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The electric field generated by a charged particle at rest near a Schwarzschild black hole is analyzed using
Maxwell's equations for curved space. After generabzing the definition of the lines of force to our curved

background, we compute them numerically and graph them with the charge at r = 4M, 3M, and 2.2M.
Particular attention is paid to the behavior of the lines of force near the event horizon and the smooth
transition of the electric field to that of a Reissner-Nordstrom black hole.

I. INTRODUCTION

The formalism for gravitational perturbations
away from a Schwarzschild background has been
developed by Regge and Wheeler. ' It was extended
by Zerilli, 2 who has shown that perturbations cor-
responding to a change in the mass, the angular
momentum, and the charge of a Schwarzschild
black hole are well behaved. The decay of the
non-well. -behaved perturbations has been investi-
gated by Price. ' He has shown that any multipole
l ~ s, where s is the spin of the field being exam-
ined, gets radiated away in the late stage of gravi-
tational collapse and will die as f "+' for large t.

Instead of analyzing how higher-order multipoles
are radiated away, we focus on how the allowed
transition from a Schwarzschild to a Reissner-

Nordstrom hole takes place through the capture of
a charged particle in a given Schwarschild back-
ground. In this paper we neglect the electromag-
netic radiation emitted during the fall of the parti-
cle and consider a succession of configurations in
which the particle is momentarily at rest at de-
creasing distances from the Schwarzschild horizon
(r =2M in geometrical units G =c =1). The problem
of examining the radiation emitted is, indeed, of
great interest and has been presented elsewhere. '

The electric field of a charge at rest with respect
to the Schwarzschild background can be developed
in a multipole expansion centered about the black
hole. For any finite separation of the charge from
the black hole, the far-away observer will detect
only the monopole term, the field corresponding
to a Reissner-Nordstrom solution. In the region



3260 R. S. HANNI AND R. RUF FINI

near the charge, however, the contribution of
higher multipoles is important and the lines of
force are no longer radial.

As the charge approaches the horizon, the
strength of all multipoles, except the monopole
term, tends to zero. The lines of force assume
more and more their Reissner-Nordstrom pattern,
only a very small region around the particle being
significantly affected by the higher multipoles. We
express the strengths of the multipole coefficients
as functions of the distance of the charge from the
horizon.

We generalize the concept of lines of force to
curved space, and show that they are equivalent
to the lines of constant flux. The concept of "in-
duced charge" is introduced, and the smooth tran-
sition from the Schwarzschild to a Reissner-
Nordstrom field is analyzed. The lines of force
are evaluated numerically and presented graphical-
ly to give a complete picture of the electric field.
Finally, we consider the behavior of the lines of
force near the event horizon from a local and a
global perspective.

II. ELFCTROSTATIC FIELD IN A

SCHVfARZSCHILD BACKGROUND

The Schwarzschild metric can be expressed as:

+h~ Cg~ +sjn2g2M
h

, (, aM)
'

The only nonvanishing components of the electro-
magnetic field

2M*F~„=sin8 i — At 8.

The only nonvanishing component of the four-cur-
rent is:

j' = 2, 5(r —2Ma )5(cos 8 —1),

4+~ (x
t

(7.1)

*Fee 0;8 (7.2)

(Greek indices here and in the following go from
1 to 4.) With (5) and (5) they yield a second-order
differential equation:

B(sinHA~, ()) 3 . 2M ., ( )h'sine &- ——=-4~qt. 8
86j

Using the axial symmetry of the problem and its
regularity on the axis of symmetry, we can expand
the solution in terms of Legendre polynomials

A, = Q f, (~)P, (cos8) .
1=0

The functions f, (r) then satisfy the second-order
differential equation

Ch Ch

where a is the value of the radial coordinate where
the charge is located.

In covariant form Maxwell's equations are:

F =Fp, &x"ACx',

with

Fq, =A, q-A„„

(2.1)

(2.2)

—)() r 1)f, (r) () ——S', (r ore)
2M

=q5(r —a)5(cose —1)/2w. (10)

F8t At 8 ~t8

Using the relation,

(3.2)

(4)

whereby e„,z& we indicate the Levi-Civita symbol
and g=detig„„i, we find that the only nonvanishing
components of the dual electromagnetic tensor
are:

of a particle at rest with respect to the fixed back-
ground are:

F„,=A, „=-Ft„

This equation was first solved for general electric
fields in a Schwarzschild background by Israel. '
He found the quadratic transformation under which
Eq. (10) takes the standard form for the associated
Legendre functions. We solved Eq. (10) using the
method of Frobenius. e 7 The resulting expansions
are convenient for the physical interpretation of
the conditions imposed by matching the boundary
conditions.

Substituting g, (r) =rf, (y) and z =r/2M, Eq. (10)
takes the hypergeometric form:

*F8@=h'sineAt „ (5.1)
One of the two independent solutions of this equa-
tion is a polynomial of degree 3+1 with coefficients
given by the recursion relation
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n(n+ 1)n„'„=[n(n —1) —Kl +1)]n,' ~

The first few are:

(12) III. MATCHING CONDITIONS AND STRENGTH

OF THE MULTIPOLES

Qo=Z p

u, =z(1 —z),
u, =z(z —1)(2z —1) .

(13.1)

(13.2)

(13.3)

To obtain the other independent solution v, we use
the following relations, which follows from (ll):

vru,
"—u, vr" =(v,u, ' —u, v, ')' =0

In order to calculate the electric field we must
evaluate the weighting coefficients: n', p',
p', . . . . Substituting the expansion (18) of A. r into
Poisson's equation (10), we relate the discontinuity
in the slope of each radial function to the amount
of charge concentrated at r =a, 0=0, we have

d gr l(l + 1)gr
dz' z(z —1)

or

viui ur vt = c. (15)
5(z —a) 5(cos 8 —1) . (19)

Integrating,

dg
Vg

= CQ)
us

(16)

vp=1 q (17.1)

v, =z(1 —z)(21n[z/(z —1)]—z ' —(z —1) '],
(17.2)

v, =z(z —l)(2z —1)

From the explicit expressions for u, we obtain for
vr:

Integrating over a thin shell containing the point
z =a and using the orthogonality of the Legendre
polynomials, we obtain

- @=a+
g

dz
= —(2l +1)q/a. (20)

The continuity of the radial functions and the
boundary conditions at the horizon and at infinity
determine the weighting coefficients n, and p,
uniquely.

Since the potential is continuous at the charge,
we have

x( —8(2z —1) ' —(z —1) '

+6 ln[z/(z —1)]—z '), (17.3)

n'u, (a) = p' v, (a)

= p'u, (a)
dA'."

u, '(z) ' (21)

The discontinuity in the field at the charge gives

and so on for larger /. The most general solution
for the potential can be cast in the form

2)+1
n'ur(a) —p'v, '(a) = q,

n'u, (r) +p' v, (r)
t P, ~cos9) .r (18)

or, for l = 0, p' = q independent from the position of
the charge, and no =q/a,

All of the u, 's except the one corresponding to
l =0 vanish at the horizon. In the region where
2M & ~& a all the P"s must vanish for the potential
to be regular at the event horizon and the flux
through a surface enclosing the hole but, not the
point charge, to be zero. Moreover, since
P,(cos8) =1, the horizon is an equipotential surface
(Ar is constant).

For the potential to vanish as r-~ all the e"s
must vanish in the region where y & a. As r- ~,
the term v, is constant while Bll the other terms
v, decrease as r '. The monopole term dominates
at infinity. Gauss's law gives us the magnitude of
the spherically symmetric electric field and thus
the weighting coefficient for the monopole term,
P =q. The field far away approaches that of a
point charge located at the center of the black
hole.

p' = 3q(a —1),
n' = 3q(1 —a)(21n[a/(a —1)]—a ' —(a —1) '],
p' = 5q(2a —1)(a —1),
n' = 5q(a —l)(2a —1)

(22)

(23)

x(61n[a/(a —1)]—8(2a —1) —(a —1) ~ —a ~].

Because of the complexity of higher-order terms
we resort to numerical integrations to evaluate

, P, us, andvr ~

Figure 1 shows the behavior of the radial func-
tions for selected values of l and selected values
of the distance of the particle a =3M, a =4M, and
a =6M. While the monopole coefficient remains
constant, all the other multipoles vanish as the
particle approaches the horizon. The decay of the
higher multipoles (l& 0) and the constancy of the
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0.2

0.1

r/2M
FIG. 1. Radial functions f& = [u'u&(r) +P'~t(r)]/r plotted as a function of the radial Schwarzschild coordinate r for

the selected values ofl and of the distance of the particlefromtheSchwarzschild surfacea = 2, 1.5, 1.1. The strength of
the multipoles P &

=f, r'+~ is constant for l = 0 and increases with the distance of the particle from the black hole for
L) 0.

monopole term determine the smooth transition
from a Schwarzschild to a Heissner-Nordstrom
geometry.

IV. DEFINITION OF THE LINES OF FORCE

The generalization of Gauss's theorem to curved
space is' given by the equation

Similarly, the radial dependence is:

—= —2m F = —2msing 1 — — A e. (27.3)4 * . 2M
Br t, 6 ~

*F=4wq, (24)
50—

where q is the total. charge within the surface $
a.nd

*E=*I„,dx"Adx'. (25) 25—

Only the components (5.1) and (5.2) are nonzero,
so

*F=2 r'si ng 'dg — 1 — sing 'dr Ad/.
BA., 2M ' . BA. ,
8J r Qg

20—

15—

If we consider an infinitesimal displacement in 0

of the ring bounding a surface of azimuthal symme-
try, we find that the change in flux is equal to the
flux through the annular cap generated by the dis-
placement

10-

r' sinOA, „d0. (27.1)
I

1.5
r/2M

I

2.5

84—= 2m' sin I9A
gg t,r' (27.2)

So the flux depends on the angular coordinate of
the ring as

FIG. 2. Strength of the multipoles in units of the
charge of the test particle q, as a function of the dis-
tance of the charge from the event horizon (r = 2M). As
a —1, the monopole is constant, while the higher multi-
poles vanish.
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= 2'' singA t,r ' (28.2)

Recalling the diff
i (o)

ierential e u

, we note that
ra ial

84 2M . dP
fg sin 8

dg

2p sing
A

1 —2m/r

Clearly this analyt'
i f o d't'~ ~

an ic expressio
1 lone, (2i7.2

sa-

determined b th ar xtry hem up to an arbitr
ince the slope of theo e lines of cons

an angular de
n s

ique y determinedflux, it is uni u 1

dependence of th e

e define a, linline of constant flux
points with a given

ux as the locus of
' en value of C. At an yg p

'ne o constant flux is'

(28.3)

dw

dg

1
2M ~~A (29)

This is equivalent to the o ere operational defin't'

e, introduced b Chr'y hristodoulou and

„P
i ~o l(l+1) d~

sm~
d

'. (28.1)

Recalling the djfferentia] e u
polynomials

quation for the L
, we see that

egendre

84 2, ~ 2dfi-' sing P
d~

fini. 'o ey define a line
tangent to the d' ~

" « force a,s th 1

irection of the el
e ine

sured by a free-f ll'
electric force

rest.
ng observer m

mea

this definition is 1

momentari]y

ries W
s also valid for t t'

e an have
a ionary

(30)6~gyE ~Q dx =0

or for this problem

yr t e,u de-Z tutd~ =0 (30.1)

u=(0 0, , 0, (1 —2M/~)

Figures 3, 4 an, and 5 show th 1

c warzschild coordi
h th th When the charge is

e is nearl r
M)

e contribution of the highe

W t t h is as a char
orizon.

tr'
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ti d d h

us e
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et us assume that th ' c
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g
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for the slope of
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i h four-veloc'tci y

an inertial bo server

FIG. 3. Lines of foo orce with the test chest charge at rest at

r
FIGIG. 4. Lines of fo ' e est cIG . o force with the test ce est charge at rest at
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V. BEHAVIOR OF THE LINES OF FORCE

NEAR THE EVENT HORIZON

We have expanded the potential in the re ion
within the charge in multipoles'

A, = n' + o.'(z —1) cos 8

1+-, o.'(z —l)(2z —l)(3 cos'0 —1) ~ ~ ~+ ~ ~ ~ . (30.2)

Since the Schwar zschxld metric is diagonal, the

form
physical components of th L ee orentz force take the

L„-= ~g ""F„,U =A, tr rt t r& (30.3)

Le="/g Ee~U =(r' —2Mr) '~2A 30.4)

As we approach the event horizon, the 8
co o t of th Lo
1 —2

e orentz-force vanishes as

~ ~ ~

—2M/r), while the radial hia p ysical component
remains inite. Consequently, the lines of fo

e orizon, and they must do so
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FII . 5. Lines of force 'th
r = 2.2M.
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—a/m ~
FIG. 6. The critical angle, 0 . wh

force is tangent t
0gjt where the line of

duced surface h
angen to the Schwarzschildc surface and the in-
aee e arge vanishes as a f

di 1 oo di t fna e o the test particle. Also
tioof th h d d

horizon where 8 o 0 . to t
rge in uced on the secti'on of the event

e +;,to the charge of the test particle
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2M
dg =dr +dz = 1 — dr =g „dr . 305

Integration of this differential relation yields an
analytic formula for the embedding in regular
cylindrical coordinates:

or

z2
'='M'8M.

(30.6)

z =0 and r =2M at the event horizon.
It is in the curved space that the lines of force

orthogonally. This result seems inconsistent
with the lines of force calculated using the flux
method, shown in Figs. 4, 5, and 6.

To resolve this apparent contradiction, we must
look at things in the curved background. Since
such a four-dimensional manifold is difficult to
visualize, we will exploit its static nature and
axial symmetry, by suppressing the temporal
and azimuthal dependence. Then the exterior
Schwarzschild solution can be visualized as a
two-dimensional hyperboloid embedded in the
usual three-space. A simple application of the
Pythagorean theorem to a radial trajectory suf-
fices to determine the radial metric coefficient:

intersect the event horizon orthogonally. As we
have already shown, the Lorentz-force is tangent
to the lines of force in the curved space. The 0

physical component of the Lorentz force vanishes
at the horizon, while the radial physical compo-
nent remains finite. The azimuthal physical com-
ponent is everywhere zero. Thus the field is
strictly radial at the event horizon in curved
space. When we look at the lines of force in
Schmarzschild coordinates, however, we are pro-
jecting the embedding diagram onto the plane z =0,
which contains the event horizon. This is how they
mould be represented by an observer at infinity.
The lines of force, as seen from infinity, or equiv-
alently projected onto the plane z=0, may even
be tangent to the event horizon. This is because
the slope of the hyperboloid,

(30.7)

or equivalently the radial component of the metric,
which relates the coordinate distance to the proper
distance measured by a local observer, diverges
at the event horizon.
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