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The Gowdy T' inhomogeneous cosmology is an exact vacuum solution of Einstein's equations

representing gravitational waves propagating in an expanding closed universe. As shown by Berger, it
provides an example showing graviton pair creation as a quantum effect near the initial singularity,

together with the reaction this induces in the cosmological expansion. The truncated quantization given

here by superspace methods develops the "single residual constraint" quantization method proposed by
Moncrief. The quantum wave equation is soluble by separation of variables, and shows that graviton

number is a concept unsuited to the description of the initial (velocity-dominated) singularity. Thus a
good description of the pair creation occurring in even this soluble model has not yet been developed.

I. INTRODUCTION

The Gowdy T' cosmology' is the simplest inho-
mogeneous empty universe. It is studied here to
illuminate superspace quantization methods, and
questions of particle creation in the early universe.
Near the singularity it is an example of a velocity-
dominated cosmological singularity. Far from the
singularity the solution can be described as an ex-
panding universe with flat space sections filled
with plane gravitational waves that move only in
the z direction, but w'ith arbitrary wave forms.
The assumed symmetries in this model universe
reduce the intrinsic nonlinearities of the Einstein
equations to a minimum, and therefore allow a
completely explicit treatment with a minimum of
computational difficulties. In this paper a quantum
treatment of the model is given in which the com-
putations can be reduced to the solution of Schro-
dinger-type equations in finite-dimensional spaces.

The methods used here are extensions of those
I have applied previously' to cosmological models
with a finite number of degrees of freedom. The
model here has an infinite number of degrees of
freedom, but is somewhat simpler computationally
than the Einstein-Rosen cylindrical waves which
Kuchar' has treated so successfully using very
similar techniques. One important aspect of the

paper, however, is the difference between the
"'single residual constraint" approach to quantiza-
tion taken here, and the more clear-cut limiting
cases of the Arnowitt-Deser-Misner (ADM)' or
Dirac' quantization methods illustrated in Kucha&'s
paper. ' Because of these differences, the present
example serves as a useful illustration of, and
provides part of the motivation for, a method for
deciding critical factor-ordering questions in the
quantization of the gravitational field by super-
space methods. '

Another important application of this quantum

cosmology model is to the problem of particle
creation in the early universe. The limited aspects
of this problem that can be modeled within the
universes treated here are formulated, but not
solved, in Sec. VII of this paper. A semiclassical
solution is given in Sec. IX. The class of cosmo-
logical models which are studied here were intro-
duced by Gowdy' and have been further studied by
Berger. ' Her work included a quantization of the
models by the ADM methods and an application to
the questions of particle creation.

The creation of particle-antiparticle pairs as a-
consequence of a strong gravitational field existing
near the cosmological singularity was studied by
Parker' and subsequently by Zel'dovich and Sta-
robinsky. ' " Current interest in this particle-
creation process centers not so much on the par-
ticles themselves, as upon the reaction to the par-
ticle-creation process by the universe which in-
duced it. Thus, one is not importantly concerned
at present with whether there are particles in the
universe that were not produced by such a pair-
creation process. (This would be necessary if the
total baryon number of the universe is to be non-
zero. ) Two tluite different effects are the center
of attention. One focuses upon the highly dissipa-
tive nature of the particle-creation process which,
as pointed out by Zel'dovich, ' could require that
the universe achieve a highly isotropic expansion
already as early as the Planck time. The second
question is the puzzling relationship between the
observed homogeneity of the early universe (as
deduced from the isotropy of the microwave radia-
tion) and the severe horizon limitations which exist
within the homogeneous Friedmann cosmological
models especially at early times. These limita-
tions exclude a causal synchronization of the dis-
tinct regions emitting the microwave radiation
within the model. Attempts to overcome horizon
limitations by using the mixmaster cosmological
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model at early time" have not been successful. ""
That the particle-creation process may bear on

the horizon question may be proposed on the basis
of Zel'dovich's" analysis of causality in the com-
pletely understood pair-creation process in quan-
tum electrodynamics. Here, one sees that at-
tempts to describe the particle-creation process
in a purely classical language result in apparent
causality violations. Consider a pair of particles
that are spontaneously created by electric fields
exceeding a critical strength. These particles
already materialize with a spacelike separation so
that the work done in separating them as virtual
particles before they materialize supplies the en-
ergy to produce their rest mass. The classical-
world lines upon which the pair of particles
materialize are hyperbolas in an assumed uniform
background electric field, but in the spacetime
diagram they are hyperbolas that have a common
focus but lie entirely outside each other's light
cones. Thus, in this completely understandable
case, a causal and relativistically invariant quan-
tum theory of electrodynamics leads to a result
which appears completely acausal if one attempts
to describe it in a purely classical language. It is
therefore a significant and urgent question to in-
quire concerning the apparent acausality of the
Friedmann cosmological models (in which physical
conditions are synchronized at distant points whose
past light cones do not overlap) and to ask whether
this apparent acausality is not merely the result
of using a classical language to describe the re-
sults of a phenomena whose quantum origins were
entirely causal.

There are three principal differences between
the Berger treatment of this minisuperspace ex-
ample in quantum cosmology and the present ex-
tension of her work. The first of these differences
is in methodology. Berger used the ADM Hamil-
tonian as a principal tool, whereas I will use a
vanishing super-Hamiltonian. The other differ-
ences reflect a reformulation of the physical prob-
lem which is being studied. One of these further
differences is that one additional degree of free-
dom is treated as a dynamical variable subject to
quantum fluctuations in the present paper, but
treated as a fixed classical background parameter
in Berger's work. (Both papers omit infinitely
many modes of the gravitational field by treating
them as fixed classical parameters and ignoring
even their vacuum fluctuations in the quantization. )
The other difference reflects the choice of initial
states for the universe near the singularity upon
which to concentrate attention. Berger defined a
graviton number in each mode in the same way
that I will, and studied the particle creation sub-
sequent to some (nonsingular) initial time at which

it was assumed that there were no gravitons in any
mode. The major extension of Berger's work
which this paper provides is a more extensive
analysis of the state of the universe near the sin-
gularity within the quantum language. It will be
argued here that the graviton numbers are an un-
natural and singular language for describing the
initial state of the early universe. An alternate
language is presented which fits very well. The
description of the corresponding classical singu-
larity was given by Lifshitz and Khalatnikov" and
subsequently rewritten from a more global view-
point by Eardley, Liang, and Sachs. " The present
treatment differs from the quantum theory of ve-
locity- dominated singularities presented by
Liang" in choosing a different metric for super-
space. This results in a different factor ordering
in the quantum problem and dramatically changes
the behavior of the wave function near the singu-
larity. The factor ordering chosen here preserves
the singularity with essentially its classical sig-
nificance and inevitablity, whereas Liang's choice
allowed the wave function to vanish in those re-
gions of superspace describing singular configura-
tions of the universe. Some justification for the
present choice of factor ordering will be given

sewhere 8

II. METRIC AND COORDINATE CONDITIONS

The superspace approach to relativity" views
as the primary object a three-dimensional Rie-
mannian metric geometry assigned to a three-di-
mensional manifold. The topology of the manifold
is fixed once and for all, but its metric properties
are variable. Each specification of a different set
of metric properties constitutes a different point
in superspace. A solution of Einstein's equations
classically may be represented by a curve in
superspace parametrized by time parameter t.
Thus, the solution to Einstein's equations is seen
as the time evolution of the three-dimensional
Riemannian metric properties of a three-manifold.
By auxilary constructions this sequence of three-
manifolds can be sewn together into a four-dimen-
sional manifold of Minkowski signature satisfying
the Einstein equation. A different choice of time
coordinate in this four-manifold would correspond
to a different curve in superspace. The totality of
such curves would form a submanifold of super-
space which would represent in a coordinate-in-
dependent way the classical solution of the Einstein
equations. In the quantum theory there would be
defined a wave function 4 on superspace satisfying
a Klein-Gordon type equation there. At least in
the case where a specific choice of time coordinate
(slicing of the four-manifold) is agreed upon, there
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2@I= fdg(piA+p, 7 +pp —Nq8"),

pr ovided that units G = l = c have been adopted, and
the periods of the angles o and 6 are chosen so that

d6 =8.

would be also defined a probability current vector
constructed from 4' and satisfying a conservation
law. This probability current would then serve to
describe the motion of a wave packet which, in ap-
propriate limiting cases, would be centered upon
and essentially define the classical curve giving
an unquantized solution to the Einstein equation.

To define a minisuperspace, then, our first task
is to specify the topology of that three-manifold to
which points in the superspace will assign metric
structure. The choice made in this paper is to
always consider the underlying topological mani-
fold for spacelike hypersurfaces to be the 3-torus
T . This manifold can be described in terms of
three coordinates which are treated as angles. We
shall call the coordinates 8, a, 6. Although our
superspace will be infinite-dimensional, it is a
minisuperspace simplified and limited by the re-
stricted form admitted for the possible Riemannian
metrics assigned to the 3-torus. These metrics
are in the first instance those for which the spatial
line element may be put in the form'

d[2= e-~-~~~» gg82+ e2&(cade'+ e-Bdg')

Here the three functions 7, A, , P parametrize the
three independent metric components. As a con-
dition of symmetry we require that these functions
7, A., P may depend only on the coordinate 8 and

upon the time t. After studying the ADM varia-
tional principal for metrics of this form, we will
find it possible to impose as a coordinate condition
the requirement that v be independent of 8 as well.
The solution of the momentum constraints, which
is described in Sec. III, will further reduce the
configuration space of the problem to one in which
A, has only one degree of freedom, although P will
retain infinitely many degrees of freedom as an
arbitrary function of 8. Thus the final configura-
tion space is somewhat smaller than the minisuper-
space which we have first defined here.

The form of the space metric in Eq. (1}is adopt-
ed, with minor changes in notation, from the work
of Berger. ' The ADM variational integral for this
metric is also computed there. With the corre-
sponding notational changes it reads

the constraints. The appearance of the constraints
is improved slightly by the definitions

N=—NO=Ng ' '=Nexp(- —,'a+~A. ), (4a)

N, = N, exp(r+ —,'& ) . (4b)

With these redefinitions the variational integral
can be rewritten as

where

fde(P„~+P, ~+PP —N„6"},

&'=-'p'+p p, + ,'e"-p "+e"(47" +8v" + q'y')

and

=4pz+p77'+p& +pa~' .

The two other constraints vanish identically:

0 go

(7)

In this transformation, the variables N& were re-
placed by linear combinations of themselves (N„)
in which the coefficients in the transformation were
functions of the g,~, p", and their spatial de-
rivatives. Such a transformation does not alter
the resulting system of differential equations since
the additional terms which are introduced are all
linear combinations of the constraints or of their
spatial derivatives. Of course, the variational
principl'e itself requires that these constraints
vanish as a result of varying N& or the N„, as the
case may be.

The variational principle (5} leads immediately
to the following equations for 7. and p~:

7 = - v(N„e~)/f p,
= Np ~ + Ng r',

p~ = —5(Np 6")/5A.

=(Ne r')'+(NePg)'.

From these equations it is easy to see that a co-
ordinate condition can be imposed which will con-
siderably simplify the study of the remaining equa-
tions. Suppose that N and N~ are required to be
constant for all time. Then Eqs. (9) show that the
initial condition p~'=0= v' would be preserved for
all future time. We therefore restrict the time
development of the coordinates off the initial sur-
face by the coordinate condition

N=1, Ng =0, (10)
Dot and prime indicate differentiation with respect
to t and 8, respectively, and 8 is assigned a 2m

period. The quantities N, =- N and N,. here are the
standard lapse and shift functions and the 6" are

and further restrict the coordinates by imposing
as initial conditions the coordinate requirements

71 0—p
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Since we have just verified that these initial con-
ditions (11) will be preserved throughout all times
we mill incorporate them in the variational princi-
ple and constraints immediately to achieve a fur-
ther simplification. The procedure adopted by
imposing Eq. (11) is of course equivalent to Fou-
rier analyzing v and p~ in space (that is, as func-
tions of 8) and setting all of the nonconstant modes
in this expansion to zero. Since choosing a well-
defined coordinate system prevents a single intrin-
sic geometry from being represented in more than
one way, this procedure of imposing coordinate
conditions is equivalent to passing from the space
of Riemannian metrics on T' to the minisuper-
space of T', i.e., the space in which each distinct
point represents a distinct three-geometry. An-
other equivalent way of stating the significance of
imposing completely well-defined coordinates on
our manifold is to say that all remaining quantities
in the problem now become observables.

=(2w) '$3cdg. (15)

In addition to the dynamical equations which re-
sult from the statement 5I= 0 applied to Eq. (12),
it is also necessary to impose the constraints

t' —= pp'+ p&Z' = 0 . (17)

SC=p, p, + 'p-'+ 2e"-(p')'.

The assertion that the variational integral is in
canonical form can be made because the spatially
variable parts of p„disappear from the total Ham-
iltonian just as they have done from the pq terms
in the integral. The total Hamiltonian is

8-=P~P„+( w2) '$(-,'P'+-,'e"()'')d&

III. REDUCTION TO A SINGLE

HAMILTONIAN CONSTRAINT

I= dt(p~X, +p, ~)+(2)T) ' tdg(pp —x) .
(12)

Here we have been able to carry out the 0 integra-
tion in the first two terms as a consequence of the
8 independence of v. and p~. The quantities canon-
ically conjugate to these two variables are thus
found to be

When Eqs. (11) are imposed upon the system, the
equations governing the time development of the
conjugate variables can no longer be obtained from
the variational principle. One could adjoin these
equations to the variational principle to supply a
complete statement of the problem. This is, of
course, necessary for the constraint equations
once conditions (10) have been imposed. However,
the equations lost by imposing (11)will in fact not
be needed, since me mill find that the conjugate
variables themselves can be eliminated from the
problem. Let us then rewrite the variational in-
tegral (5), incorporating the simplifications which
result from Eqs. (10) and (11). The result is

All but one of this double infinity of constraints
can be solved to provide the quantities which have
disappeared from the variational principle. Thus
we write

A, =A,0+3,+,

P7- Pg+P+
(16)

could be solved to give p, while the remaining
infinitely many constraints (one for each value of
8) can be solved to give p, . However, p, appears
nowhere else in the physical problem, neither in
the variational principle nor in the formulas for
reconstructing the metric from the solution of the
differential equations. Therefore it is not neces-
sary to actually inspect these equations, simple
as they may be. An explicit solution of the single
residual constraint (19) can be readily found from
Eq. (15) and reads

+ADM

to separate out the spatially variable parts A., and
p+ of A. and p, . Then from Eq. (14) the constraint
X=o can be solved to give p, . One linear combina-
tion of these constraints, namely,

and

The variational integral (12) is now in canonical
form, and the Hamiltonian density 3C which appears
in it is

Our decision not to adopt this equation, which
would eliminate p from the discussion at this
point, marks the turnoff at which we depart from
the standard ADM approa, ch. Thus we prefer not
to regard the constraint (19) as solved, but as a
remaining condition on the initial data for the dy-
namic equations. The momentum constraint (17),
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however, we do wish to regard as defining the
function A, [The spatially constant dynamical
variable A., clearly does not enter Eq. (17).] Thus,
A, + is to be defined as follows:

Pl)'d8 —(2') ' Pd6'
e'

pdp

()= (2w) 'PP-()-de D, '=
must be imposed upon the initial conditions for P
and p. This condition, which can be interpreted as
saying that the total momentum of the gravitational
waves in this closed universe must add up to zero,
can easily be seen to be preserved in time by the
differential equations satisfied by p and P.

IV. CLASSICAL SOLUTIONS

All the degrees of freedom remaining in this
problem can be treated as discrete variables by
introducing the Fourier transforms of p and p. In
order to make the transition to the Klein-Gordon-
type wave equation more straightforward later, we
use a real Fourier series

(20)

where the constant second term is chosen so that
(l).,) =(2n)')A', d8 =. 0. It is necessary to pay ex-
plicit attention to this equation for X, because the
function X+ occurs in the metric of Eq. (1). This
equation also leads to an additional condition or
constraint not from the local differential equations,
but from the boundary conditions implicit in the
assumed T' topology. Thus, since ~ must be a
periodic function of 8, A(8+2m) =A(8), the same
must hold true for ~, and consequently the condi-
tion

+e"(esdo'+e 8d6'). (26)

The Hamiltonian equations for this problem are,
from Eq. (23), just

~0=&, P'~ =0

p„=-2e" g n'q„', (277)

O'n=&n ~

q =0.

$„=-n'e 'q„, (27~)

From these equations one sees that p„ is a con-
stant in time as well as in space, and that 7 is
therefore proportional to the coordinate time t.

One difference between the present approach and
that of Berger' is that we treat p~ as a dynamical
variable rather than as an arbitrary fixed constant.
As a consequence of this, the residual constraint
C =0 of Eq. (24) remains quadratic in the momenta
and allows the interpretation given in Sec. V in
terms of a metric geometry on superspace.

The value of the constant p~ may have geometri-
cal significance in that it controls the relationship
between the horizon sizes in the 0 direction and the
transverse (ad) cross-sectional areas of these
model universes. It is evident from Eqs. (3) and

(26) that the transverse cross-sectional area of
this universe is 8e". On the other hand„we may
compute the coordinate size of the horizon at any
time fr om Eq. (26) as follows:

As a consequence of the coordinate conditions we
have imposed in Eq. (10), the metric form for the
spacetime metric [which can be reconstructed as
a solution of the Einstein equations from any solu-
tion of the variational principle and remaining con-
straints (24) and (25)] is as follows:

ds' = exp(- ~- —,'A.,—,'Z, )(—e"d-t'+d8')

P =q, + g (q„vYcosn8+q „&2sinn8),
n= 1

p =k, + g (k„&cosn8+k „Wsinn8) .
n= 1

(22) ~horizon
=

With this choice of dynamical variables, the varia-
tional integral becomes d7

e

I = dt(p~X, +p~7 + p k„q„—g),

where

(23) 27=1
2p.

'

Z'=p~p„+ g —,'(k„'+n'e"q„') . (24)

'3= —gn(k„q „—k „q„)=0.
n= 1

The corresponding rewrite of the momentum con-
straint is

In this computation we have evaluated the change in
0 following a null ray on which o and 5 were both
constant, starting from the singularity at 7'=-~.
The variable of integration was changed from t to
T by the use of Eq. (27'). Since the coordinate
circumference of this universe is 8,„,„ f„,„„=2m,
we find the following geometrical interpretation of

Px
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(o5 proper area)
32~(e„., ie...) (29)

Because the boundary condition of spatial closure
is imposed-rather artifically in this model, the
interpretation (29) of p„may have limited signifi-
cance.

Another interpretation can be obtained from the
behavior of the gravitational waves in these model
universes. ln order to study these classically, v

it is convenient to introduce the relation dt =d7/p~
into the wave Eq. (27/) in order to obtain

d'q n'e"
2+ 2 q„=0. (30)

The solutions of this equation are

(31)

(32)

By comparison with Eq. (28) this may also be
written'

ne„., (r„)=1, (32')

which is a statement that at this epoch the reduced
coordinate wavelength (e wavelength divided by
2m) of the mode in question is just equal to the e-
circumference af the universe. Since one knows
from the work of Berger' that particle creation
ceases at this critical epoch in each mode, the
parameter p~ controls how long (in the sense of
increasing z or equivalently increasing transverse
cross section of the universe) the particle-crea-
tion process will continue.

Of course the solution of Eq. (30) in the limit
v - -~ presents no problem; however, it is inter-
esting also to study this limit in the form of the
Hamiltonian given in Eq. (15). There one sees that
as 7.- -~, the P" term, the only term involving
spatial derivatives, drops out of the Hamiltonian.

where Z, is any real Bessel function of order zero.
Near the singularity, v. - -~, the Bessel function
will be dominated by the Neumann term and q„will
be a linear function of 7. For large values of 7 the
q„will become an oscillatory function of 7 in a re gime
which, we will later see, corresponds to a WKB
or adiabatic approximation in the wave equation.
In this region, therefore, one may properly speak
of gravitational-waves modes. The critical epoch
which separates the behavior dominated by the
singularity from the behavior describable in terms
of gravitational waves, is that where the argument
of the Bessel function is of order unity. The
critical epoch for the nth mode is therefore char-
acterized by a value 7„given by

2u(e) = —1+ (2p, )-'p(e),

with

u(u+ 1)
(u'+u+1) '

(33)

Thus u=~, the particular choice of the Kasner pa-
rameter that washes out horizons in the 8 direc-
tion, corresponds to p~ =0. This choice is not
available as a local condition, to be satisfied at
some points 0 but not at others, in the present
metric, however. Because of the equation @=0,
the choice p~=0 requires p(e) = 0 and consequently
leads to this special horizon-breaking Kasner form
simultaneously at all points of the manifold, and,
indeed, can only be achieved in the case of a ho-
mogeneous cosmology within the class of solutions
considered in the present paper.

V. SUPERSPACE FORMULATION:

KLEIN-GORDON EQUATION AND

PROBABILITY FLUX VECTOR

The Einstein equations for a particular class of
metrics have now been reformulated so that they
consist of the variational principle (23) which is in
canonical form, the two constraints (24) and (25)
which must be imposed onthe initial condition, a
definition (20) of the quantity g, in which the pri-
mary remaining nonlinearity of the Einstein equa-
tions is concentrated, and a formula (26) for the
spacetime metric which results. The momentum
constraint (25) which arose from global considera-

As a consequence, there is no coupling between
'adjacent points in space. The solution of Hamil-
ton's equations in this case makes every momen-
tumaconstantof motion. Therefore, to specify solu-
tions, one must specify a value for p&, and, in addi-
tion, an arbitrary function p(e). The residual con-
straint Q =0 will then determine p . This solution
near the singularity in which adjacent points are
decoupled from each other is an example of a situ;
ation described by Khalatnikov and Lifshitz ' in
early work that has been reformulated by Eardley,
Liang, and Sachs" under the characterization
"velocity-dominated singularities. " In this case
the local behavior of the singularity at each value
of 9 is precisely that of some Kasner homogeneous
universe, but the Kasner parameter can be as-
signed independently at each different 0. The de-
tails of the correspondence between the metric
form used here and the canonical forms for the
Kasner metrics are given in Ref. 7. For the pa-
rameter u which Lifshitz and Khalatnikov" intro-
duce to parametrize the Kasner exponents
(pg, p„p, ) one finds



A MINISUPERS PACE EXAMPLE: THE GQWDY. . . 3277

tions (boundary conditions) is not at all troublesome,
and could be satisfied term by term if desired by
restricting the class of solutions under considera-
tion. The residual Hamiltonian constraint (24) is
even- simpler, as one could solve this equation and
adopt the ADM approach where v would be used as
a time variable and -p =HADM would become the
ADM Hamiltonian. We do not adopt that approach
because the superspace viewpoint, and analogies
to methods that can be employed in the general
case, as discussed elsewhere, ' are more evident
if one retains this residual Hamiltonian constraint.

The coordinates we are using in the present
minisuperspace are A.o 7 and the q„
(n=. . . , -2, -1,0, 1, . . . ). They are analogs of
the parameters one might specify to determine a
unique 3-geometry in a genuine superspace prob-
lem. For this reason, we will denote them gen-
erically by g". Then the residual constraint (24)
can be put in the form

w w„—,(w, ) --, p +p~p
3g e g+)/12 (2 P 2 2)

(»)
(40)

G= —' (lgw) ' fG I'w, ,w„'d'x 6)-
where

Gigkl ik gf + if Jk ig kg

ln this case the analog of Eq. (36) is

dd'=(26w) ' fG;;„llg "6g"6'x

(41)

(42)

= (16w)-' [--,'5g„.5g" ——,'(51ng)'] d'x .

The correspondence can be drawn somewhat
tighter if we interpret the operation (16w) 'f d'x
to be the summation over discrete degrees of
freedom such as occur, for example, in Eq. (23).
Then Eq. (3V) becomes the precise analog of Eq.
(34) when we write it in the form

@=~2[G (g)Pd PB- @(g)l (34) (43)
which I have used previously in finite-dimensional
examples. ' From Eq. (24) one sees that the G"s
are all constants in the present examples whose
values are given by

QxT Gr k ] p
(35)

G "= 5 ", rn, n e A., 7'.

Qne interprets G"~ as contravariant components of
a metric tensor (supermetric) which assigns a Rie-
mannian structure to superspace. The line ele-
ment corresponding to this supermetric is

d'5 = Gggydg dg (36)

0=(16w) ' [w" w„——,'(w «)']d'x ——,'(8, (37)

where

61= (8w) ' (vg 'B)v gd'x. (38)

The transition from this form to that of Eq. (15)
can be checked in detail using some computation
from Berger's thesis":

From the form given for G~~ in Eq. (35), one sees
that A, and v are null coordinates in this minisuper-
space, and that the supermetric has a normal hy-
perbolic signature with one minus sign and all the
remaining signs positive. A diagonal form for the
supermetric is of course easily introduced by using
sums and differences of A, and v as new coordinates
in the minisuperspace [Eq. (65)].

In order to better see the analogy between this
example and a general superspace, it is useful to
rewrite the residual constraints as follows:

In this equation we have written 5g" to take the
place of dg" in Eq. (36)„and the covariant compo-
nents of the superspace metric are then given by

1 /
G&, )2, = 4 (gg) gg, +g«g&2. - 2g&,.g») . (44)

= 25i5~, + g (&q„)'. (46)

This metric then assigns a metric geometry or a
Riemann structure to the configuration space of
the present example, a configuration space which
we will refer to as minisuperspace. Actually, this
configuration space is not simply superspace with
a limited number of degrees of freedom. The rea-
son for this is that a single point in our configura-
tion space does not contain enough information to
completely specify a 3-geometry by the use of Eq.
(1). The missing information is that required to
compute the function X+ from Eq. (20). Neverthe-
less, the analogy is close enough to justify our use
of the word minisuperspace in this example. For
instance, all of the preceding equations in this
paragraph can be specialized directly from their
general form by inserting the metric values im-
plied by Eqs. (1) and result in equations that are

When Eq. (43) is evaluated for a metric of the form
adopted in this paper and given in Eq. (1), the re
suit is

d 6 (gw) fdd(=26. 62-+ 6(6) (45)

Under the further coordinate condition that v. should
be independent of 0, this reduces further to

dd'=2ll761, +(2w) 'f dd(llg)'
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1 B
PA ~

B A (47)

in 8 = 1 units so that the canonical commutation
relations

[g p ]=f5 (48)

are satisfied. Then the residual constraint is im-
posed as a "subsidiary condition" on the state
functional 4(g), which in effect requires% to sat-
isfy a single Klein-Gordon type equation

meaningful and correct in our models.
The principal step taken in constructing this

model for which analogs are not known in the gen-
eral case is Eq. (20), which explicitly solves the
momentum constraints and uses that solution to
eliminate some variables from the dynamical equa-
tions. This step can, however, be circumvented by
other means in the general case which will be more
fully discussed elsewhere. ' In particular, if one
sets the problem in the framework of the classical
Hamilton-Jacobi equation, or of the quantum
wave functions subject to the Dirac constraint
equations 8"(x)4('G) = 0, then a procedure devel-
oped by Moncrief" allows one to avoid direct con-
sideration of all but one of these infinitely many
constraints, and this one residual constrant can
be taken as g = 0, with @ in the form given by Eq.
(41). Thus, most aspects of the present example
will provide valuable insight and hints for develop-
ing the general quantum theory of gravity, but con-
tain enough simplifications that the formalism is
not overwhelming and almost of the computations
of interest can be carried out in complete detail.

A quantum theory is achieved by writing

lent analogies to important aspects of the general
case.

The interpretation of this wave function describ-
ing the quantum evolution of the universe is based
on a conserved probability current associated with

Eq. (50). This is most simply illustrated in the
minisuperspace based on the Kantowski-Sachs
metric which has been worked out by Fishbone and

myself, "but it can also be seen in the present ex-
ample. For the purpose of defining this probability
current it is convenient to rewrite Eq. (50) in the
form

B~C
-2g 0 =- GAB +M = 0

Bg Bg

where the GAB are the constants specified in Eqs.
(35). In connection with this equation one defines
probability current as

~ A ygGAB gABy
2g Bg Bg

It is then quite easy to see that this current is con-
served as a consequence of Eq. (51), that is

B
~ A

~ A j 0;A BgA

Let Z be a hypersurface of limited extent in mini-
superspace. For example, Z could be that part of
a v=const hypersurface in which finitely many
variables A., and q„were restricted to lie within
finite intervals, while the remaining variables had
their full range. Then the probability that the uni-
verse described by 4 evolved across Z is given by

(54)
9+=0. (49)

In the general case for Eq. (34) where the metric
components are functions of the supercoordinates
g", there arise factor-ordering problems. These
problems are the central issue treated in another
paper. ' For the present example, however, where
the residual constraint is given by Eq. (24), no
factor-ordering problems present themselves in an
obvious way, and it requires considerable work
and a broader viewpoint (all of which we omit here)
to find them in this example. We can therefore
immediately write the appropriate Klein-Gordon
equation quite explicitly as follows:

+g —, , ——,'e"g n'q„' e=O. (5O)

If all but a finite number of modes, say, ~n(&%,
are omitted from the expansion in Eq. (22), then
one may even avoid problems associated with the
infinite degrees of freedom in the problem and
still retain a minisuperspace example with excel-

where

d&~= II d~'
B&A

(55)

The hypersurface g is assumed to carry an orien-
tation, and the products in Eq. (55) must also be
properly oriented. If we describe this orientation
by saying that Z has a past and a future, then if P
is positive, the probability is asserted for the uni-
verse having evolved from the past to the future
side of Z, while if P is negative, then the reverse
is true.

The interpretation just given is tenable only if
the surface element Z is sufficiently sma11 that the
vector j points to the same side of Z everywhere.
It is quite possible even in elementary classical
minisuperspace models". to find classical trajec-
tories of the universe through superspace which
cross a given hypersurface in superspace at dif-
ferent points at different directions. For instance,
if the hypersurface were one of constant volume
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for the universe, a universe could first evolve
across this hypersurface while expanding and then
later on have its trajectory recross in the opposite
direction while contracting. A description of this
highly classical behavior in terms of a wave packet
4 would of course show the probability-flux vector
vanishing nearly everywhere except in the imme-
diate neighborhood of the classical trajectory.
Thus, the probability-flux vector would point to-
wards one side of the constant-volume surface at
one crossing and towards the other side on the
other. The probability computed from Eq. (54) for
evolution across the entire hypersurface of con-
stant volume would integrate to zero. However,
smaller sections of this hypersurface including a
region around just one of the crossings of the clas-
sical trajectory would show probabilities +1 in the
one region, and -1 in the other.

Because j"is divergenceless, like a magnetic-
field vector, the field lines of j may be pictured
as defining tubes of flux. In this case it is a prob-
ability flux, not a magnetic flux. Such a tube could
be defined by taking a limited hypersurface ele-
ment Z and moving it along the field lines of j"
which encounter it. Every cross section of this
tube of flux would have the same total probability
Pas that for Z given in Eq. (54). Thus if the uni-
verse evolves through Z with 90%%u~ probability, its
evolution would, with the same 90% probability,
carry it across every cross section of the tube.
Thus, these tube-of-probability-flux concepts in
superspace serve as the quantum-mechanical de-
scription of the quantum uncertainties smearing
out the single classical trajectory through super-
space which describes a classical solution of the
Einstein equations. These ideas will need further
development in the case (which does not concern
us at present) in which no preferred slicing or
time-coordinate condition has been imposed upon
the 4-geometry in the process of defining the
superspace or configuration space for the problem.

VI. SEPARATED SCHRODINGER EQUATIONS

Solutions of Eq. (50) can be obtained in the form

4 =(2~) ' ' f(p~)exp(ip„xo)-x/2 dp

Hamilton-Jacobi Eq. (50), we require each of the
factors („ to satisfy a Schrodinger-type equation

8
ipse 8 e'en ~

where

1 8' 8'
8qn ~q-n

(5V)

and

=-,'(0„'+0 „')+-', (o„'(q„'+q „')

co„= /n/e".

(58)

(59)

Let us now turn to questions of the normalization
and the interpretations of 4. First notice that
since the sub-Hamiltonians Z&„ in Eq. (58) are
clearly Hermitian, the norm

g p„dq„dq „=X„(pz) (60)

is independent of v. and depends only on p~ as indi-
cated. All these normalization factors may there-
fore be absorbed in f(p~) without changing 0, so
that we may and do subsequently assume unit
norms on each factor g„:

(6l)

We will next see that the factor f (p~) controls
whether the transverse cross sections of the uni-
verse are expanding or contracting. As noted
prior to Eq. (28), the transverse proper area in
these model universes is given by 8e". Therefore
the question of whether the transverse cross sec-
tions are expanding or contracting is determined
by whether the evolution of the universe is pro-
ceeding towards increasing or decreasing v. To
determine this from the wave functional 4 of Eq.
(56), we must compute the probability flux of Eq.
(52) and determine whether it flows across sur-
faces of constant v, For simplicity we pose this
question, not separately at limited regions of this
hypersurfa, ce, but globally for the entire hypersur-
face v = constant. We therefore wish to evaluate
the (conserved) total weighted probability that the
universe is expanding its cross section rather than
decreasing it. This probability P, is defined by

x Q y„(q. , q ., 7;p&).
n=o

(56) = const
j 'dZ,

(Here, and in what follows, we ignore the minor
and the elementary modifications it would be nec-
essary to take into account precisely the fact that

qn and q „are distinct only for the modes with n
different from 0.) In order to assure that the wave
functional 4' given by Eq. (56) is a solution of the

d~o dqn &

n ~oo
(62)

corresponding to Eq. (54) since the supermetric
G» has determinant G= —1. From Eq. (52) one
immediately computes that
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(63)

from which I', is readily evaluated as

' If(P&) I'. (64)

It is convenient to think in terms of a normaliza-
tion P„=+1, suggesting a universe which has
evolved from the singularity at 7 =-~. This inter-
pretation is only unambiguous, however, if one
imposes the stronger conditions j '& 0 in the neigh-
borhood of a singularity 7.- -~. These conditions,
which are similar to positive frequency conditions
in the normal Klein-Gordon equations, clearly
have consequences (as a result of the uncertainty
relationship) for the localizability of the values of
~ p which controls the circumference of the uni-
verse in the 6 direction. A careful analysis of these
equations would be more appropriately carried out
in coordinates which diagonalized the supermetric
such as

n=2 '~'(Y-x),

g=2 '~'(7+X).

In the neighborhood of the singularity where (R —0,
Eqs. (50) and (51), of course, simply represent a
Klein-Gordon equation for a free particle, and not
only p~ but also all other momenta are constant in
the neighborhood of 7--~. A more complete
analysis of the asymptotic states near the singular-
ity, and their interpretation in terms of uncertainty
relations and classical analogs, is one of several
questions which arise within this model which we
must leave for future analysis.

Hy„= (N+ 2~)e"y». (69)

In terms of these excitation-level eigenfunctions,
the asymptotic solution of Eq. (66) may be rewrit-
ten as

g„=expI-i(x —,') codf cp»(xq f )

= exp[--,'i(N+-,')e"] y» (x, f),
where y„may be assumed normalized:

(70)

think of an initial state which is a wave packet of
rather well-defined momentum, the major compo-
nent of which is a plane wave g ~ e 's"'"", with E
= —,'O'. At later times the spring becomes more
important and its influence will dominate the state
of the system. The strength of the spring may be
characterized by a natural frequency ~ = e". When
this frequency changes slowly over a period, the
description of the system is again simple as the
ball must then find itself in a simple harmonic-
oscillator eigenstate of fixed quantum number, or
a time-independent linear combination of such
simple quantum states. The condition for this
adiabatic approximation to be valid is

din(u j&udt=2e "«1.
Evidently, this condition is always satisfied for
sufficiently large t. This can be easily understood
since the natural period of oscillation becomes
arbitrarily small for large t while the time inter-
val in which the period changes significantly is
always constant and order of magnitude unity. In
this adiabatic limit the wave function can be ex-
pressed in terms of eigenfunctions of the operator
II which are defined by the equation

VII. MECHANICAL ANALOG FOR
PARTICLE CREATION AT THE

INITIAL SINGULARITY

As a prototype of Eq. (57), let us consider the
equation

(66)

with

2
4g 2H=-—,+ —,e xBx (67)

In order to understand the solutions of this differ-
ential equation in physical terms, it is useful to
think of it as describing a ping-pong ball or some
other unit mass attached to an origin in a one-di-
mensional space by a massless spring whose
spring constant increases exponentially with time.
In the distant past, t- -~, this ball moves freely
with no force acting. It is therefore natural to

le»(~, &) I'd~= 1 . (71)

For negative values of t, Eq. (70) does not pro-
vide an approximate solution of Eq. (66). If the
system is prepared so as to have a configuration
g» at some given early time f «-1, then the time
development according to Eq. (66) immediately
will generate large numbers of other states corre-
sponding to different numbers N. In particular, if
the initial state were %= 0, larger values of N
would rapidly be generated in a process which
could be referred to as the creation of oscillator
excitations. The analogous phenomena in Eq. (57)
would be called graviton creation. Calculations
showing the details of this process have been given
by Berger' and in somewhat related models by
Parker, ' Zel'dovich, ' and Zel'dovich and Starobin-
sky. " In the context of Eq. (67), it is clear that
this sort of initial condition is an unnatural one.
One would prefer to think of a simple free-particle
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state for the ball moving in the absence of forces
before the spring tension builds up. Let us try to
see how such a simple free-particle motion ap-
pears if it is described in the language of excita-
tion quantum numbers ¹ Thus we imagine a state
of fixed momentum k and energy E at early times
t «-1. This state provides a solution of the wave
equation (66) and it evidently must continue to be a
good solution until such a time as the rising po-
tential walls (due to the increasing strength of the
harmonic-oscillator force) become high enough
that the wave packet representing the position of
the ball bounces against them. Prior to this point,
the motion of the ball is essentially uninfluenced
by the harmonic-oscillator potential, but it is easy
to see that the description of the motion in terms
of harmonic-oscillator excitation numbers N is
nevertheless changing very rapidly. One has only
to write

and leads to asymptotic forms for the sub-Hamil-
tonians in which each reduces to just its kinetic-
energy term. Note that for (unnormalized) plane-
wave solutions of @ „, 4 =0, of the form--,

1

a=exp ~p, ~.+*p,.+~ra„q)

= exp —iOn+i k~ &+i k„q„ (75)

the probability flux from Eq. (63) is positive every-
where, provided that pz, or equivalently 0, is
positive. Therefore, for plane wave states of this
sort, or for wave packets which closely resemble
such a plane wave over large regions, this infor-
mation shows that not only can the wave function
not vanish asymptotically near the singularity,
which is already guaranteed in the general case by
the conserved normalization condition

&= (x+-,')e", (72)
j 'dA. Qdp„= l,

N(t ) + —,
' ~ e ". (73)

The reason for this, of course, is that the spacing
in energy between the adjacent excitation levels of
the harmonic oscillator is just u= e", which is
negligibly small at early times. Therefore, every
state of finite momentum has arbitrarily large ex-
citation number N at early times. This is quite
without physical significance, however, since the
harmonic-oscillator force is negligibly weak and
without effect, and a description of the simple free
particle motion in terms of these eigenstates of a
singularly weak harmonic oscillator becomes
asymptotically irrelevant.

VIII. IN AND OUT STATES:
QUANTUM SINGULARITY AND

GRAVITON-FILLED UNIVERSE

Cosmology is a scattering problem in super-
space. This lesson has been pointed out previous-
ly,"' and the present model provides another ex-
ample of it. The quantum singularity is described
by the "in" states which are solutions of a Klein-
Gordon equation analogous to Eq. (49) but involving
the asymptotic super-Hamiltonian

g2 oo 1 82

~2 ~2 ~ g2
2+ 2+

2L 8& 8$ „Bq„ (74)

The factorization of.Eq. (56) can of course be used

which must relate the energy of the ball and the
dominant excitation mode N in its wave packet, to
see that at early times where E is constant the ex-
citation level N is dropping extremely rapidly:

but the probability density j ' is itself positive, so
that the evolution is taking place exclusively away
from the singularity and every tube of flux con-
taining nonzero probability, if traced toward the
past„will lead inevitably to the singularity.

The description of the singularity in this model
is based upon a split of the super-Hamiltonian into
two parts:

(76)

in which the asymptotic part @ „governs the sin-
gularity behavior and describes a quantization of the
the velocity-dominated singularity in these models
in a way which differs from the work of Liang'~ in
the choice of factor ordering. This factor ordering
choice, which will be discussed separately, ' is
crucial to the difference between our conclusions
and those of Liang concerning the inevitability of
the singularity in these model quantum theories.

The "in" states of our scattering problem are
characterized by the Hamiltonian g „, which is
just the free particle or kinetic energy term in Q.
For the characterization of the "out" states, which
will describe the universe in its evolved form rep-
resenting an expanding universe containing a popu-
lation of gravitons, a quite different split is nec-
essary so that another asymptotic part @,„can be
separated out from @ to represent the exactly
soluble problem characteristic of late times in
this model. In order to define this asymptotic op-
erator, it will be necessary to first define graviton
annihilation and creation operators, and the cor-
responding operators for characterizing the num-
ber of gravitons in each mode. One arrives at
these operators by considering a Fourier series
expansion for the basic field variables P and P
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which is somewhat different from Eq. (22); it reads

1
p= g (a e~ne+ate in-e)

(2 )1/2 n n t

p= g (—'u& )' (-ia„e&ne+iate &ne)

(77)

In order to relate the operators a„ introduced here
to the operators q, and k„used previously, it is
convenient, as an intermediate step, to consider
also the very standard Fourier expansions

p =g p„e'", p =g p„e'" .

nP

2 '~'(k„-ik „)=(-,'(o„)'~'(-ia„+iat„)

Although p and p, and also the q„and k„, are
Hermitian operators, the operators p„, p„, and

a„are not. The Hermitian property of p and p im-

poses, however, the following conditions:

p„=p „, p. =p „. (79)

The equations relating these operators can then
be written down. For positive n, they read

2 '~2(q„- iq „)=(2ao„) '~2(a„+at„)

Z. =P„P.+~.'P.P.

(s5)

If we now turn to the solution of the separated
Schrodinger-like Eqs. (57), the problem one faces
in using Eq. (85) is the fact that the operators a„
do not commute with s/8 T because of the r depen-
dence of the frequency ~„= ~n~ e" in Eq. (82). The
commutator is easily evaluated from Eq. (82) and
ls

(88)

As a consequence of these computation relations,
it is convenient to introduce the operator

. D . 8
i—=i—+ i(anat„-a „a„),

n&
(87)

which, as can easily be seen, commutes with all
the a„and a„, and is therefore more convenient to
use than s/s7. The operators as defined in Eq.
(87) would be introduced into the super-Hamilton-
ian (84) and the corresponding full Klein-Gordon
equation. A reduced form of the operator, which
we will not distinguish notationally, containing only
a single pair of terms corresponding to the ap-
propriate value of In I would appear in the rewrite
of the separated Eqs. (57) which follows:

p. p.']=o=[p. p.']
(81)

Of course, all operators referring to distinct val-
ues of ~n ( commute with each other. Using these
commutation relations, and the formula

a„= (2'(u „)' 'P„+ i (2(o„) ' 'P„, (s2)

one easily computes the standard creation- and an-
nihilation-operator commutation relations which
hold for the a„'.

while the Hermitian conjugates of these equations
serve to define p „and p „. As a consequence of the
the commutation relations [q„,0„]=i, etc. , intro-
duced in Eq. (47) and (48), one finds the following
commutation relations among p„and p„:

[p,p ]=o, [p,p. ]=i,

(88)

8„—= P~ 'e„(r)(a„a„+a „a „)+i(a„a „—a „a„).
(89)

In terms of the annihilation and creation opera-
tors just introduced, it is easy to recognize the
dominant terms in the residual constraint equation
in the limit 7-+~. One evidently defines

D 8 1 8'
+ D~ gg 2 gq 2 ff ff 0 7?

(9o)

by neglecting in Eq. (89) the second pair of terms
which do not have the exponential increase with T

of the first pair, which is retained.
To solve the separated equation

[a„,a„]=1,
[a„,a „]= 0 = [a„,at„] .

(88) .D „
2 ~~

- & 4n+~n, (91)

In terms of these operators, the super-Hamilton-
ian and sub-Hamiltonians can be rewritten as fol-
lows:

where

(92)

+
8' 1 8 2++ ~n(anan+a „a „),

o ~o n=r

(84)

one introduces the eigenstates of fixed graviton
number y(Ã„N ) =y(N, „;q,„,q „,r) w—hich satisfy
the eigenvalue equations
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a„a„cp=N+y, a~„a „y=N y. (98) I

g"'(N„N )=exp ip-~ '(N, +N +1)
Since the number operators in these eigenvalue
equations commute with i D/DT, these graviton-
number eigenstates can also be assumed to be
eigenstates of this operator i D/DT. Since in addi-
tion, the annihilation and creation operators which
also commute with i D/D7 connect these various
eigenstates, they must all belong to a single eigen-
value of i D/DT,

i y(N„N )=f(T)y(N„N ).. D

7

&o„d7 y(N„N )

I e2 7

=exp -i(N, +N +1)Inl

xy(N+, N ). (97)

The global momentum constraint g = 0 can be
represented in terms of the annihilation and crea-
tion operators. It reads

To verify this in detail, evaluate matrix elements
of the commutator

. Di,a„=0D7'

@=an(ata„-a „a „).
I

Since the perturbation term

S„=i(a„a „—a „a„),

(98)

(99)

and assume the usual normalization s for the
y(N„N ) so that, for example,

a„y( N+, N ) = (N+)' '
p(N+ —1, N ) .

In order to evaluate f(7) it is sufficient to consid-
er only the ground state. We assume that all the
number eigenstates y are normalized to unity, and
then one consequence of Eq. (94) is

only creates or annihilates graviton pairs with
equal and opposite values of n, it is clear that this
constraint is conserved under the perturbation as
a consequence of the conservation of N, —N .

In order to reconstruct the metric from these
asymptotic solutions of the residual constraint
equations, it is necessary to also construct the
metric component A.+. By inserting the expansions
(78) into formula (20) one finds readily that

q, „dq „y*(0,0}i p(0, 0)
. D ] Oo *~ 4

A, +
=— ~p p"e'(" )e+H c

Py yg=-oo gg&yg n™ (100)

=0

8
dq, „dq „q(0, 0)i—y(0, 0)

(96)

where H.c. means Hermitian conjugate. Then Eq.
(80) can be used to write

1 . m '~'

n

The first equality in this formula is an immediate
consequence of Eq. (94). To obtain the next line
one notes that the additional term in Eq. (87) has
no diagonal matrix element in this occupation-
number representation. We have, in addition, used
the fact that the ground states can be taken as real:

&
- X/2

y(0, 0) = " exp[--,'(u„(~)(q„'+q „')],

(96)

and then the final step appears as immediate con-
sequence of the normalization condition

dg+~dg ~(p 0~0 =I.

We have therefore succeeded in constructing a set
of basis vectors p(N„N ) which are "covariantly
constant" with respect to the operator i D/DT.
Using this set of basis vectors, one then immedi-
ately obtains solutions of the asymptotic Eq. (91)
in the form

The most important thing to note about this ex-
pression is that it contains no explicit v depen-
dence. It is thus of the same order of magnitude
as 8„ in Eq. (99) which has been neglected in Eq.
(88) in obtaining the asymptotic wave functions
(97). Notice that P is even smaller asymptotically:

P=e 'g [2n~ '/'a„e'" +H.c. (102)

IX. SEMICLASSICAL SOLUTION OF
THE SCATTERING PROBLEM

It shouM be possible to give quite complete quan-
tum-mechanical solutions of the scattering prob-

As a consequence, the metric (26) becomes asymp-
totically homogeneous (independent of 8} as T ap-
proaches infinity. This is a result of the gravita-
tional waves being red shifted to negligible ampli-
tude, and does not imply that the distribution of
the gravitational waves becomes homogeneous.
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lem we have posed —namely, to compute and dis-
cuss the S matrix defined by Eq. (50) relating in-
coming states of the form (75) to outgoing states
of the form (97). We will here, however, only at-
tempt a preliminary semiclassical analysis based
on the exact classical solution (31). Since the
residual constraint Eq. (50) separates, we can
restrict our attention to a single mode. In doing
this we shall omit all subscripts n whenever pos-
sible. Thus, the differential equation we study
governs one of the two modes described in Eq. (57)
and reads

Z, = —,'(k'+ (u„'q')

=-, lu l . q. '+ 4
(k'")' . (11o)

However, from the second form of Eq. (104), this
may be interpreted in terms of the number of
gravitons in this mode, g, =~„(N+ 2). In this way
one arrives at a formula for the total number of
gravitons in this mode in the asymptotic outgoing
state:

N+-,'=- q, '+ (k )' .1 4P~ 2 m

2 g '
4p~

where

21 8
+2ne q2 Bq

= lnle"(b'b+2)

(Io3)

(104)

This relationship is consistent with quantum un-
certainty relationships. Thus q and k are canoni-
cally conjugate variables restricted by uncertainty
relationships which result from k =-is/Bq. The
classical initial conditions ki~ and q, in Eq. (107)
must be regarded as uncertain by amounts re-
stricted by the conditions

The standing-wave annihilation and creation oper-
ators used here are defined by

b„= e'l-,'n f'"q„+ie 'l2nl '~'p. , (lo5)

and also commute with the operator D/D7 [Eq.
(87)], which can be rewritten as

N =- o

(106)

In the limit v- -~, one finds conventional free-
particle wave-packet solutions of Eq. (103). Let
k be the central momentum in this wave packet,
and let the (classical) motion of the center of the
wave packet be written as

pin
q= (T —r)+q, ;

Px
(107)

here q, is a constant and ~, is the critical T value
at which an adiabatic approximation begins to be
valid:

7; =-—,'(y+ In f n f
- In f 4pz l ) . (113)

In order to display more clearly the dependence of
the final state N upon this feature of the initial
packet, it would be more appropriate to restate
the initial conditions in the form

(112)

If in Eq. (111)one sets q, =Aq, and k'" =ski~ and
minimizes subject to the condition (112), one finds
the results (N+-,')„,.„=-,'. The choices which achieve
this minimum result are 2'~'aq, = fii/4p~ f'~'
—(2&&2g kin)-&

Because spreading of the wave packet is inevita-
ble as a consequence of Eq. (103), a final state
with N= 0 can only be achieved by a very carefully
formed initial packet. Not only must the optimal
spread in initial momentum k„be used, but also
the packet must be focused so as to achieve its
minimum. uncertainty in q precisely at the critical
time appropriate to the mode in question:

1'n
e2 ~c —2e

2IP

= 1.12292. . . . (108)

Pin
q= —(~- 7 )+q'"

p
0

where

With these initial conditions the exact classical
solution (31) is

q
—

q J ——e + Pm+ ——
~

(109)

One may then pass to the opposite asymptotic lim-
it, v-+~ and evaluate for this same classical so-
lution the singLe-mode Hamiltonian as follows:

7; = —,'y- ln2 = -0.40454. . . (114)

is a fiducial time chosen independently of n and
pz. Then Eq. (111)could be rewritten, eliminating
q, as follows:

pin
q, =q — lnl —l .

P)

There appear to be no particularly natural
choices for the initial conditions q'" and k'~, or
even for statistical ensembles of them. However,
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the present model may be too oversimplified, even
in its most qualitative features, to be useful for
the problem for characterizing quantum initial con-
ditions. Thus the work of Belinski, Khalatnikov,
and Lifshitz" shows that it is more reasonable to
expect a mixmasterlike singularity behavior in-
dependently at each point on the initial surface,
rather than the Kasner-like behavior displayed in
this model. But the initial conditions for a mix-
master universe are rather simpler to control than
those for a Kasner universe. The basis for this
statement is the fact„established by Jacobs,
Misner, and Zapolsky, "that the initial states are
defined by an asymptotic Hamiltonian with discrete

eigenvalues so that the S matrix is more an as-
sociation of the form N'"-N„&, rather than the
more complicated form of Eg. (111) (q'", k ~)- N'"'
in which there is no basis for restricting the val-
ues of q'", even if one were willing to adopt an
asymptotically stationary statistical distribution
with p, o-exp(-c@, „)to define the initial states
The laws determining the initial conditions of the
universe are obviously not understood, and current
studies of quantum cosmology merely represent
the beginnings of an attempt to recast the question
in a new way in the hope that this might reveal new

approaches to the formulation and resolution of the
question.
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