
PHYSICAL REVIEW D VOLUME 8, NUMBER 10 15 NOVE MBER 1973

Canonical Quantization of Relativistic Balls of Dust*

Fernando Lund~
Joseph Henry Laboratories, Princeton University, Princeton, 1Vew Jersey 08540

(Received 21 May 1973)

The Hamiltonian form for the equations of a relativistic perfect fluid is considered and
later specialized to the case of spherical symmetry and vanishing pressure. When comoving
coordinates are used in the canonical formalism, one gets a reduced Hamiltonian which is
independent of time. The continuous number of degrees of freedom are decoupled and the
Schrodinger equation separates from a functional differential equation to a set of identical
ordinary differential equations. Boundary conditions for these equations are naturally ob-
tained by requiring that the minisuperspace be geodesically complete. The formalism remains
the same whether one treats a closed nonhomogeneous universe or a collapsing star. The
problem of singularities is discussed, and it is concluded that in this minisuperspace quantum
formalism there is no inevitable singularity.

I. INTRODUCTION

The Hamiltonian methods developed by Arnowitt,
Deser, and Misner' have been generalized by
Schutz' to include perfect fluids. We specialize
this formalism to spherically symmetric, pres-
sureless dust. Spherically symmetric systems
have the advantage of being sufficiently simple
to admit explicit solutions, and of being sufficient-
ly rich in structure not to require for their de-
scription a specific one-parameter family of
hypersurfaces as is the case for homogeneous
geometries. This allows the field aspect of gen-
eral relativity to become explicit. Vacuum spher-
ically symmetric systems have been shown to have
no true dynamical degrees of freedom. ' In this
sense, the collapse of the Schwarzchild throat is
a completely classical phenomenon, unchanged
by quantum mechanics. The cloud of dust con-
sidered in this paper turns out be much more
interesting, as it has a continuous number of true
dynamical degrees of freedom, each one corre-
sponding essentially to the radius of each spherical
dust shell.

In Sec. II, the classical problem is reviewed from
from the ADM point of view. The choice of co-
moving observers (vanishing shift, and lapse equal
to unity) suggests a set of coordinate conditions
(with matter acting as a clock) which make the
super-Hamiltonian linear in the momentum canon-
ically conjugate to time and also decouple the ~'
dynamical degrees of freedom. The reduced
Hamiltonian is time-independent. The Schrodinger
equation for the system is written down in Sec. III.
Since all degrees of freedom are decoupled, each
shell of dust moves independently of the matter
that surrounds it and it is therefore enough to
consider an ordinary differential equation in order
to have a complete description of the problem.

The behavior of the quantized system near the
classical singularity is discussed in Sec. IIIC.
Our model remains pressureless at all times,
even at advanced stages of collapse. This is surely
unrealistic, but is has the advantage of being
amenable to analytic treatment. In any case, it is
of interest to see how in this simplified model one
can answer a number of important questions.
Quantized gravity has been conjectured to offer an
escape from the singularities inherent to the
classical theory. 4 The model studied here sup-
ports this conjecture, as the formalism is perfect-
ly well-behaved at the classical singularity, and
quantities that classically vanished at the singu-
larity have nonvanishing expectation values in the
quantum formalism.

II. THE CLASSICAL PROBLEM

Hamilton's equations for a perfect fluid in gen-
eral relativity may be obtained by extremizing
the action functional

S= d'xdt m"g„+p~j+p q -X,
with the Hamiltonian density

X =K(3C'+ 8)+ N, (R'+ d")+ X„Q„,

upon variation of the variables v'~, g„, P~, Q, q,
A. , N, and N, independently. ' Let us specalize
this to the case of the spherical symmetry. The
line element for the spatial geometry may be
written in the form

dP = e'&dr'+ e'~(d8 + sin'8dg),

with p, and A. being arbitrary functions of the radial
coordinate x. If we define

m' =:diag(2n e '", ~m e '~
~m e '~sin '8)
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and drop the variables A, and q since the radial
flow' is irrotational, we obtain, after integration
over the angular variables,

8= 4m d~dt p~ +m„j, +@~A.

-N(Z'+ 8) -N, (Z'+ 6 ')] .

Here, X' and 3C' are the super-Hamiltonian and
supermomentum for the free gravitational field.
Their explicit form is given by':

K'= e « '~f —,'1/ '- —,'1( m4
V

+ 2e4~[2X"- 2A.
'

p,
'

+ 8P.')'-e'&«-»]], (5)

R' = —e '«(1( ' —P, '1( —A. '((~) .
V

(6)

The coordinate densities of energy and of radial
momentum 5' and 6", as measured by an observer
moving in the direction perpendicular to the hyper-
surfaces of constant coordinate time, are

~ = g"'N'[(p p)(U')" p~"],
(pl g 1/2p gglly

(7)

(8)

where p is the pressure and p the density of total
mass energy. Here, Q is a scalar field related to
the four-velocity U„ through

U„=h 'P „

N and N, are the lapse and radial-shift functions,
respectively. The quantities $C', $C', 6", 6", U„
and U, vanish identically on account of the spheri-
cal symmetry. Substituting (11) into (7) one gets

g (1 Q ) lg 1/2p 2(p + p)(pg)2 161(pal/2 (1 2)

Consider now the situation in which the fluid
consists of pressureless dust. In this case, p = 0,
p = p„h = 1. From the normalization of the four-
velocity U"U„= -I one gets

p (16(/) lg 1/2(1 ~g11$ ) 1/2pg

with the consequence that

g p~[1 + 2«((tel)2]1 2

and

(pl e 2«plat

(14)

The prime denotes differentiation with respect to x.
We have thus arrived at a problem described by

the field variables P, p, , A., their canonically con-
jugate momenta p@, m&, n&, and the Hamiltonian

II= dx N X +8 +N, +'+d'

with p, being the rest-mass density. The momen-
tum p~ is given by

p~ = -167Ng' 'pQU .

where h is the specific enthalpy

Il =. P, '(P + P ), (10)

given in terms of them by (5), (6), (14), and (15).
The dynamical equations are (the dot denotes dif-
ferentiation with respect to time):

= --g Ne-~ -"+ N e-'~ ~'5II

= ~Ne «2~(W« —1/1)+ (V,e 2«)'+N, e 2«il', (17)

4(Ne «y'e 1)'+ 4Ne«+Np&e «(y')2[1+ e 2«(y')2]
5H

5p,

+ (N,e '«(/„)'+ 2N, e 2«p~p' —2N,X', (18)

= ——= 2NX' —8Ne
"+' [2X"—2&'g'+ &(&')' —e'« ' ]-4(Ne «+'~)" —4(Ne «+'~p, ')'+ 12(Ne «+'/'z')'

—4Ne" Np~[1+ e '" (p')'—]
' '+ (N e '«1/ )' —N e '«p~p'

=N[1+ e 2«(p~)2]1 2/+ Ne 2«pi
5H

/pe

p~ = =/Np~ ——-' ey'[«1+ e-'«g ')']-1"] + (N e- «p&)
5H

(20)

(21)

and the constraints are

x'+ S=0,
X'+ 6" = 0.

(22)

(23)

%e are now in a position to apply the ADM re-
duction procedure. First of all, we need to
specify a time variable. A time-coordinate built
from the gravitational degrees of freedom alone
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would lead to a nonlocal reduced Hamiltonian, as
it did for the Klein-Gordon geon. ' This is because
to obtain the reduced Hamiltonian, one must
typically solve a differential equation. However,
we observe that P @ enters the constraint equations
(22) and (23) linearly. This suggests to build a
time variable from the matter variables. ' Accord-
ingly, we set

».
we get

(32)l/2e3 1/2
9 (33)

(34)

S 4g dtdg 1T» g XADM (35)

Finally, after another canonical transformation,

T(2, t) =:y(r, t) . (24) with

or

6T = [1+e~"(y')2]'"X5t, (25)

5T
[1 + e 22 (~g)2]1/2

5g
(26)

which is always positive, as desired.
With the conditions T = —t, N, = 0 it is possible

to solve Eqs. (16)-(23) and to recover the solution
for a spherically symmetric cloud of dust first
given by Tolman. ' In particular, (20) says that
&= 1, and (21) says that P~= 0. Using (23) and

(16), (17) says that A.
' e" & is a function of r only.

The last fact guides us in the choice of a radial
variable R to use in the reduced Hamiltonian.
Define

Jt(2., t) =:x'e"-" . (27)

The transformation so defined should be canonical.
This leads to the following changes in the momenta:

w„- wa= -w„(X') 'e"

w1- wq= w1- e"[w„(A.') 'e ]'.
The supermomentum constraint (23) now reads

wan'+ w/, A. '+ P Q'= 0.

(28)

(29)

(30)

If we impose the coordinate conditions T = -t,
A = r and solve the constraints (22) and (23), the
action (4) becomes

S = 4w dtdr g),A, + gz

with

For this definition to make sense, it must be shown
that this time runs monotonically. That is, the
change 5T must always have the same sign when
passing from one slice to another, separated by a
proper-time interval 57= N5t. It is enough to
show this is so in a special coordinate system for
each hypersurface: Set then N, = 0. From Eq. (20)
we find

BC = r'w '- ( )'"(1—2 ')x' ' (36)

III. THE QUANTUM PROBLEM

Let us remark, before going into the computa-
tions and drawing conclusions from them, that
what we are considering here is only a model for
quantum geometrodynamics will exhibit the same
detailed behavior as the models attempting to
represent it in stripped-down form. However,
the insight gained from the study of simplified
models is considerable, and the hope remains that
at least the general features of the results will
remain valid in the full theory. This is also the
motivation for studying models of increasing
gener ality.

It is easy to see that this Hamiltonian yields the
correct equations of motion, showing that the re-
duction procedure has been consistently carried
out. The remarkable feature of the Hamiltonian
density (36) is that it contains no derivatives of
the field variables x(r) Th.is means then that the
~' gravitational degrees of freedom effectively
decouple from one another. We can then reduce a
problem with ~' degrees of freedom to an infinite
number of identical problems, each one for a
single degree of freedom. Note also that the Ham-
iltonian (36) is independent of time.

To conclude this section, we comment on the
radial label R. Notice that e" is the circumference
radius r„and A. 'e " is the inverse of the extrinsic
radius of curvature r, of the two-spheres at con-
stant r and that therefore R is their ratio:
=r,/r, . In flat space, A = 1 for all spheres. If
space is flat only asymptotically, then R must go
to unity at infinity. If a space is to be regular,
then R must also go to unity with r, =0. In a time-
symmetric section of a Kruskal metric, the hori-
zon is a minimal area surface which therefore
has zero extrinsic curvature so that R vanishes
at the horizon.

= -32'e '"w„'+ 2(1-r ')e'
+ (total derivatives with respect to r)

A. Inhomogeneous Case

In Sec. II we derived the reduced Hamiltonian

+2d+ + 2 9 1/3+ -2
y + -2 +2/3 (37)
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which means that x(r) are Cartesian coordinates in
midisuperspace. The natural choice of represen-
tation is then

1
n, (r)--.

( ),
which leads to the Schrodinger equation

(38)

i —= r'dy -
2Bt 5x

—(x-)' 'r (1 —r ')x'~%), ($9)

where 4 = 4'[x(r); i] is a functional of the field
variable x(r) and a function of time t. x'" is the
circumference radius of a 2-sphere of surface
area 4r x

Equation (39) implies a continuity equation

&)4'(' 2 & l M' 64*
+ =0,et Bx i 5x 5x

(40)

where 1 r2dr 6/6x(r) is a divergence in x space
(midisuperspace).

I.et us restrict now our attention to the interval
0 &x +rp 1, with rp fixed. Divide this interval
into M equal intervals of width c, thus reducing
the continuous variables x(r) to a set of M variables
x~, j = 1, .. . , M. Equation (39) may then be writ-
ten

B. Homogeneous Case

Although the quantized Friedman universe has
been treated by a number of authors, ' "it is
instructive to reexamine it from the point of view
adopted in this work, namely, to apply the ADM
method with incoherent dust acting as a clock.
Going back to (3), we impose now

&= X~

e' = e2"sin2g,

(45)

(46)

with A. and p, functions of t only. The metric ten-
sor in then

g, &
= diag(e2", e'"sin'y, e "2si 'ny sin'8),

and the momenta are

& e '"w„sin 'y sin 28} .

The constraint X'+ (P' = 0 is identically satisfied
due to the homogeneity requirement. The action
becomes

other shells, and in the same fashion as if it were
a part of a Friedmann universe. This has the
consequence that the evolution of an inhomogeneous
distribution of dust can be deduced from the equa-
tions valid for the homogeneous case. To this we
turn now our attention.

. se(x„... , x„, t)
Bt

S'e(x„.. . , x„, f)

~xg

8= 29' dt[s„(((, +P9$-1V(BC'+ g)],

with

~0 I e 3P~ 2 6eg

(47)

(48)

j) 4( i)~~ x2/3 (x)st (42)

The continuity equation (40) will now be

r x, x,*iX1(x„.. . , x„, t)), (41)

with aj a positive constant.
If we let

e(x„... , x„, t) = g, (x„f}~ ~ ~ g„(x„,f),
we see that each g& obeys the equation

II= p@= ' e 3"n '+ 6e"
p

which, after setting x= ~6'+ e'"+ goes into

~ 2 + (+91/3 2/3

and the Schrodinger equation becomes

(50)

(49)

The coordinate condition P = tyields the-Hamil-
tonian

8 (@('
+ -. V ~ (O'*V%'-4 V4*}=0,~t i (43) i —= — + (' )'/3x'/3e

et ex'
where

2=
Ndx " dx„(e( = 0 (44)

and ~4'(2 is the conserved probability density.
As it will become apparent below, Eq. (42) is

telling us that each shell of circumference radius
x' ' changes in time quite independently of the

which has exactly the same structure as (42). Let
us remark here that had we not integrated y from
0 to w but to some yp& m; the formalism would
stand unchanged, but we could interpret the phys-
ical system not as a closed universe but as a
collapsing finite ball of dust of uniform density.
Thus any conclusion obtained from the equations
holds just as well for the Friedmann universe as
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for the Oppenheimer -Snyder solution. " In fa,ct,
it is well known that in the classical case the
geometry of a finite ball of dust is independent of
what happens outside it."

We remark now on the factor ordering problem.
Just as x(r) were Cartesian coordinates in midi-
superspace, x is now a Cartesian coordinate in
one-dimensional minisuperspace, so that its
conjugate momentum is to be represented by
w, - (I/i)&/&x. This, however, depends heavily
on the choice of time coordinate. In fact, it is our
choice g = -t that brought the Hamiltonian to
the form (51). Other choices of time may make a
scaling of the super-Hamiltonian desirable. This
is exactly what happens with the Friedmann univ-
erse as treated by Misner. ' He finds it convenient
to write the super-Hamiltonian constraint in the
form g' '(X'+ g) = 0 rather than in the form K'
+ 8 = 0, due to his choice of time variables:
p = t. In this way he arrives at the reduced
Hamiltonian

a'= —144e "+24P~e'". (53)

C. Singularities'

We have passed from the classical description
of our system by a pair of canonically conjugate
variables x(r), w, (r) satisfying Hamilton's equa-

In Eq. (53), it is p which plays the role of Cart-
esian coordinate, making the representation
v„- (1/i)S/Sp the natural one. This ambiguity
will stay until a canonical formalism invariant
under rescaling of the constraints is developed.
Since the representation P = -t makes the Hamil-
tonian separable and time independent in the
infinite-dimensional case, we shall treat it as
fundamental in this paper.

Going back to (42), we see that due to Eq. (33)
we have x&0. However, if x is to be a Cartesian
coordinate in minisuperspace, this restriction
makes minisuperspace geodesically incomplete.
Already in flat space, when quantizing a scalar
field in a uniformly accelerated frame of reference,
geodesic incompleteness may cause inconsis-
tencies. ' Kuchar has suggested" that in such
cases one should always quantize on a geodesically
complete manifold and therefore, whether one
treats a field in a prescribed spacetime or a
geometry in minisuperspace, one should always
first care about an analytic extension of the metric.
This is easily done in our case, by allowing x to
run from -~ to +~, with x= e'+' for x&0 and
x= —e'+' for x&0. The natural boundary condi-
tions for (52) are then g- 0 as x- +~, since these
are classically forbidden regions. This is to be
contrasted with Deiitt's procedure" which im-
poses P(x = 0}= 0 to preserve x&0.

tions (16)-(23) to a quantum description by a,

state functional 4[x(r)] satisfying Schrodinger's
Eq. (39). The classical description predicts that
after a finite amount of proper time f, x(r} will
vanish, the volume of each shell shrinking to
zero and the density of dust contained in it grow-
ing without limit. How does the quantum picture
affect this prediction? Note once more that the
equation obeyed by a shell of dust is the same
whether it belongs to a Friedmann universe, to
a finite ball of homogeneous dust, to a nonhomo-

geneous, closeduniverse, or toafinite, nonhomogen-

eous ball of dust. Accordingly, we base our analysis
on Eq. (52) with the boundary condition that g van-
ishes when x- +~. The formalism is then the
same as that of a particle moving -in one dimen-
sion under the potential V(x) = x' '.

First of all: Does the predictive power of
Schrodinger's equation break down at x= 0?
Clearly it does not; all terms a,ppearing in it are
perfectly regular, and the origin of coordinates in

our problem is no more privileged than the origin
of coordinates for a harmonic oscillator.

Consider now some initial state g(x, 0). This
will evolve in time to some g(x, t), and [even if
g(0, 0) =0 originally] we shall have in general
g(0, t) &0. Does this mean that it is inevitable to
find the particle at x = 0? In other words: Will
it happen that g(x, t)=5(x) for some t&0? The
answer is no. More precisely, of all the possible
(square integrable) functions g(x, 0) which may be
chosen as the initial state, one and only one will
evolve into ((x, t) = 5(x), a state perfectly localized
at the origin. This particular initial state is just
the complex conjugate at time (-f ) of the func-
tion one would find at time t had 5(x) been the ini-
tial state. That is, only one out of the ~' possibili-
ties for the initial state will necessarily run into
the singularity. It is a set of measure zero. In
other words, it is practically impossible to con-
struct such a state.

Ask now the question: Does quantum mechanics
prevent the occurence of a singularity? To
answer, we rephrase the question in a more pre-
cise way: To find the system at x = 0 means to
find an infinite density shell of dust of vanishing
radius. Given a state g(x), what is the probability
to find the system at x= O'P Now, the probability
to find the system between x and x+ dx is given

by ~ g(x) ~'dx. If f(0) = 0, it is impossible to find
the shell in the singular state. If $(0) 40, the
probability to find the system at x = 0 (or rather,
at an interval dx about x= 0) is jg(0}~'dx. This,
however, is negligible compared with the proba-
bility of go& finding it at x= 0, since g(0) is finite.
In other words, the probability that a singular
state occurs is negligible compared with the prob-
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ability that a nonsingular state occurs.
Take now the radius of a dust shell, x' 3. Clas-

sically, this vanishes at x= 0. Does its mean value
vanish when it is turned into an operator in the
quantum formalism 7 We have

(64)

and the answer is no, unless g(x}= 6(x} which we
have seen is practically impossible. Let us re-
mark here that to get meaningful answers to this
type of question it is necessary to look at the mean
values of operators that would classically vanish,
not grow without limit, at the Singularity. In fact,
although (x' ') is nonzero, the mean value of the
curvature, 6(x '~'), is divergent. This is due to
the fact that when averaging, a vanishing quantity
will not contribute to the sum while a divergent
one will dominate it. What we want to say is that
states such as the ground state, which will have a
wave function similar to P(x) = e ", not only give
a nonvanishing probability for the shell not to be
found at the singularity, but that they also give
"nonsingular" expectation values to operators that
classically vanish at the singularity.

In one sentence, we may say that quantum fluc-
tuations prevent the occurence of a singularity.
They do not allow the system to be sufficiently
localized.

The considerations of this section are summar-
ized in Table I.

IV. CONCLUDING REMARKS

The evolution of a finite ball of dust, be it
homogeneous or not, is the same whether it is
lying in an otherwise empty space or in an other-
wise dust-filled space. To see what happens at
the late stages of collapse, it is of no use to be
standing outside the collapsing matter. Observers
have to be collapsing themselves. Thus the evolu-
tion of finite balls of dust can be viewed on the
same footing as dust-filled universes, homoge-
neous or not.

Under suitable coordinate conditions, the geo-
metry of the shells of dust decouple from one
another and it is possible to analyze the motion of
each one as the motion of a particle in one dimen-
sion under the influence of the potential V(x) = x' '.
To have a geodesically complete minisuperspace
we have let x take all real values, not just positive
values. This results in a doubling of the number
of eigenstates of the Hamiltonian in comparison
with the situation in which there is a hard wall at
x= 0, and lifts the restriction g(0) = 0. This ex-

TABLE I. Quantum dynamics of relativistic dust and
singularities.

Question Answer

1. Does the predictive power of the
Schrodinger equation break down
at the classical singularity, x =0?

1. No,

2. Is there a hard wall at x =0 that
prevents collapse by forcing the
wave function to vanish there?

3. How does the probability to find
a shell in the vicinity of a
singular state compare with the
probability to find it in the
vicinity of a nonsingular state?

4. How many states evolve to be
"singular quantum states, " that
is, such that g{x,t) =5{x) at
some time t?

5 ~ Consider a particular shell of
dust. Does its radius have a
vanishing expectation value for
some state, in particular for one
centered at x =0?

2. No.

3. It ls negligible.

4. A set of measure zero.

5. No.

tension of superspace is analogous to the one con-
sidered by DeWitt. " In our case it is possible to
carry it out since the metric in minisuperspace
implicit in the kinetic term of the Hamiltonian (51)
is regular at x= 0. In DeWitt's treatment of the
Friedmann universe" this is not the case, as his
supermetric is singular at the point where clas-
sical collapse occurs and no natural extension
across such a singular frontier is possible. In
such an extension, a particular three-geometry
corresponds to several points in the extended
superspace. Thus, in our case, x and -x repre-
sent the same geometry for a given shell of dust.
Classically, a particle moving from positive to
negative x represents a collapsing shell reexplod-
ing back into the same universe from which it
came, and not appearing suddenly into another
universe otherwise disconnected from the first
one.
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The electric field generated by a charged particle at rest near a Schwarzschild black hole is analyzed using
Maxwell's equations for curved space. After generabzing the definition of the lines of force to our curved

background, we compute them numerically and graph them with the charge at r = 4M, 3M, and 2.2M.
Particular attention is paid to the behavior of the lines of force near the event horizon and the smooth
transition of the electric field to that of a Reissner-Nordstrom black hole.

I. INTRODUCTION

The formalism for gravitational perturbations
away from a Schwarzschild background has been
developed by Regge and Wheeler. ' It was extended
by Zerilli, 2 who has shown that perturbations cor-
responding to a change in the mass, the angular
momentum, and the charge of a Schwarzschild
black hole are well behaved. The decay of the
non-well. -behaved perturbations has been investi-
gated by Price. ' He has shown that any multipole
l ~ s, where s is the spin of the field being exam-
ined, gets radiated away in the late stage of gravi-
tational collapse and will die as f "+' for large t.

Instead of analyzing how higher-order multipoles
are radiated away, we focus on how the allowed
transition from a Schwarzschild to a Reissner-

Nordstrom hole takes place through the capture of
a charged particle in a given Schwarschild back-
ground. In this paper we neglect the electromag-
netic radiation emitted during the fall of the parti-
cle and consider a succession of configurations in
which the particle is momentarily at rest at de-
creasing distances from the Schwarzschild horizon
(r =2M in geometrical units G =c =1). The problem
of examining the radiation emitted is, indeed, of
great interest and has been presented elsewhere. '

The electric field of a charge at rest with respect
to the Schwarzschild background can be developed
in a multipole expansion centered about the black
hole. For any finite separation of the charge from
the black hole, the far-away observer will detect
only the monopole term, the field corresponding
to a Reissner-Nordstrom solution. In the region


