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A complete orthonormal set of eigenfunctions of the vector-potential operator is introduced. It is shown

that the semiclassical approximation is naturally determined in the basis of the functions introduced. The
extraction of the semiclassical approximation from nonrelativistic quantum electrodynamics allows the
determination of the limits of applicability of the semiclassical approach. It is shown that the semiclassical

approximation is inapplicable at suAiciently large photon densities. The advantages of using our set of
eigenfunctions for the description of the interaction of a strong quantized field with a quantum system are
discussed.

I. INTRODUCTION

The coherent states, introduced into optics by
Glauber, ' are used with success in problems on
light radiation, in considering theoretical schemes
of radiation receivers, and in analyzing interfer-
ence phenomena. " These functions form a "nat-
ural" system for problems of these types because
either the normally ordered operators or the oscil-
lator shift operator arises automatically there.
However, many advantages of coherent states are
lost in considering the Schrodinger equation for the
evolution operator describing the interaction of a
sufficiently strong electromagnetic field with a
quantum system.

This payer presents a complete orthonormal set
of eigenfunctions of the vector-potential operator
as being more appropriate for the solution of such
problems. A study of the properties of the field
operators in the new representation shows that
these functions allow' the semiclassical theory of
radiation to be derived properly from the descrip-
tion of the interaction of a strong quantized field
and a quantum system.

In Sec. II the eigenfunctions are introduced and
their analytical properties and the connection with
other representations are considered. In Sec. III
the matrix elements of the field operators are de-
termined and the characteristics of operators are
studied. It is shown in Sec. IV that there is an ana-
log of the optical equivalence theorem' in the basis
of the eigenfunctions for the field density matrix.
In Sec. V, by using properties of the functions in-
troduced and of the operators in their basis, we
analyze the question of the extraction of the semi-
classical approximation from the description of
the interaction of a quantized field and a quantum
system. In particular, the separation of the semi-
classical evolution operator and the semiclassical
nonlinear Maxwell equations is considered. The

limits of applicability of the semiclassical approx-
imation are discussed. In Sec. VI the quantum cor-
rections for the Maxwell equations are found; they
occur at sufficiently large intensity of the incident
field. In Sec. VII an expression for the field den-
sity matrix in the semiclassical approximation is
obtained which allows the determination of the den-
sity matrix according to the known solution of the
Maxwell equations.

II. EIGENFUNCTIONS OF THE VECTOR-
POTENTIAL OPERATOR

The eigenfunctions P, of the vector-potential op-
erator of the electromagnetic field A,~(r) satisfy
the equation

A,p(r)y, = A(r) g. ,

where

2 @ 1/2

A.,(r) =g, e (k)[a'(k)e'"'

+a„(k)e-'" r)

L,' is the quantization volume; 5 is Planck's con-
stant; c is the velocity of light; r denotes the point
coordinates; a„(k) and a~~(k) are the photon annihi-
lation and creation operators with polarization
e„(k) (A. = 1,2), and the wave vector k = (2mlL)n,
with n = (n„n„n,), where the n~ are integers. The
eigenvalues are

2mac '"
A(r) =P, e„(k)a-„„e'"'.

The set of numbers a& z will sometimes be denot-
ed by a. From the Hermitian character of A,~(r),

-k &

The function g, may'be described as the expan-
sion
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»). =f»)(»,» ) ', 0 »»).):»»),

)( e-ink yl /2~-j.42~~
k, Xy

where )!)„- (f) is the coherent state of a one-
dimensional oscillator with the coordinate g and
d'n =dRen dime. . The substitution of (3) into (l)
and the use of standard calculations, based on the
characteristics of coherent states' ' and the defini-
tion (2), allow one to obtain a set of equations
which can be separated into pairs:

+n - —a- Q= +n- —a- q =0.—K~/ K~/ 8 + Kip Kip
K~/ -K,P

(4)

After solution of this set of equations and calcula-
tion of a normalizing factor one can write

x f exp(»»»»»»k»»»»»»a»» ™-»»»»»»
X k

2
x l y (g- )e ") ~ "w 'd'n-

k, X k, X

k, &

The symbols stand II are defined by the follow-
ing rule: For each k, & 0 all the vectors with any

k, and k, are considered; at k, =0 all the vectors
with k, &0 and any k, are considered, etc. ; the
case k, =k, =k, =0 is excluded.

The only limitation set on q amounts to the fact
that it should be an integral function of its argu-
ments. This condition is satisfied at any complex
a), z, which implies that the operator A,~(r) has
a continuous spectrum.

The functions considered are continuous at ak ~
and a-k z, but not regular at a-k z. The nonregular
behavior can be seen by means of the Komi-Ritan
conditions.

The functions g, have all the properties of eigen-

functions of a Hermitian operator possessing a con-
tinuous spectrum. In particular,

&)C), l)!)b& =5(a- b) —=
! 5(Rea-„~ —Reb „-),)

k

x 5(ima-„„—Imb), „),

)C).(t)8.(t')« = "",5(g, ~
—l„'-,),

k, X

da = ' dReak &dImak z.
k

The connection of the representation of these eigen-
functions with other representations is defined by
the value c~(a) =&/, lE&.

The connection with coherent states is defined
by the expansion (3):

cs(~) =&4. l 0~&

= e-)8)),x ) ~'q (. . . p„„.. . ) .
The functions )l), are related to the eigenfunctions
of the Hamiltonian of the free field as follows
(Ps K)) ~nKnt K)) IIk yK

)
y):

c.(~) = &P. I ~.&

=] "~ e-') ~ '(n- )n - ))'1 ~ 2

~ ~" War k, X' -k, X'

k

x a"-) .&a") .&o„„-„„(-I/la& zl') .
Here

x'
c„(x)=

l! (n —l)! (m —l)!
E=O

gft) -n (

2" is the Laguerre polynomial and

n, =max(n, m),

n, =—min(n, m) .
The connection of the functions g„- with coherent
states will be used in later ca.lculations.

III. MATRIX ELEMENTS

A matrix element of any field operator E in the representation of the functions )l), is of the form

&q, lEly, &= q,*( ~ n* ~ ~ )q, ( ~ ~ p* ~ ~ )exp --,'g(l~„-. l'+ ip„- „I')
k, X

(II e.„,IElIIy, -, „& II -'d';, ,d'p;, (5)
k, X

If the integral (5) exists in the usual sense, the corresponding operator may be called a nonsingular one.
When the relation (5) results in a singular function, one may call the operator E a singular one. The op-
erator E will be weakly singular when (5) has a singularity of the type of Dirac's 5 function and strongly
singular if the calculation (5) results in a relation of the kind D(a)6(a —b), where D(a) is a certain differen-
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tial operator.
The generalized functions, arising in the case of sin'gular operators, are defined for a certain class of

functions f(a, b), which may be introduced as follows.
We shall consider the expression

J(q. lElq. )f(a, b)dadb= Q.*(~')~ (P*)f(a, b)F( ~*"," P ")exp -2+(l~r, ,.l'+ I»,.l')
k, X

II 'd' d'P„d&b.
k, y

It may be shown that

1

exp -2+ (I pk, g I'+
I ~)-, , g I') Q.*(~„-*„)V,(( f,)dadb =(v l ~),

k, X

where l p) and l v) are coherent states. It follows that for a certain A operator the following relation holds:

aap -'Z (lvivl'+
I viv I') f ( ,tI(A)t& 0, ( )(& ( )tatt =a( Isa)v&.

k, Z

Now assuming f(a, b) to be a matrix element of a
nonsingular operator A we obtain

(t), l E l )I&,)f(a, b)dadb = Tr EA & ~ .

The condition (6) determines the unknown class of
functions: One should sort all the operators A for
which the last trace is finite.

The creation and annihilation operators are sin-
gular ones. Their matrix elements in the P, rep-
resentation are calculated by means of standard
relations, connected with functions of coherent
states and with the representations of derivatives
of 5 functions.

The result can be described as

(t, lav(a)lt, &=(-,'aiv+a „)()(a—t),
k, X

l t. l
a', (i) It, &

= (-,'a — '
&(a - ) ),

The relations (7) allow the matrix elements of field
operators in the interaction representation to be
calculated:

(t) eiHttt/)) F e iHttt/))-
OP Op

where II~ is the Hamiltonian of the free quantized
field and t is the time. Then

((t. lA., (r, t) l(t&, ) =A. (r, t)&(a- b),

where

A.(r, t) -=A, (r, t)+A, (r, t),

A, (r, t)=g, e~(k) e' ' a(-, &,
coskct

k, X (8)

A, (r, t)=g, e~(k)e '"' ' sinkct .
k, X

ak &

Similar expressions for the magnetic and electric
field intensity operators follow from the formulas

H pp = curl App

and

1 App
EOP =-—

c Bt

It should be noted that the above-determined weak-
ly singular operators have the desired properties,
making them convenient in calculations. For ex-
ample, the matrix element of a product of opera-
tors equals the product of the matrix elements of
the operators, i.e., its factors. This implies, in
particular, that the weakly singular operators
commute. Further, if ()t, lElg~) =E,b(a —b), then

(g. (f(F) l )t&,) =f(E,)6(a b), where f-is a whole
function of its argument. The enumerated prop-
erties denote in fact the substitution of field op-
erators by c numbers.

IV. DENSITY MATRIX

It follows from the properties of the density ma-
trix that it is nonsingular.

One can show that in the basis g, the density ma-
trix cannot be a diagonal one.

Let ((1&, l pl P, ) = p, b(a —b). It follows from the or
thogonality of the P, functions that p= p(A,v). But
even for stationary fields it follows from [H, p]
that pW p(A, ~). The case p, = I is excluded by the
requirement of finiteness of the trace p. There-
fore, the off-diagonal matrix elements of the den-
sity matrix are not equal to zero. From here it
also follows that a physical (real) field cannot exist
in a pure state g, . In fact, we could write sn aver-
age value of the E operator as (g, l Fl P,), that is,
a special case of averaging according to a diagonal



EIGENFUNC TIONS OF TH E V EC TOR- POTENTIA L OP ERA TOR. . . 3289

density matrix of the type

Pa, , da, Pa =1.

It is mentioned above that such a density matrix
does not exist. Formally, the unphysical charac-
ter of states g, is connected with their irregularity
according to ak z. In the case of regular functions
the off-diagonal matrix elements are determined
by the diagonal ones and the relation JP(a)

~
a) (atda

gives a proper formula of analytic continuation. '
From the nonsingularity of p and relations (6)

and (8) it follows that an average value of any oper-
ator F(A,p(r, t), H,p(r, i), E,p(r, t)} is defined by the
diagonal matrix elements of the density matrix
((.I pl P.)= &(&}-,

g=G(1+N),

G =lira gog, ~ ~ g

(12)

(13)

8
ZS t gff ~rf-1 lgn & (14)

N=Q —1, Q =lim Q„,
n~~

(15)

spectively. We confine ourselves to a linear term
according to the field in the Hamiltonian (11}.A
square term in (11) may be removed, making the
proper unitary transformation. It is not difficult
to check that after the unitary transformation the
first term in the interaction Hamiltonian remains
linear.

The solution of Eq. (10) may be symbolized as

TrpE= E A, r, t, H, r, t, E, r, t a a da.
(9)

8
i 8 —Q„=M„Q„, (16)

This relation is similar to the optical theorem of
equivalence, ' but it differs from the latter by the
presence in (9) of the derivatives o(a). All the
derivatives of o(a) over a-„~ and a$ „exist, as
the functions of y, are separately regular over

ak &
and ak

It follows from (6)-(8) that the field operators
A,p(r, t), H,p(r, t), and E,p(r, t) and the photon num-
ber operator n k „may be represented as a sum of
weakly singular and strongly singular operators.
On the basis of (9) it may be shown that at (n-„~)
»1 one may confine oneself only to the weakly sin-
gular operator. It is known' that in this case the
free field is described as a classical one. From
this and from the properties of weakly singular
operators follows their connection with the semi-
classical description.

i h —Q = (G 'M, ,G) pQ .
a

(17)

A.p(t) = A, (t) + A,(t),

a,„(t)=a,„,(t)+a„,(t),
M ~ ~-Ho~ ~,

M-g 2 =&OR, 2

O. 1 (gO OR, 2 Og}f f

-1
Mn gn Mn -1, 2+n

=M„~+M„2.

(18}

Here and in what follows the following designations
are taken: Index 1 corresponds to the weakly sin-
gular operator; 2 corresponds to the strongly sin-
gular one; for example,

V. EXTRACTION OF SEMICLASSICAL ELECTRODYNAMICS
FROM THE TOTAL QUANTUM DESCRIPTION

i@—g(f) =&.R(i) g(f), g(o) =19
(10)

H,„(&)= —Q ~ pq. A,p(r, , t)

2

j

where e„m„and p&(t) are the charge, the mass,
and the momentum operator of the j particle, re-

The Schrodinger equation for the field interacting
with a sufficiently small quantum system (such that
the long-wave approximation will take place), reg-
istered in the interaction representation for the
evolution operator, g(t), is of the form

The proof of relations (12)-(17) is based on the
known expression for the Heisenberg operator'
F„(t),

F (~) =g '(i)F.,(i) g(t)

= F.p (i}+g g '(r)(&0 (~) F.p(i)] g(r)«,
0

(19)

which is used to separate the weakly singular oper-
ator out of M„.

It may be shown that lim„„g„=1, from which
follows the existence of the limits (13),(15).

From (13), (14) it follows that G is a weakly sin-
gular operator. A strong singularity N results
from the relations (15)-(17).

It is seen from (13), (14) that the weakly singular
operator G is a nonunitary one. To single out the
unitary operator we shall represent 6 as
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G=lim goo, a G =lim g B,B ~ .B„, (21)

te,—,8„=P„, (A„, , -(A„, ,)„)8„, (20) where

i h —B„=8„'P„,8„(A„,,)„B„, i I —B„=P„, (A„, ,)„B„. (22)

where P A, =H,„„A„,=(g„'A„, ,g„)„and
( ~ ), denotes the averaging according to the ini-
tial density matrix of the medium A.

The operators O„are defined by the value A,„
—(A,~), i.e., the linear deviation of the average
value from the nonaveraged one. At sufficiently
large number of particles in the medium one may
consider A,~

—(A,~) = 0; then G will be of the form

Equation (14) written for g, is essentially the
Schrodinger equation for the quantum system in-
teracting with a classical field.

One can write g=g,Q„where the operator Q,
satisfies Eq. (16) and determines the boundaries
of the semiclassical approximation. From (19),
(12), and (15) it follows that the field operator
Fz(t) can be written as

t
F„(t) = F (t ) + F, (t ) +— G '(7) [H, (7 ), F, (t )]G(~)d7.

T

+ — Q '(7,)[(G '(r, )M, 2G(&,)}„G '(7)[HO„(7), Fop(t)]G(v)] Q(7,)drd7, .
0 p

Now the linear weakly singular field operator Fz,(t ) will be defined as

2F„,(t)=F,(t)+— G-'(~)[H,„(~),F., (t)]G(~)d7. (23)

It is known' that the field operators A„(t), E„(t), and H„(t) satisfy the operator Maxwell equations. It is
not difficult to make sure that the weakly singular operator (23) satisfies similar equations.

We shall introduce the average field operator

( F„(t))„=»„Rg'(t)F.,(t)g(t). (24)

Here the index x denotes that the summation is taken over the medium states. Turning from the singular
operator F„(t) to the weakly singular operator F»(t ), we obtain a c function corresponding to the average
field operator (24):

(Fz,(t) )„=F(t)+—Tr„R G '(w)[HR(7'), Fq(t)]G(7)d7 . (25)

The field, satisfying the nonlinear self-consistent Maxwell equations, should be of the form
t

Fz( r, t ) = F,(a) +—Tr„R C '(7)[H»(7), F,~(t )]C(r)d~, (26)

where

i k —C(t ) = P A~C(t ) . (27)

we consider the solution of the system (26), (27)
by the method of successive approximations. Let
us assume A„=A, (a); then

The equivalence of (26) and (27) to the Maxwell
equations is shown by differentiation of (26) with
respect to time.

One can show that the weakly singular operator
(25) satisfies Eqs. (26) and (27) at equality of G
and C. As the form of the equations for G and C
does not allow us to say anything about a complete
equality, we shall reformulate this requirement
as follows. Let G =CO. One may show that the
field (25) satisfies the Maxwell equations (26) and
(27) if and only if 8= l.

To determine the conditions under which 8=1

8i A —C, =H,~,C, C, =g, (a) .

i I—C&" = P ~ [A,(a) +2 (A, ,(a) )„JC"', (26)

i h —C, = 2PO ~ ( Ao, (a) ), C, .

Continuing this procedure we obtain that the op-

Substituting the operator C, into the field (26) we
obtain
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erator C may be represented as C=limCpC, ~ ~ C„
and satisfies the equation

i h —C = P ~ [A,(a)+2 (A, ,(a))„+~ ~ ~ ]C.

From Eqs. (21), (22), and (29) and the connection
between 6 and C we obtain the equation for g,

curl(H„, (t ))„=——(E»(t ))„+—Tr„Bgo
' j go .

However, taking (31) into account we may write

g, =g C, = C(A„),

from which

i 8 —8 = C 'P C .[(A0,(a))„+ ~ ~ ~ ] g . (3o)
curl (H„,(t ))„=——(E„,(t ))„+—Tr„C ' j C .

From solution of Eq. (30) it follows that g = 1 under
the conditions

B,(a) —C, =1,
G(a) =C=C, . (31)

The field (25) in this case coincides with the field
(26) and is of the form

(32)

The formula (32) satisfies formally the non-self-
consistent equations. For example [the term
with (&/&t)(F'Q is introduced in the current opera
tor],

(F,,,(i ))„
t

= F(t )+—Tr, R( g, -'(v)[H,„(v), F, (t)]g .(v)dv .

From the relations (30) and (31) defining the
applicability limits of the Maxwell semiclassical
equations, it follows that the conditions of appli-
cability may be violated at sufficiently large pho-
ton occupation numbers.

Hence, for interaction of a strong field with the
medium it is impossible to be sure beforehand
that one can use the semiclassical approximation.
To answer this question the value of the 8 [in (30)]
or B [ in (22}] operators must be estimated for
a given situation. The same may be said concern-
ing the applicability limits of the semiclassical
evolution operator gp It should be noted that in
analyzing these values the condition (n, )» 1 ap-
pears at once; the second condition gives the
limitation on the density of occupation numbers,
depending on the medium with which the field in-
teracts.

VI. QUANTUM CORRECTIONS FOR THE MAXWELL EQUATIONS

To evaluate the quantum corrections we assume

G =gcB, , B = CB = 1 .

Now the semiclassical field may be written as

(F„(t)), =tv(t)+ —, Tr, g ,f 8, 'g [H (r), F(t)]g B,dv .

(34)

(35)

We may write out the current, appearing upon differentiation of the field E written as Eq. (35),
t

Tr„BG ' j G = Tr„Rgc 'jg, + —Tr„B B, '(7)g [gc '(7)P g, (r), gc 'jgB]B,(7)
0 C.

&&Tr R gp Ty Hpg Tz Q2 7 gp T drd&„ (36)

(37)

where the C operator satisfies Eq. (28}. The self-consistent current (37) can be converted into a form
similar to (36). We have

t

Tr RC 'jC=Tr RCp 'jC +2-Tr R C, 'v C '7PC 7,g, -'g jg g

where o. =1, 2, 3 numbers the unit vectors of the coordinate system. In calculating (36) we used Eq. (22)
and the relation (19).

In the self-consistent equation a current appears,

Tr„RC 'j C,

xC, ( 'IT Rf C, '(v)[H (v), d„,„( )]C,(vtdv'dv, . (88)
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Comparing (3V) with (35) we obtain

t
Tr RG '(a) j G(a) = Tr„RC 'j C+Tr„R (B, '(r)+ [go '(r)P„g(7), g, '(t) jgo(t)]B,(7)

—2C, '(r)[CO '(r)P„CO(r), g„'(t) jgo(t)] C,(r}]
7

xTr R go '(r, )[H,~(r,), A, (r)]go(r, )drdr, . (39)

(40)

We now transform the last term in (39). For this purpose one may represent the operator B, as 8, = C,D.
From Eqs. (22) and (28) it follows that

t
th —D = C, 'C, 'P ~ C,C,Tr„R C, '(r) [H,„(r),A, (t)] C, (r)dr.

Having substituted the definition B, in the relation (39) and used Eq. (40), one obtains

Tr„RG '(a)jG(a)=Tr„RC 'jC- Tr„R C, '(r)g[C, '(r)P„C,(r)C, '(t)jC,(t)]C,(r)
0 Ct

r
x Tr„R C, '(r, )[H,„(r,),A,„(r)]C (r,)drdr, .

0

The latter relation can be converted to the form

Tr„RG '(a)jG(a)= —,'Tr„RC, 'jC, +-,'Tr RC 'jC.
Now the equation for the fields E and H under the limitation (34) will be written as

1 8 2' 27T

curl( Hz, (t ))„=——(Ez,(t )),+—Tr„Rg, '& g, +—Tr„RC 'j C,

where

(41)

(42)

IC= P ~ (A„,(t' )—)„C.

Equation (42) differs from Eq. (33) by the current When . the conditions of applicability of the Maxwell
equations (31) are satisfied Eq. (42) converts to the Maxwell equation (33}. Equations (42) and (43) describe
the change of a strong field in interaction with a quantum medium at larger photon densities than that given
by Eqs. (33).

VII. EQUATION FOR THE DENSITY MATRIX

To solve the problems on the change of radiation statistics upon interaction with the substance the equa-
tion of motion for the field density matrix is required.

We shall obtain this equation for semiclassic electrodynamics. For this purpose we shall average the
semiclassic field, satisfying the Maxwell equations (26), over the initial density matrix p of the field:

t
Trr pF~(t)= Trr pF, (t)+—Tr„„pR C '(r)[H,„(r),F p(t)]C(r)dr

= Trr p(t) F,p(t) .
The index y denotes that the summation is taken over the field states. Having described the commutator in
the second term, and using the trace invariance with reference to cyclic commutations, we obtain

t t

Trr„pR C '(r) [Ho~(r), F~(t)]C(r) dr= Trr„[HO.„(r},C(r) pRC '(7)]dr F,p(t),
0 0

p(t)=p-~ Tr„Z

[H,„(r),C(r) pRC '(r)]dr. -

(44}

from which it follows that the density matrix p(t)
is defined by the following relation:

The C operator satisfies the Schrodinger Eq. (25),
where the field in, the interaction Hamiltonian is
the solution of the Maxwell equations. If one knows
the solution of the Maxwell equations (26) one may
find the C operator, by means of which the density
matrix in the semiclassical case is found from
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the relation (44).
The analyzed examples show that the eigenfunc-

tions of the vector-potential operator g, form a

"natural" basis for the description of the inter-
action of a strong electromagnetic field with quan-
tum systems.
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We present a Lagrangian-based metric theory of gravity with three adjustable constants and two tensor

fields, one of which is a nondynamical "flat-space metric" q. With a suitable cosmological model and a
particular choice of the constants, the "post-Newtonian limit" of the theory agrees, in the current

epoch, with that of general relativity theory (GRT); consequently our theory is consistent with current

gravitation experiments. Because of the role of g, the gravitational "constant" G is time-dependent and

gravitational waves travel null geodesics of g rather than the physical metric g. Gravitational waves

possess six degrees of freedom. The general exact static spherically-symmetric solution is a
four-parameter family. Future experimental tests of the theory are discussed.

I. INTRODUCTION AND SUMMARY

Within the past few years an elegant theoretical
formalism, the "parametrized post-Newtonian"
(PPN) framework, has been developed' to analyze
metric' theories of gravity. The PPN framework
is structured around the "weak gravitational fields"
and low velocities of the gravitational matter which
characterize typical solar-system tests of gravity.
It classifies each gravitation theory as to its form
"in the post-Newtonian (PN) limit. " At first it was
hoped, and indeed seemed to be true, that the PN
limit of each theory of gravity is unique —thus by
solar-system experiments alone, one could, in
principle, determine the "correct PN limit, " which
would then correspond to one and only one "correct
theory of gravity. " In addition, it was hoped and is
hoped that the "correct PN limit" is that of gener-
al relativity theory (GRT) (although we try not to
let this fact prejudice our investigations). To play
devil's advocate, a program was initiated to at-
tempt to formulate theories of gravity with the
same PN limit (and hence PPN parameters') as
GRT. The aims of such a program are twofold,
as one can ask the following questions: (i) If such
theories exist, how complex and contrived are

their formulations? (ii) Do such theories have
anything in common and in what respect do they
differ from GRT outside of the PN limit? The
first question is primarily only of aesthetic inter-
est. But the second has the possibility of identi-
fying powerful new theoretical and experimental
tools for testing relativistic gravity —indeed, that
has been the case (see Sec. V and Refs. 3 and 4).

In this paper' we present and analyze a new the-
ory of gravity —one which has the same PN limit
(for the current epoch) as GRT, given a suitable
cosmological model and a particular choice of the
adjustable constants. Analysis of our new theory
provides partial answers to questions (i) and (ii)
above.

A further motivation for study of this particular
theory is to analyze in detail the role of prior ge-
ometry, ' and its influence through cosmological
boundary values, in gravitation theories, a role
which will be investigated in more general terms
in another paper. '

To date the authors are aware of three other
new metric theories which are candidates for
sharing the property of having the same PN limit
as GRT (candidates in the sense of contingency
upon the existence of special but acceptable cos-


