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the relation (44).
The analyzed examples show that the eigenfunc-
tions of the vector-potential operator ¥, form a
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“natural” basis for the description of the inter-
action of a strong electromagnetic field with quan-
tum systems.
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We present a Lagrangian-based metric theory of gravity with three adjustable constants and two tensor
fields, one of which is a nondynamical “flat-space metric” 7. With a suitable cosmological model and a
particular choice of the constants, the “post-Newtonian limit” of the theory agrees, in the current
epoch, with that of general relativity theory (GRT); consequently our theory is consistent with current
gravitation experiments. Because of the role of 7, the gravitational “constant” G is time-dependent and
gravitational waves travel null geodesics of 7 rather than the physical metric g. Gravitational waves
possess six degrees of freedom. The general exact static spherically-symmetric solution is a
four-parameter family. Future experimental tests of the theory are discussed.

I. INTRODUCTION AND SUMMARY

Within the past few years an elegant theoretical
formalism, the “parametrized post-Newtonian”
(PPN) framework, has been developed® to analyze
metric® theories of gravity. The PPN framework
is structured around the “weak gravitational fields”
and low velocities of the gravitational matter which
characterize typical solar-system tests of gravity.
It classifies each gravitation theory as to its form
“in the post-Newtonian (PN) limit.” At first it was
hoped, and indeed seemed to be true, that the PN
limit of each theory of gravity is unique—thus by
solar-system experiments alone, one could, in
principle, determine the “correct PN limit,” which
would then correspond to one and only one “correct
theory of gravity.” In addition, it was hoped and is
hoped that the “correct PN limit” is that of gener-
al relativity theory (GRT) (although we try not to
let this fact prejudice our investigations). To play
devil’s advocate, a program was initiated to at-
tempt to formulate theories of gravity with the
same PN limit (and hence PPN parameters’) as
GRT. The aims of such a program are twofold,
as one can ask the following questions: (i) If such
theories exist, how complex and contrived are

their formulations? (ii) Do such theories have
anything in common and in what respect do they
differ from GRT outside of the PN limit? The
first question is primarily only of aesthetic inter-
est. But the second has the possibility of identi-
fying powerful new theoretical and experimental
tools for testing relativistic gravity—indeed, that
has been the case (see Sec. V and Refs. 3 and 4).

In this paper® we present and analyze a new the-
ory of gravity—one which has the same PN limit
(for the current epoch) as GRT, given a suitable
cosmological model and a particular choice of the
adjustable constants. Analysis of our new theory
provides partial answers to questions (i) and (ii)
above.

A further motivation for study of this particular
theory is to analyze in detail the role of prior ge-
ometry,® and its influence through cosmological
boundary values, in gravitation theories, a role
which will be investigated in more general terms
in another paper.®

To date the authors are aware of three other
new metric theories which are candidates for
sharing the property of having the same PN limit
as GRT (candidates in the sense of contingency
upon the existence of special but acceptable cos-



3294 ALAN P. LIGHTMAN AND DAVID L. LEE

mological solutions and certain choices of the
available adjustable constants). These theories
are the Hellings-Nordtvedt theory,” Ni’s theory,®
and the Will-Nordtvedt theory.® Of these three,
only Ni’s theory contains prior geometric elements
like our own; but no discussion of the detailed re-
lationship between prior geometry and cosmologi-
cal influences has yet been given.

A. The Lagrangian Formulation

The equations of the theory are obtained, in the
usual way, by varying the dynamical variables in
the Lagrangian:

L= [eomhdiy+ [ En(g add,  (1a)
g=gmh), (1b)
Riem(n) =0, (1c)

where 1,k, g are second-rank symmetric tensor
fields: —‘ﬂ is an absolute variable? (not varied in L),
h is dynamical, and g is constructed algebraically
from nandk. The Riemann tensor constructed out
of 7 is denoted by Riem(_q), and consequently Eq.
(1c) states that n is a “flat-space metric.” It is
Eq. (1c), the “field equation” for 5, that introduces
geometrical structure into the theory which is in-
dependent of the matter distribution—thus the
“prior geometry.” The gravitational Lagrangian
density is denoted by £ while the nongravitational
Lagrangian density,? £yg, is the same as the cor-
responding quantity in other metric theories (e.g.,
GRT), with ¢, representing the matter fields. The
“physical metric,” governing the response of mat-
ter to gravity, is denoted by g.

Explicitly, £¢ and g are defined by the following:

°€'G - _(16ﬂ>-1naBnXunpo

X(ah Apl ahga 1B +fh Aul ahpc | B)("n)l/z )

()
guu:(l —Kh)zApTAru’ (3&)
A“v(éua_%hﬂu):GQU' (3b)

Conventions and definitions for the above are the
following:

(i) Gre=k indices run 0-3, Latin 1-3.

(ii) Units are chosen such that G=c =1 (gravita-
tional constant today and speed of light) (see Sec.
V).

(iii) Vertical slashes and semicolons denote co-
variant differentiation with respect to the flat-
space metric 1,4 and the curved-space metric g,
respectively. A comma denotes a partial coordi-
nate derivative.

(iv) 1 is the determinant of 7.

| oo

(v) 6%, is the Kronecker delta.

(vi) A" is defined by Eq. (3b).

(vii) Indices on A, g and 2 o 5 only are raised and
lowered with n,,, i.e., k%, =h*®n,5=h, and n"‘BnBy
=6°‘7; indices on all other tensors will be raised
and lowered with g,g.

(viii) Signatures of 1 and g are +2.

(ix) a, f, K are adjustable constants.

Motivation for the rather ungainly expression for
the metric [Egs. (3)] comes from an analysis'® of
the Belinfante-Swihart theory of gravity''—a theory
which can be reformulated, at lowest order, into a
metric theory with “effective metric” of the form
of Egqs. (3). From that suggested algebraic form
for the metric we have constructed the present full
metric theory.

B. Summary

Section II includes a discussion of the field equa-
tions and a calculation of the PN limit of the theo-
ry. It is shown that there are mathematically ten
degrees of freedom in the initial-value problem
for h,, (compared with two for g,, in GRT). In
the PN limit there are, in general, “preferred-
frame effects”’; such effects are, however, func-
tions of only the cosmological boundary values of
h,,. By a certain choice of the cosmological model
one can make these effects vanish for the current
epoch. We suspect that such time-dependent pre-
ferred-frame effects are a common property of
prior-geometric gravitation theories. At any rate,
the observed absence of preferred-frame effects
can only place upper limits on the cosmological
boundary values of % .

Section III discusses the spherically symmetric,
static problem. The exact exterior, static spheri-
cally symmetric solution is obtained and is found
to be a four-parameter family.

Section IV discusses time-dependent solutions,
conservation laws, and gravitational waves. Birk-
hoff’s theorem'? does not hold in this theory, i.e.,
the exterior geometry of a spherically symmetric
and asymptotically flat spacetime need not be stat-
ic—collapsing stars can radiate monopole gravita-
tional waves. The general plane gravitational
wave has six physical degrees of freedom, the
maximum number possible in a metric theory of
gravity.®*

As the theory is Lagrangian-based, conservation
laws follow and one can construct a gravitational
stress-energy complex. Appropriately defined,
the stress energy-density of this object is posi-
tive-definite for all possible polarizations of plane
waves.

Section V discusses the time dependence of the
gravitational “constant” and further possible ex-
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perimental tests of the theory. In particular, a
search for time delays between reception of gravi-
tational and electromagnetic bursts and a search
for “non-GRT” type polarizations of gravitational
waves promise to be important future experimental
tests of the theory. Such tests would also be cru-
cial in the theories of Refs. 7, 8, 9; and their
identification represents an important success in
our program of “devil’s advocate.”

II. FIELD EQUATIONS AND POST-NEWTONIAN LIMIT

Variation of Eq. (1) with respect to the dynamical
field variable 2 ,, yields the following gravitational
field equations:

(=n)2(@Oh" + fn*’ O h) = -47T*B(-g)V?

X(0g o p/0R uw)s
(4a)
where
Dh“”En“Bh uumley (4b)
TP =2(~g)""2(6LnG /08us) » (4c)

and 0 is the variational derivative.

From the matter equations, obtained by variation
of ¢, in Eq. (1), one can show in the usual manner
(see, e.g., Ref. 13)

7%, =0. (5)

Equation (5) is the typical “matter-response equa-
tion” in metric theories.

Contraction of Eq. (4a) with 7,, yields an equa-
tion for 2z alone, which can be substituted back into
Eq. (4a) to yield

Dk #7 = (41 /a)(~g)"*(=n)>T "
x[ 68% = fla+4f)"0L5my "], (6a)
where
655=0808/0h ). ‘ (6b)
The linearized limit of Eq. (6a) is
O " = —(47/a)T*®
X[ 858% = nasn*"(f +2Ka)(a +4f)7].
(7

Unlike metric theories without prior geometry,
the four Egs. (5) do not follow from the gravita-
tional field equations; they are additional equa-
tions.® However, there is no problem of overde-
termination because all of the 10 components of
h*” are now dynamical variables; i.e., if all of
the essential coordinate freedom is used up in
choosing a frame in which 7,5 has a particular set
of components [usually diag(-1,1,1,1)], then

there is no coordinate freedom left to adjust the
components of 22 ,,,.

For example, for a perfect fluid, 7% is de-
scribed by four matter variables once an equation
of state is given (three components of the four-
velocity and the energy density, for example).
Thus Egs. (5) and (6a) comprise a system of four-
teen independent equations for the fourteen un-
knowns.

We also note that all of the ten Egs. (6a) involve
second time derivatives of 2 ,,. Thus in the Cauchy
problem all of the 2, are to be regarded as dy-
namical variables and there are ten degrees of
freedom. Once g, has been constructed from 7,3
and % g, however, coordinate transformations can
be performed and so there can only be six “physi-
cal” degrees of freedom. This is to be contrasted
with GRT in which not only can four of the g, be
chosen arbitrarily by coordinate conditions, but
also four of the field equations involve only first
time derivatives. Thus in the corresponding
Cauchy problem, the Einstein gravitational field
has only two physical degrees of freedom.

The PPN framework of Nordtvedt, Will, and
others can be used to analyze the predictions of
all metric theories with respect to solar-system
experiments (e.g., light bending, perihelion shift,
gravimeter data, earth-moon separation, etc.).
The reader is referred to Ref. 1 for a complete
summary of the PPN framework.

We now calculate in our theory the PN limit,
which will involve a perturbation solution of Eq.
(6a). For calculational ease we assume a coordi-
nate system in which 7, takes on Minkowski val-
ues. Before we begin, a crucial point must be
recognized® The metric g, has the form

gas=Naps +0(h), (8)

and we know that far away from the solar system
there is some coordinate system in which g,
takes on Minkowski values. However, this coordi-
nate system will, in general, not be the same
frame in which 7,5 takes on Minkowski values;
there is no a priori reason why the boundary val-
ues of 22, should be zero in this coordinate sys-
tem. Thus in solving Eq. (6a) we are not at liberty
to set equal to zero for all time the “arbitrary
constant” which may be added to % ,,; this compli-
cates considerably the construction of the PN limit
of our theory. However, we feel that this compli-
cation and its origin—the prior geometric element
nuw—are of sufficient educational value to warrant
a detailed discussion.

Denote the nearly constant boundary values of
hyy by wy, (w“,, can only change on a cosmological
time scale by definition) and the part tied directly
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to the solar system by# },; i.e.,
hyy=hl+w,,. 9

Now use the six-parameter invariance group of
the Minkowski metric to pick a coordinate system
in which w,, is diagonal, reducing w,, to four
components. Without justification, but for simplic-
ity, we now assume that the three spatial compo-
nents of w,, are equal. Such an assumption does
not affect the qualitative conclusions of this sec-
tion. Further, assume that

PMESE (10)

Equation (10) will turn out be an assumption con-
sistent with the ultimate experimental limits on
the w,,.

Next expand Eqgs. (3a) and (3b) in a power series
ink,,:

J

Euv =Ny = 2Kh 1y, +h y +K*h21,,, — 2Khh
+5h R e (11)

When Eq. (9) is substituted into Eq. (11) one ob-
tains

8oo==Dy+Ehd —~ Foh* = K2h*® 2 Kh }h *

-4, {122)
815 =Dbi; +ER {5 +Fb;;h* =2Kh*h 5

+ KPR ¥20,, +3h K2, (12b)
g =HIE, (12¢c)

where all of the constants appearing in Egs. (12)
have the form D,=1+0(w), etc., and are given ex-
plicitly to O(w?) in Appendix A, along with other
constants appearing below. Using Egs. (12) and a
perfect fluid for the matter stress-energy tensor,
one obtains from Eq. (6a)

O ¥4 = —(47/a)] “pv 0P (1 +1 23 +1,h ¥ +10%)[(1 = 2Kw)6* (8”5 + L1 g*” +36F 4" s + M1’ W + N1 sh *

+36F h ¥ = 2KR*6F 6% + M0 %] (13)

In Eq. (13)1,1,,1,,I5, M, N are all functions of
a,f,K,w,, (see Appendix A) and

W=3W;; — Wop s (14a)
v¥=dx®/dt, (14b)

p=proper mass-energy density measured
in the rest frame of the fluid.

(14c)

To simplify an already complex presentation, we
have omitted the pressure from the perfect fluid
stress-energy tensor and included the internal en-
ergy in the total proper energy density p. (Such
terms are not omitted in quoting the final PPN pa-
rameters.) We now write

h*‘“’=(1)h K*uY L @ Kpv L, (15)

in a perturbation expansion and obtain (see Appen-
dix A for notation)

V2 Wy %0 = _477p[(1 - 2Kw) + L = wy(3 + M)]
=-4mpC,, (16a)
v2Op ¥ - _4rpr(Mw, — L)% = —47pC, 5%
(16b)
V2O %k = _4nrp[ v*(1 - 2Kw) +3w,0*]
= —~4mpC, 0", (16c)
V2@ %00 = _ar7p(S, D *0 48, Wy x4 B 12)+Vn P

(16d)

T

v2@p ¥ = _agro| Ry

+ bij(Rl(l)h *00 +R, (1)h * +Blvz)]

+Op (16e)
where
T=(al)™". %))
Solutions of the equations are
Wpre=c,U, (18a)
Wp i =5¥C,U, (18b)
Wp X% =C,V,, (18c)

@ 30 =7 S,Co +8,(3C, = Co) @, + TBo@, +Co X005
(184)
@p 9 = 1R 84+ 76" R,Co +R,(3C, - C,)] &,
+7B,6Y®, +C,8" % o0, (18e)

where we have defined the five “potentials” U, V,,
@, ®,, 9i', and the “superpotential” x as follows:

U, 0= [p@", % -%"| %, (192)
Val®, t)= f p&E", )X -X" | d %", (19p)
&, 1)= f p&”, )P |& - %" |"1d5x" (19¢)

8,6, 1)= [p@", N[%-%"| 0", 0%, (194)
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94 (%, t)= J p&”, 1) [ -K"|"Wi'dsx",  (19e)
V2y=U. (191)

Using Egs. (12) and our solutions, Egs. (18), we
now compute the metric:

8oo==Dy+K,U+K,U? +K,®,+K,®, +K, X003

(20a)
85 =0;;(D+K.U), (20b)
8o =—HC,V,. (20c)

Notice that the metric does not approach the stan-
dard Minkowski tensor far away from the solar
system (when the potentials U, ®,, ®,, V,, x —~ 0) be-
cause of the leading constants D, and D. We must
therefore make a “scaling” transformation:

t=Dy"Y2t", (21a)
X=D"V%’, (21b)
In the tensor transformation law for the metric
ox® 9xb
gu(x") =gqp(x) Py
. . ax* ax®
=gasl UK, 1), 8,&, 1), ... ] =7 o

(22)

we also need to express the potentials as functions
of the new (primed) coordinates. An example of
the procedure is the following: Since p is a scalar

p'&E, ) =p&, 1), (23a)

U, t) = f p&”, 1) | -%"|"'d%"
= fpl i"’,t’)li—i"l"d%”,

=pD"! Jp/(im, t /)'ﬁr —i’"'—ld Sxm

=D7'U'&X, t"). (23b)

In a similar manner one finds
®,(%, 1) =D"2®,F', '), (23c)
®,(%,t)=D,D7%®!(X',t"), (234d)
Vi(®, 1) =D2D™¥2V}(&', "), (23e)
X.00 =D"2Dxlo%0" - (23f)

Making the transformation indicated in Eqs. (22)
and (23) and then dropping the primes, g,, be-
comes

Zoo=-1+D,"'D'K,U +D,"* DK, U?
+D0"1D'2K3<I>2 +D’2K‘1<I>1 +D"2Kl X,005
(24a)

gi; =0;;(1+D2K,U), (24b)
8w =—HC,D™2V,. (24c)

A final coordinate transformation must be made to
remove the x , term from g, and reduce the met-
ric to “standard PPN form.” However, additional
transformations of the form of Egs. (23) are now
negligible corrections and no distinction need be
made between functions of new and old coordinates.
The result of the final transformation, {-¢
+3DK, X o, i

8o~ 8oo _KlD—2 X,00 (25a)
8ij = 8ij» (25b)
8or~ 8or +%K1D_2(Vk -Wa), (25¢)

where W, is a new potential defined by

W= [pl7 @215~ %7 | @ -2
(26)
We now demand the proper Newfonian limit, i.e.,
Zoo=1-2U+---,
which requires
K,D,"'D"'=2 today (27)

(a consequence of our choosing units in which the
gravitational constant is unity today). Equation
(27) expresses a constraint between the three ad-
justable constants @, f, and K for a given set of
w,y. Comparing Egs. (24)-(25) with the definitions
of the PPN parameters’ and using Eq. (27) to sim-
plify, one finds

y=3D?K;=v'(a,f,K)+0(w), (28a)
B=-:D,"'D*K,=B"(a,f,K)+0(w), (28b)
£1=8,=83=84=0;3=0, (28c)
a@,;=2HC,D™? -4y -4=0(w), (28d)
a,=D,D"'=1=0(w), (28e)

where ¥’ and B’ are defined implicitly by the rela-
tions

a=(2y" +2)7, (29a)
f=(108’ +6y'B’' =Ty’ ? = 8y’ - 6)
x[2('+1)(3y" =5 -4p"P]™". (29b)

In GRT, y=B=1 and the other seven parameters
vanish. In our theory it is clear that the two ad-
justable constants, a and f, may be so chosen to
give any value to vy and 8. For example, if the w,,
are all zero, one can satisfy Eq. (27) and have v -
=B =1 with the choice

(a’f’K)=('}1') - 55&7 '11%') . (30) ‘



3298 ALAN P. LIGHTMAN AND DAVID L. LEE

It has been shown'® that the nonvanishing of a,, a,,
or o, leads to noninvariance of the functional form
of the metric of Eqs. (24)—-(25) under post-Galilean
transformations'® (curved-space versions of Lo-
rentz transformations). New terms, involving the
velocity of the Lorentz boost with respect to the
current “preferred frame” and multiplied by com-
binations of a,, a,, o, appear in the metric.
Nordtvedt and Will'” have calculated the experi-
mental consequences of the resulting “preferred-
frame effects” and find that they lead to periodic
anomalies in such phenomena as the solid earth
tides, secular perihelion shifts, etc. The reader
is referred to their paper for further details and
we quote here only the current experimental limits
on a, and a,:

@,<0.1, (31a)
@, <0.02, (31b)

We have calculated explicitly the quite complicated
functions a,(w,,), a,(w,,) and have examined their
numerical values over a large range of constants

a and f (consistent with the experimental limits on
y and B). We find that the experimental constraints
indicated in Egs. (31) require approximately

|wy|+]w,|=<0.015. (32)

Even if we had not made the simplifying assump-
tions about the form of w,,, its individual elements
presumably would still be required to satisfy
roughly the constraint of Eq. (32).

Since the w,, are cosmological boundary values
ofh,,, one must solve the cosmological problem
for a particular cosmological model to obtain the
theoretical values of the w,,. Because of the abso-
lute nature of 7,4, it should be possible to con-
struct cosmologies such that, during the current
epoch, the curved and flat-space metrics approach
Minkowski form, far from the solar system, in
the same coordinate system. Such a cosmology
would guarantee that the w,, vanish at present,
although a time-dependent cosmology would cer-
tainly cause nonzero values of w,, to occur over

a,/r -2a,/7r*? 0
- -2a,/r?% a,/r —2a,/7r® 0
py o 0 0 ¥ 3ay, /7 +ag/v?)

0 0 0

| oo

cosmological time scales. Indeed, preliminary
results from a cosmological solution'® indicate
that it is possible to make all of the w,, arbitrar-
ily small for the current epoch—and still have a
reasonable cosmological model. Thus, a consis-
tent solution exists for which the PN limit of our
theory is arbitrarily close to that of GRT in the
current epoch.

Further details regarding the time dependence
of the w,, are given in Sec. V.

III. THE GENERAL STATIC SPHERICALLY
SYMMETRIC SOLUTION AND EQUATIONS
OF STELLAR STRUCTURE

A. The General Exterior Static Spherically
Symmetric Solution

Before writing down the equations of stellar
structure for a static spherically symmetric star,
let us construct the general static spherically
symmetric exterior solution (which must then be
joined onto the solution inside the star).

First of all, choose a coordinate system in
which

-1
Mpv = 2 . (33)
72 sin%6

The most general form of% ,, in this coordinate

system which satisfies the symmetry requirements

is™®

p(r) p(r) 0 0
poo| B ) 0 0
w0 0 () 0

0 0 0 »Zsinox(7)

(34)

The homogeneous field equations for %, are
simply

U AP (35)

The solutions to Eqs. (35) which are well behaved
at infinity are?°

0
0

0 : (36)

v 2sin®6(a, /v +a,/v )

where a,, a,, a,, and a, are arbitrary constants. We remind the reader that the » coordinate in Eq. (36)
has, at this point, no interpretation other than its relation to the group-theoretically defined assumption
of spherical symmetry. Construction of g,, from %, is purely algebraic [see Egs. (3)], and the details
will not be given here. Since 2, has off-diagonal terms, so will g,,. However, having obtained g,,, we
can make the coordinate transformation
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t-t+ngLdr, (37)
00
which then diagonalizes the metric, and we finally obtain
! a’ 1a, a4\
1a,\> a2 (a2/r)2+ia,-a)r +a,r 3
—(1— 2,2)( 1.2 % _ % 4 2\t —a, 3
grr=(1=KnPy {( tS 7 ) T @2 /r =1 =Lay/7) + @y /7 {’ (38b)
1a 1a,\2
=(1=Knlr2(1-=2.=5
8o6 (1 Kh) v (1 2 ¥ 2 ,’,3> » (380)
8o =sin*6g60 , (38d)
h=r"'(3a,-a,), (38e)
y=[1+3(a, —a,) 7 ' =1a,a,7 "2 +a,7 "% + (a2 +3a,a,) %)™, (381)
ds® =go,dt® +g, A7 * +80od0" + gy dp* . (39)

Equations (38) for the metric indicate a four-parameter family of solutions for the general static spheri-
cally symmetric exterior metric. One can convince himself that all four of the parameters are physical
(not removable by coordinate transformations) by transforming to curvature coordinates and verifying that
four arbitrary parameters remain.? In Sec. IV we will investigate more closely a particular member of

the four-parameter family.

B. Stellar Models

The equations of stellar structure are quite com-
plicated in this theory; and, even for a constant-
density star, there is probably no analytic solution
of the equations. One unusual feature of the equa-
tions is that a central pressure and equation of
state do not uniquely specify a stellar model. The
reader is referred to Ref. 5 for details.

IV. GRAVITATIONAL WAVES
AND CONSERVATION LAWS

In the full theory (no linearized approximation)
the homogeneous field equations are, as indicated
previously,

nashuulmﬂ:O; (40)

and gravitational waves travel geodesics of 7 rath-
er than g. The implication of this last fact will be
explored later. The simplicity of the vacuum field
equations [cf. Eq. (40)] is of great help in con-
structing solutions.

A. Linearized Theory and Plane Gravitational Waves

In analyzing weak gravitational waves, one should
restrict one’s attention to the form and behavior of
the Riemann tensor, not only because it is gauge-
invariant (under infinitesimal coordinate transfor-
mations) but also because it is that feature of the
gravitational wave which interacts directly with
test bodies. To analyze the decomposition of Rgys
into independent ‘“wave modes” in as invariant a
manner as possible, one should investigate the

T

transformation properties of R,gys under those Lo-
rentz transformations which leave the wave direc-
tion fixed. With such transformations in mind, one
selects a basis in which the components of Ry gys
are to be computed—the quasiorthonormal tetrad
basis (see, e.g., Ref. 22 for a complete discussion
of the “tetrad formalism”):

k=271%(1,0,0,1), (41a)
1=27"2(1,0,0,-1) (41b)
m =2712(0,1,4,0), (41c)
m =272(0,1, -i,0). (41d)

Note that one of the “tetrad legs” points along the
direction of the wave. In such a basis the compo-~
nents of the Riemann tensor are

Rumi =R op nORPm Y18 , etc. (42)
y

For waves, one can show that the only nonvanish-
ing components of the Riemann tensor are those
with two I’s—thus, there are six possible degrees
of freedom. Since there are no restrictions on the
Riemann tensor once Egs. (40) are satisfied, all
six tetrad components will in general be nonvan-
ishing and our theory thus has six independent
gravitational wave modes. In our case, each of
these modes corresponds to a degree of freedom
and our theory exhibits the maximum number of
gravitational wave degrees of freedom possible in
a metric theory—six. In GRT, as a contrast, the
field equations R g =0 imply vanishing of R4,
Ryuims Rimizm, and Ry, so that there are only two
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degrees of freedom—those represented by R; ;.
and its complex conjugate R;7;; -

The reader is referred to Refs. 3 and 4 for de-
tails of the transformation properties of the ob-
jects indicated in Eq. (42). Here we quote only the
results: We denote the six wave modes by ¥,, ¥,,
U, ¥, ¥, ®,; interms of the tetrad compo-
nents of the Riemann tensor and “electric” coordi-
nate components of the Riemann tensor (those
which are directly physically measurable) these
are

V= =3 Ruup=—% Reates (43a)
U= 5 Ry == 5(Rygta = Riyea) s (43b)
V3= =3 Ripm == F(Rexee +iRyses) 5 (43¢)
U, = =Rizum =—Riyty + Rigta + 2R 1ryy (43d)
.= ~Rimim = =Riyey + izt = 2R sy (43e)
D2 = 5 Rimim = ~Rixex = Riyey - (43f)

The presence or absence of a ¥, component in a
gravitational wave is Lorentz-invariant. If ¥, is
absent in a particular wave, the presence or ab-
sence of ¥, (or ¥;) in that wave is also Lorentz-
invariant. As outlined in Refs. 3 and 4, if either
¥, or ¥, is present in a wave (in many theories
they are always absent, but not in ours), then it is
impossible to decompose the wave into states of
definite helicity (spin) in a Lorentz-invariant man-
ner: What one observer identifies as “pure spin 0”
another observer will identify as “pure spin 0”
plus “pure spin 1,” etc. Only waves containing on-
ly &,,, ¥,, and ¥ 4 can be decomposed into pure
spins: spin 0 and spin 2. In general, then, there
is no unique spin decomposition of waves in our
theory and it is of class II; (see Refs. 3 and 4 for
a complete discussion of the “classification
scheme”). The physical imprints of the various
modes will be discussed in Sec. V.

B. The Stress-Energy Pseudotensor
for Gravitational Waves

Using the method of Noether,?® which applies to
all Lagrangian-based theories, a conserved quan-
tity may be constructed, including a stress-energy
pseudotensor for gravitational waves. The gravi-
tational stress-energy pseudotensor has positive
definite energy. We refer the reader to Ref. 5 for
details.

V. THE GRAVITATIONAL CONSTANT AND
FURTHER EXPERIMENTAL TESTS

A. A Time-Dependent Gravitational Constant

As discussed in Sec. II, a number of existing so-
lar system experiments place upper limits on the

cosmological boundary values of ,, Lcf. Egs.
(31)~(32)]. These constraints can always be satis-
fied in a given epoch. A more relevant point is the
time dependence of the w,,, which is directly re-
lated to the time dependence of the gravitational
constant G. With the choice of adjustable constants
given in Eq. (30), and using the explicit functional
forms for K,, D,, D, one finds from Eq. (27) and Ap-
pendix A that

1 - %190, +Tw,) +0(w?) =G . (44a)
Thus

1dG 1 (19w, Tdw,

G dat 16( a T at ) (44b)

Shapiro et al.?* have placed limits on the time de-
pendence of the gravitational constant by compar-
ing the periods of planets with the ticking rates of
atomic clocks. They find

1dG

=10
@ <4x10"/year . (45)

This constitutes an experimental constraint on the
magnitude of the time derivatives of w,, occurring
in Eq. (44b). Preliminary results from our cos-
mological solution'® indicate that the time depen-
dences of w, and w, satisfy Eq. (45), but an im-
proved Shapiro experiment might still prove to be
a crucial experimental test of our theory.

B. Gravitational-Wave Experiments

The analysis of Sec. IV reveals two crucial new
experimental tests of our theory involving gravita-
tional waves—two tests which have blossomed
from our current program (see introductory
remarks in Sec. I) and which emphasize grav-
itational wave detection as a powerful new tool for
probing metric theories of gravity.®** The two
tests are: (i) time delay between simultaneously
emitted gravitational and electromagnetic waves,
and (ii) polarizations of gravitational waves.

Since gravitational waves travel along geodesics
of the “fast metric” 1,4 and electromagnetic waves
travel along geodesics of the.“slow metric” g3,
there should be a time delay in reception of the
two waves—emitted, for example, in simultaneous
bursts by a supernova explosion. For waves emit-
ted at the center of the galaxy, an order-of-magni-
tude estimate indicates

Time delay ~ (7 /7 ) gy (light travel time)
~(5x1077)(8 x10* light years)
~5 days. (46)

Much longer delay times would hold for the Virgo
Cluster.
Polarization information is also a crucial exper-
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imental test. Equations (43) indicate a purely lon-
gitudinal mode (¥,), mixed longitudinal-transverse
quadrupole type modes (‘113,53), a purely transverse
“breathing” mode (®,,), and the familiar trans-
verse quadrupole modes of GRT (¥,,¥,). If an ob-
server knows the direction of the wave, he can

use Egs. (43) to unambiguously catalogue the
modes. If he does not know the direction of the
source, he can still draw some conclusions. For
example, if displacements do occur in more than
one plane, then either the longitudinal-transverse
modes (¥,, ¥,) are present, or the purely longitudi-
nal mode (¥,) is mixed in with one of the purely
transverse modes (¥,, ¥,, $,,).

It is important to note that until the problem of
the generation of the various types of waves by
particular sources is solved, our theory can only
be verified by the presence of—but not ruled‘out
by the absence of—the various possible modes in-
dicated in Eqs. (43). This is unfortunate. But new
doorways have been opened in the area of experi-
mental tests and it is clear that gravitational tests
outside of the PPN formalism must be contem-
plated in the future.
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APPENDIX: CONSTANTS APPEARING
IN PN LIMIT (SEC. II)

The constants appearing in the PN limit calcu-

lated in Sec. II are

Wo = Woo )

W, =Wy,

W=3w; =Wy
in Eq. (12a)

Dy=1-2Kw +K*w? +2Kwwy +§wo? = w,,

Ey=1-2Kw-3w,,

Fy=-2K+2K’w+2Kw,;

in Eq. (12b)
D=1-2Kw+w, +K?w? - 2Kww, +5w,2,
E=1-2Kw+3w,,
F=-2K(l+w,)+2K%w;

in Eq. (12¢)
H=1-2Kw-}w,+5w;;

in Eq. (13)
[=D, 232,

=—(a+4f)f(1 -2Kw)+2Ka(l -Kw)],
M=—-(a+4f)"(2Ka+3f),
N=2K(f +Ka)a +4f)"*;
in Eq. (16d)
So=1,(1-2Kw+L-3w,- Mw,) -5~ M,
$,=1,(1-2Kw+L-3w,- Mw,)+N-2K,
B,=I,(1-2Kw+L~3w,~Mwy)—L-Muw,;
in Eq. (16e)
ROEI—ZKw+%w1,
R,=I,(Mw,-L)+M,
R,=I,(Mw,~-L)=N,
B,=1,(Mw,—L)+L+Mw,;
in Eq. (20a)
K,=E,C,~F,3C,~C,),
L= —[K*(3C, - C,2 +2KC4(3C, - C) +3C 7],
K, =18,C,+S,(3C, =C)N(E,+F,)
- 37F,[ RC, +R,(3C, - C,)],
K,=T E,B,=Fy(R,+3B,-B,)l;
in Eq. (20b)
K,=EC,+F(3C,~C,).
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A five-parameter solution of the combined Einstein-Maxwell equations is given which describes a source
containing mass, electric charge, magnetic dipole, higher multipole moments of all three kinds, and angular
momentum. The solution is obtained by using Kinnersley’s method of generating stationary
Einstein-Maxwell fields from known solutions of the Einstein - Maxwell equations. We start with a
two-parameter solution of a system having mass and a magnetic dipole moment discovered by Misra,
Pandey, Srivastava, and Tripathi. All solutions discussed in this paper are asymptotically flat, and all have
infinite red-shift surfaces that are singular. Possible relevance of these solutions to black-hole physics is
remarked upon.

1. INTRODUCTION has, inadditiontothese poles, a mass quadrupole, a
magnetic quadrupole, anelectric dipole, andhigher

A solution is presented of the combined Einstein- multipole moments whose values are determined by

Maxwell field equations which depends on five
parameters: m, e, |c|, c,, B. ¢ is a complex
parameter, c, its real value, and |c| its absolute
value. The first three parameters represent re-
spectively the mass, the magnetic dipole moment,
and the electric charge; the last two describe the
angular momentum of a central source. The source

the five parameters. The mass parameter m must
have a nonzero value or the solution collapses to
flat space. If m does not vanish, interesting spe-
cial cases occur even when only one of the other
parameters e, |c|, c,, and B is not zero. If only
m and e do not vanish, the system has a mass pole
and higher mass multipoles, a magnetic dipole but



