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Scaling Limit of Longitudinal Virtual Compton Cross Sections
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It is shown that the hypothesis that the quark model gives the correct leading, 6'(x2), light-
cone singularity of current commutators requires that B, the ratio of longitudinal to trans-
verse virtual Compton cross sections, go to zero like 1/v in the Bjorken limit.

The light-cone current algebra abstracted from
the quark model' has been applied to deep-inelastic
electron scattering to explain the scaling observed
in the SI AC-MIT experiment. ' The algebra implies
scaling for the structure functions' mW, and vW2

in the deep-inelastic region, that is, it asserts
that for large v and -q2 these structure functions
should become functions only of the dimensionless
variable $ = -q'/2m v. The algebra also implies
that the linear combination

should vanish in the deep-inelastic region. 4 The
purpose of this note is to point out that the quark
light-cone algebra further determines that the rate
at which Wz goes to zero is like 1/v. Put differ-
ently, it implies scaling for vR"~:

lim vWz (v, q')-h($) . (2)
Q2 qtj~ ao

C = -e2 j 21' 0 fixed

This scaling prediction is quite independent of
the scaling of mW, or vR'2 and provides a new test
of the algebra. Its experimental verification re-
quires more precise measurements of ft =Wz/W„
the ratio of the longitudinal to the transverse vir-
tual Compton scattering cross sections.

The scaling of vS'~ follows from the quark light-
cone algebra (and so from the parton model' in
which the algebra holds), but, in contra, st with
other scaling predictions, it cannot be deduced
from dimensional considerations alone. ' " The
statement that the quark model gives the operator
structure of the leading light-cone singularity has
implications for nonleading behavior in the deep-
inelastic region, that is, for dimensionally non-
leading singularities. The vanishing of W~ like
1/v in the scaling region has been conjectured
before by Yao and Mahanthappa. "and shown to hold
canonically in the quark-gluon model by Dicus,
Jackiw, and Teplitz, "but it has not been recog-
nized as a necessary conclusion from hypothesis
that the quark model gives the leading light-cone
singularity. Positivity restrictions on the struc-

ture functions for polarized as well as unpolarized
inelastic electron scattering" together with the
naive dimensional scaling properties for these
functions suggest that 8'~ should fall no faster than
1/v in the scaling region.

To derive the result one need only notice that

v2

P„Pu~„.=~ & ——
2

which becomes (v/2$)Wz in the deep-inelastic re-
gion. So evaluation of (1/m) P„P„W» from the lead-
ing light-cone singularity of [J„(x),Z„(0)j gives vW~

in the scaling region directly.
In the quark model one has for that singularity

I 2

2r
= —5'(x')s„,~,e(x,)x„[P (x, 0) —F,(0, x)]+ ~ ~ ~,

(4)

where the bilocal density is

6: (x, 0) = —', 6." (x, 0) + ~ P (x, 0) + ~ 6."(x,0), .

(5)
s„,z = 4 Try& y zy„y „and ~ ~ ~ denotes terms less
singular than 5'(x') at x'=0. Since each component
has a 5'(x2) singularity, each component of W„,
will be finite in the Bjorken limit (if evaluated in
a frame in which p remains finite). Thus one sees
that vR'~ scales in that limit.

To display the limiting function in terms of the
light-cone singularity one defines generalized form
factors of 6' (x, 0) between spin-averaged states

p(p~6', (x, o)~p) =p,F(p x)+x,G(p x)+ ~, (6)
spins

where - ~ ~ denotes terms which vanish at x' = 0.
These functions have the Fourier representations

G(p.x)+G(-p x) =2fm ' e"~ "g(o)da, '

where the limits are fixed by the spectral restric-



SCALING LIMIT QF LQNGITUDINAL VIRTUAL CQMPTQN CRQSS. . . 329

lim mW, ( vq') -f ($ ) .
~q2 V~ 0Q

4 = -q&/2rrtv fixed

(10)

The other scaling function, g($), has not pre-

tions on TV&„. In terms of these one has

lim —P„P„W„„-f(g) -g'($) .1

V ~ m
0 = - q2 j amv fixed

Comparison with Eq. (2) gives

&(5) =2((f($) -g'($)).
The scaling function f(() is already known in

deep-inelastic electron scattering. If the quark-
model commutators are right, it is the Bjorken
limit of 8",:

viously appeared, however. It comes from opera-
tors whose spin is two units below that of the lead-
ing spin operator in each coefficient in the Taylor-
series expansion of F,(x, 0) in powers of x„.
These higher twist operators give contributions to
the matrix elements (p~5'„(x, 0) ~p) proportional to
x, and do not contribute to the Bjorken limits of
either mS', or vR', . For that reason they are or-
dinarily discarded, ' but they can make a finite con-
tribution to v8'~ in the scaling limit, Were they
absent one would have (v/m)R = vW~/mW, 2$—.

The fact that the quark light-cone algebra has
definite implications for dimensionally nonleading
singularities can be seen in the light-cone analysis
of the current commutator'4

[J„(x),Z,(0)]„„„„,;„„,) =-(CPg, —s„s„)[E(x;C )6(x, 0)+ ]

+(~ gpxg o —
pszsligo —s soke)+szsoZp )[&(xiCr)6 (x 0)+'''] ~

Dimensional considerations require only that C~
~0, C~~2, but for the quark algebra to give the
correct leading, 5'(x'), singularity for all compo-
nents of the currents one needs C~ =0, C~ «0.

It is clear that the assumption that the quark
model gives the leading light-cone singularity is
stronger than the assumption that the scale-invari-
ant part of [j „(x),j„(0)]is given by the quark mod-
el. It is possible for a longitudinal light-cone sin-
gularity to be weaker than that allowed by scale
invariance and yet be stronger than, or as strong
as, 5'(x') at x'= 0. If longitudinal singularities
stronger than 5'(x') are present then (v/m)R will
not scale, but another expression, (v/m)' R, with
0 & a & 1, will. If longitudinal singularities propor-
tional to (x„x„-g„„x')5'(x'), but no stronger,
exist, then the scaling law for (v/m)R would be
preserved, but these singularities would make a
finite correction to the scaling function.

Longitudinal singularities proportional to
(x"x" -g""x')5'(x') would be as strong on the light
cone as the leading quark-model singularities.
Their coefficients would be new bilocal operators
beyond those familiar from the quark model.

Note that the scaling of vW~ is a property of the

leading quark-model singularity and is independent
of the nature of lesser singularities,

It should be remarked that these considerations
also apply to neutrino scattering, and imply scal-
ing for v[-W, +(1 —v'/q')W, ] in deep-inelastic v

and v scattering from any hadronic target. Qne ob-
tains these same results for neutrino scattering
because in the quark algebra the SU(S) structure
factors [only the numerical coefficients of F,'(x, 0)
in Eq. (5) are changed] and the leading light-cone
singularities of [V '„(x), V'„(0)] and [A'„(x),A', (0)] are
the same, while [V„'(x),Ar(0)] contributes neither
to W, nor TV2, but to g, .

The present experimental knowledge of R is too
imprecise to either verify or deny the scaling
hypothesis for (v/m)R. Better measurements can
be expected with the continuing refinement of the
deep-inelastic electron scattering experiments
at SLAC.

The vanishing of R like 1/v in the scaling region
was first obtained by R. P. Feynman from the par-
ton model. The author wouM like to thank Profes-
sor Feynman, Dr. R. Heimann, and Dr. A. Hey
for several illuminating conversations.
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