purposes and to ensure that no magnetic
charge is introduced into the system.
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IV. CLASS-V TRANSFORMATION APPLIED TO
THE MPST SOLUTION

We shall first apply a Class-V transformation
to the MPST solution to get a new solution. This
will introduce an electric charge and also a twist.
Equation (2.12) shows that for the MPST solution

I—
(1 —cc9 —2Ec,)'+ (2zc„)' '

&' is now found from Eq. (3.2); explicitly

»& ~' = —„[iy' —t(g'vg' —h'vg')].

(4.13)

(4.14)

r' —2~r+e'cos g
r'+ e' cos'8 (4.1)

One sees quickly that only +'& survives; &„' and
&8 can be taken equal to zero. Integrating over a
cap of constant r over the polar axis yields

(dg =0,

h„„=
(r' —2mr + e' cos'8)'

(r —2mr + e cos 8+m sin 8)

(4.2) 1 sy' . &,
sg' , sg'

f' h ' Br Br Br

~fmd gee (4.15)

(r' —2mr + e'} '

&ee = (r' —2mr + e' cos'8)'
(r' —2mr + e' cos'8+m' sin'8)' '

h &e =(r' —2mr+ e') sin'8.

Equation (2.14) gives the value of h,
g=- zE

(4.3}

(4.4)

(4 5) 1" (1 —cc)'' (4.16)

We apply a Class-III transformation with real 5
and

The determination of the new metric is complete.
However, we should like to rescale to require that
as r-~, g„„-1,gee-r', and g@@-r'sing. Actual-
ly, as things stand, g„„-(1 —cc)' since

2nze cosg
r +e'cos'8 (4.6) h=(1 —cc) '. (4.17)

The twist potential rP vanishes and we calculate
the Ernst potential

9=f gg

r —2mr+e cos g 2~ecosg
r +e cos g r +e cos g

(4.7)

The rescaled metric and electromagnetic potential
are given a subscript r and become

dt &u'ed/

(1 —cc) (1 —cc)

—(1,2, (h„„dr'+heed8 +h ~~dp ),
~2f i rr Se

(4.18)

$' is given by (3.10) with (4.6) and (4.7). The
asymptotic form of $' as r- ~ is given by

1 g A.
g p + + + ~ ~ ~

(1 —cc) r r' (4.19)

ggt p+ + + ~ ~ ~r' (4.8)

The asymptotic behavior of &'& can be determined
from (4.10), (4.7), and (4.8). From (4.7)

c
1 —CC

(4 9)

4mec„cos g

(1 —cc) r' ' (4.20}

4mc
(1 —cc)' ' (4.10)

Putting everything together, one calculates ex-
plicitly the asymptotic form of &&,

1+CC
1 —cc 1 —CC

8mec„(1 —cc)
( 2 1) (4.21)

+4' c 1+ + 2 . 4.11
Scc 4c c

1 —cc 1 —cc'

2C„ES
(1 —cc9 —2Ec,}'+(2Ec„)' ' (4.12)

From 9' as given by (3.10), from the definition
of the Ernst potential 9' as given in (3.4), from the
electromagnetic potential (4.6), and calling c —= c„
+ c„one can easily deduce

Hence, as r-~, the rescaled metric (4.18) rep-
resents a flat space; the coefficient of dt' can be
made equal to one by a rescaling of the time axis.

In order that the monopole component of the
rescaled electromagnetic potential be an electric
field and not a magnetic one, it is necessary to
perform a duality rotation to ensure that the co-
efficient of r i in relation (4.19) is real. We ar-
rive at the dually rotated rescaled potential, de-
noted by g„'„:
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e" 0 A.gf p+ + + ~ ~ ~

(1 —cc)

0tanp—:—~,
0 = 0'~ +zO'] ~

The electric charge is defined by

+01888 F@@ de

(4.22)

(4.23)

g" =lmg"

9(P9 —2c„E)
(1 —ccg —2c,E)'+(Pg —2c„E)' '

f II ltegll +g/Igll

(1 —ccg —2c,E)'+ (p9 —2c„E)'

The asymptotic expression for 5" is

g" =(+ —+ —
2 + ~ ~ ~,r r'

(5.2)

(5.3)

(5.4)

(o„'+o,')"' 4m(cc)"'
(1 —cc)r' (1 —cc)'r' ' (4.24)

For simplicity, the integral is taken over the
surface of a spatial sphere as its radius becomes
infinite. From (4.22),

c
1+ip —cc

c 4m (ip —cc)--- —4m +---
1+ip —cc 1+ip —cc

2m . 8m c(ip —cc)'2mc+ie cos8+

(5.5)

(5.6)

Hence,

16mm fc/ (4.25)

(» pm —5mcc —iec cose)2c (1+ip —cc)

(5.7)

The solution has four parameters, ng, e, c„,
and

~ c~, whose primary roles are to determine
the mass, magnetic dipole moment, twist, and
electric charge, respectively. The metric is given
by Eqs. (4.18), (4.13), (4.3), (4.4), (4.5), and
(4.15); the twist is described by (4.15) and (4.12);
the electromagnetic field potential is given asymp-
totically by (4.22). The metric is asymptotically
flat.

The asymptotic expression for y" is

ff 1
(1 —cc)'+

8m p(l —cc) 1 1x -p+, +0

and

8 P'" 8mP(1 —cc)
8r [(1—cc)'+p']' r'

(5.8)

(5.9)

V. COMBINED CLASSES-V-AND-IV
TRANSFORMATION APPLIED TO THE

MPST SOLUTION

Next we apply a Class-IV transformation. This
could be applied directly to the metric we have
just described. Instead of this we combine the
transformation of Classes V and IV and apply the
combined transformation directly to the MPST
solution. We then rescale and perform a duality
rotation and to ensure that the charge is electric
and not magnetic. The combined transformation
can be written as

8f
g Qff

1 +ipg'

To calculate the asymptotic form of co'@, one can
use (4.15) with double primes on all expressions.
As r-~, there is a finite contribution from the
integration of 8$"/8r as can be seen from (5.9);
there is also a finite contribution from the integra-
tion of i($"8S"/8r —8"88"/8r). The asymptotic
limit has the character

(u& =A(m, e, c, p)(cose —1) . (5.10)

A. is a function of the parameters above which does
not vanish except for specialized values of the param-
eters. Obviously V x &" vanishes asymptotically
[Eq. (4.14)] since VQ" and (g "Vg" —g"Vg") both
go as r '. The metric is asymptotically flat, and
the rescaled metric is

9
1 —2ch —ccg+i pg

'

gf
g g" =

1+ipg'

+c8
1 —2cg —cc8+zP9

The potentials g" and f" become

(5.1)

dt fl CelI2 IP CcP @

[(1—CC) + p2] 2 [(1—CC) + p2]

(h,„dr'+h «d 8'+h «dg')
[(1—CC)'+ p']f"

Even though co@ does not vanish asymptotically,
the metric becomes asymptotically flat, as can be
readily seen by looking at the metric in Cartesian
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TABLE I. Physical characteristics of system that exist when specific parameters do not
vanish.

m, e m, e, (c(=c,.
Nonzero paramete rs
m, e, c„m,P m, e, (c (, c„,P m, (c[ = c,-

Mass
Magnetic dipole moment
Electric charge
Twist

yes
yes
no

yes
yes
yes
no

yes
yes
yes
yes

yes
no
no
yes

yes
yes
yes
yes

yes
I10

yes
no

coordinates. The rescaled and dually rotated
electromagnetic potential is

where

tany -=—~,7l

nr'

g g +STD) ~

The charge is given by

(5.13)

(5.14)

This solution has five parameters, m, e, c„,
~
c ~, and p. They give essentially the mass, mag-

netic dipole moment, a twist, an electric charge,
and a stronger twist (determined by p), respec-
tively. If c vanishes, the electric charge disap-
pears, as can be seen by an examination of (5.1),
but the twist remains, controlled by p.

VI. DISCUSSION

A solution has been presented of the combined
Einstein-Maxwell equa'. ions depending on five
parameters, m, e, c„, ~ c~, and P. These deter-
mine the following physical characteristics of the
system, respectively. ' mass, magnetic dipole
moment, twist, electric charge, and a stronger
twist. Table I shows what physical characteristics
the system has when the only nonvanishing param-
eters are given at the top of the table. For exam-
ple, if m, e, and ~c

~

do not vanish, but c„and P
do, the system has mass, a magnetic dipole mo-
ment, and an electric charge, but no twist. Of
course, higher multipole moments of all kinds
also exist.

All solutions found are singular on the surface
described by f (or f' or f") equal to zero. Hence
one might conclude that the solutions have no rel-
evance to black-hole physics. However, a differ-
ent possibility suggests itself. The solutions de-
scribed here are the only exact solutions we know
that contain magnetic dipole moments. When the
dipole moment parameter e goes to zero, the
solutions do not become the charged or uncharged

&chwarzschild or Kerr solutions. They belong to
an altogether different family of solutions depend-
ing analytically on parameters. Since astrophysi-
cal systems do have magnetic moments, it seems
appropriate to start the study of a collapsing phy-
sical situation with an exact solution that describes
the prevailing magnetism. It would be nice to
discover an exact solution with a magnetic mo-
ment that goes to the Kerr solution when the mag-
netic moment disappears. If no such solution ex-
ists, a different starting point for the study of the
collapse problem is necessary.

It may be that the physical system to be examined
is described adequately by a solution given in
Sec. IV or Sec. V above. Suppose it is and suppose
collapse begins. We would expect the end point of
collapse to be the Kerr solution. It seems there
is only one way to go from one of our solutions to
the Kerr solution. This is by changing the charac-
ter of the physical system "explosively. " If we
imagine collapse to be taking place "slowly" we
imagine that the parameters of our solution are
changing smoothly; the system may be radiating,
the magnetic moment may be disappearing, but
the parameters nevertheless change smoothly.
The system cannot in this fashion ever be de-
scribed by the Kerr solution since no smooth var-
iation of parameters will yield the Kerr solution.
However, we can imagine that as the system col-
lapses, much material approaches the singular
surface, f=0. We can further imagine that tidal
forces dramatically disrupt the physical situation„'
a supernovalike explosion takes place; shock waves
propagate; the residual central physical object
can now be described by a solution that changes
smoothly to a Kerr solution.

It seems to us quite reasonable to expect that
many collapsing objects undergo explosions; the
system before the explosion and after the explosion
can be given by two solutions depending on param-
eters which cannot be obtained one from the other
by an analytic variation of the parameters.¹feadded in Proof. The solution we have at-
tributed to MPST was actually first discovered by
Bonnor. ' It should have been referred to as the
Bonnor solution.
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Gravitational-wave observations can be powerful tools in the testing of relativistic theories of gravity—
perhaps the only tools for distinguishing between certain extant theories in the foreseeable future. In this
paper we examine gravitational radiation in the far field using a formalism that encompasses all "metric
theories of gravity. " There are six possible modes of polarization, which can be completely resolved by
feasible experiments. We set forth a theoretical framework for classification of waves and theories, based on
the Lorentz transformation properties of the six modes. We also show in detail how the six modes may be
experimentally identified and to what extent such information limits the "correct" theory of gravity.

I. INTRODUCTION

Within the past few years, as experimental
tests of gravity have been analyzed and refined,
and as gravitation theories have been systemati-
cally compared, ' Inost extant theories have been
ruled out. Indeed, analysis of data from existing
"solar system" experiments promises to distin-
guish more and more clearly between the theories
that today remain viable. [For example, within
the next two years, a search for the Nordtvedt
effect' in lunar laser-ranging data' should either
rule out general-relativity theory (GRT), » or place
a limit of co & 30 on the Dicke coupling constant of
Dicke-Brans-Jordan theory '] An elega. nt theoret-
ical formalism, the "parametrized post-Newtonian"
(PPN) framework, ' exists for analysis of metric
theories' in the limit of weak gravitation and slow
motion. All gravitation experiments that have
played key roles in ruling out theories, except the
E5tvos-Dicke experiment, ' fall within the PPN
framework. The Eotv5s-Dicke experiment itself
probably forces the "correct" theory of gravity to
be a metric theory" and, in fact, there are no
known complete' nonmetric theories which do not
violate the Ebtvbs-Dicke experiment.

But the PPN framework has fundamental limita-
tions. In the last year or so, new metric theories
of gravity, ""with widely varying structures,
have been invented which are virtually indistin-
guishable from one another and from GHT in the
post-Newtonian limit. Existing and proposed solar-
system experiments cannot hope to distinguish be-
tween such theories in the foreseeable future.

There is, however, a strong element of hope: that
new theories' ' and GRT differ markedly in the
observable properties of their gravitational waves.
With this motivation, we have embarked upon a
program to develop a theoretical foundation for
the analysis of gravitational waves in arbitrary
metric theories of gravity —a foundation which is
theory-independent and analogous to the PPN
framework. (Gravitational-wave phenomena fall
outside of the PPN framework. ) We feel that ex-
periments to detect gravitational waves from as-
tronomical sources can prove to be a powerful
experimental tool, in the foreseeable future, for
ruling out gravitation theories.

The idea of building a theory-independent frame-
work for analyzing gravitational-wave experi-
ments was first conceived of by Wagoner. ' At
about the same time, and independently, our
group was analyzing the gravitational -wave prop-
erties of a particular metric theory —one that two
of us had recently invented. " When our analysis
was near completion (several months after we
learned of Wagoner's ideas), we suddenly realized
that our theory exhibits the most general type of
gravitational wave admitted by any metric theory-
and that, therefore, with a mere change of view-
point, our analysis would become the general
framework that Wagoner had proposed construct-
ing. Upon contacting Wagoner we discovered that
he and Will had already proceeded a long way
toward the construction of this same framework.
We therefore published a brief account of the
framework jointly with them. " This paper pre-
sents a more detailed account of our "Caltech"


