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The Bjorken scaling of R = o~/err is studied. We show that the ratio v'R/I'Q' [which scales in

canonical spin-(1/2) theories] behaves as 1/x' (x = + Q'/2v) for small x and as (1 —x)
(0 & a & 2) for x near unity. We compare the scaling of vR', as extracted from the differential

cross-section data using this form of R with that of vS', extracted using a form of R appropriate

when some charged spin-0 constituents are present.

Inelastic electron scattering experiments per-
formed at SLAC' have shown that the ratio, R, of
longitudinal to transverse total virtual-photoab-
sorption cross sections is small. This is taken
as evidence that the carriers of electric charge in

the proton are primarily spin-~. ' More precise
determinations of R are expected in the near fu-
ture. ' In this paper we present the behavior ex-
pected of R in canonical field theories. Although
we use the language (momentum space) of the

parton model, our results, except where noted,
may also be derived from light-cone considera-
tions. R is related to structure functions with
well-determined scaling, Regge and threshold
behaviors which severely constrain its form. We
analyze the presently available differential cross-
section data with a form of R appropriate to an
admixture of spin-0 and spin-& constituents as
well as with a form corresponding to purely spin

The scaling of vW, (q', v) is examined for both
choices.

R is defined by

(I+ v'/M2Q')W, (q', v) —W, (q2, v)
o'r W, (q', v)

Wz(q', v)

W, (q', v)
'

where Q' = -q'& 0 is the four-momentum transfer
from the electron and v=P q. W, and lV, are the
usual structure functions.

The current data on R are presented in Fig. l.
It was noted in Ref. 1 that the data are consistent
with (a) 8 = constant and with (b) R = sV'Q /v'.
Recently, however, Sakurai4 has shown that a
bound derived from vector-meson photoproduction
is inconsistent with (b).

We shall show that canonical scaling theories
predict neither (a) nor (b). Though (a) may be a
reasonable approximation in models with some
spin-zero constituents, (b) is not a good approxi-
mation for any combination of spin-0 and spin-~
constituents.

In the Bjorken limit (lim~, ) structure functions
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FIG. 1. v Rjj/I Q is plotted as a function of x=-q /2P q. The data are from Ref. ]..

have the following scaling properties, if some
spin-0 partons are present:

lim W (q' v}= F&'&(x) —x—=1 g2

2xBj

limW, (q', v) ——F""'(x)
Bj

lim —,W, (q', v) = F2I0I(x) + F~'"~(x),
Bj

where the superscripts (—,) and (0) denote the con-
tribution to the structure function from spin-& and
spin-0 partons, respectively. Thus in this case

(4)
limA(q', v} =

With only spin- —,
' partons it is well known that R

and W~ should vanish in the Bjorken limit. More-
over vR'~ should scale in such a model':

lim ~, ' =F~(x) .vW~(q', v)

Bj

We obtain then

V
lim lim, ,A(q', v)

M Q ', x (7)

The data of Fig. l are as consistent with Eqs. (6)
and (7) as with either A = constant or A =M'Q'/v'.
Because of the quadratic divergence in Eq. (7)
there is no conflict with Sakurai's bound. The
hypothesis that A itself scales [cf. Eq. (4)j is also
consistent with the data. Clearly more accurate
measurements are necessary.

Assuming that partons are purely spin- —,
' we fit

the data of Fig. 1 with the approximate form

simple R = constant form. Since F2' and F,'"'
should have the same Hegge behavior for small
x, lim„, R = constant in this case.

Equation (6) places several useful constraints
on the behavior of (v'/M'Q')A in spin- —,

' theories.
According to the dictates of Regge theory, W~(q', v)
-v" and W, (q', v)-v" ' for fixed q', v-~. Ef Regge
behavior persists in the Bjorken limit we expect
therefore F~(x)-x " ', F,(x)-x' "as x-0. The
latter is in reasonable agreement with present
data. Thus for small x, Eq. (6) diverges:

v', Fo (x)lim ,A (q', v) = (6)
v' 1

~2@2 2 (6)

where we have used Eq. (3).
In the presence of some spin-zero constituents,

Eq. (4) gives the correct generalization of the

(A =0.4M'/Q') consistent with the scaling and Regge
behavior discussed above. A more elaborate para-
metrization (including, for example, a threshold
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dependence as discussed below) would be unjust-
ified in light of the poor quality of the A data. In
particular, a possible x-independent term is omit
ted from Eq. (8) since its inclusion would force R
to be large in regions of low Q'. vW, (q', v) may
then be extracted from the much larger amount of
data (for which separation of v~ and or was not
experimentally possible) using Eq. (8) for R. One
may then ask if the resulting values of vW, (q', v)
are consistent with a universal scaling curve. To
answer this question quantitatively we have fitted
the resultant pW, to the form

vW2(q', v) = a(l —7)'+ b(1 —7) + c(1 —7)'

E (x) 1)im ()- ), Dsx k, (9)

This result does not depend upon the validity of
the Drell- Yan-West relation.

The derivations will be brief. For notation see
Ref. 8. For spin--,' partons the scaling functions
E~ and I", are given by

using both 7=x and 7=x' = Q'/(2v+M'). The fit
was performed over the range 1.25 ( ~' ( 10 and
Q'& 1.0 GeV'. The y' deviation was then computed
over this same range. This procedure was re-
peated for the standard choice A =0.18 consistent
with an admixture of spin-0 and spin- —,

' partons.
The results are as follows. For R =0.4M'/Q' and
R =0.18 the fits (which include 170 data points)
in co' had g' of 177 and 132, respectively, whereas
the fits in cu had y' of 587 and 387, respectively.
Scaling is clearly best in cu'. In both cases the
spin-0 admixture choice of A =0.18 results in the
best scaling but the distinction is not statistically
significant for the variable ~'. More accurate
measurements of A would be very valuable. In
the absence of conclusive data on A, very accurate
measurements of the experimental cross section
can test the compatibility of scaling with particular
choices of A.

So far we have not discussed the expected thresh-
old behavior of A. To do so requires a more de-
tailed model than the study of scaling or Regge
behavior. The most general framework in which
this question may be examined is that of the co-
variant parton model of Landshoff, Polkinghorne,
and Short, ' to which we now turn. We present
the analysis for spin- —,

' partons. We show that in
such a model

(12)

The integral is over the imaginary part of the
parton-proton amplitude, V(p, k), along its right-
hand cut (s'&0). V(P, k) has the spin decomposition

V„s (p, k) = Vk(s', k )(p y) „s+ V2(s', k )(k y) „8
+A 8, (18)

where u and P are Dirac indices and R„s does not
contribute to spin-averaged electron scattering.

In Ref. 7 it was shown that power-law behavior
of F,(x) near x=1 follows if one assumes

lim V, (k', s') = (k') ~;f, (s')
02~ ~

(14)

which obtains in simple models. " Scaling of vW,
requires the integrals fds's'" 4f, (s') to be finite
while scaling of vR'~ requires additionally that
fds's" 4f, (s') be'finite. Thus if f, (s') -s'~( ' for
large &' we require 5,&y, —1 and 5,(y, —2. To
obtain Eq. (9) substitute Eq. (14) into Eqs. (10) and
(11) and let x approach unity (k'- ~):

F (x) A(1 —x)&k + B(1—x)'4 '
lim

, E,(x) A(1 —x)4+ C(1 —x)&~
(15)

A, B, and C are integrals (which we assume do
not vanish) over f,(s) which converge if E,(x) and

EG(x) scale. If A x-C the ratio diverges like
I/(1- x) with 0& n & 1, but if y, =y, and A = -C
[f,(s') = -f,(s')], one obtains o(=2. Replacing Eq.
(14) by a sum of terms with different y's allows
a to assume any value between 0 and 2.

In the simple models of Ref. 9 the spin structure
of V„B (P, k) is governed by the Born graph for
parton-proton scattering. A Born graph with sca-
lar or pseudoscalar exchange yields

V, (k', s') = —V, (k', s') as k' - ~ ,

which implies n =2. A Born graph with vector ex-
change yields

k2
V, (k', s')= ——,V, (k', s' ) as k'- ~,

Fs(x) = f ds'd'k

x V, (k', s')+,
1

+1 V,(k, s'),s +k

(11)
where s' is the center-of-mass energy squared for
the parton-proton scattering amplitude, and k~' is
related to the virtual-parton mass squared, k'

F,(x)= — f ds d'k [V ()F, s')sxV(k'', s')],

(10)

and therefore +=0. A mixture of exchanged spin-0
and spin-1 yields any n between 0 and 2. Clearly
the threshold behavior of A is highly model-depen-
dent. Unfortunately the data are not sufficient to
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indicate the behavior of R near x =1.
If one persists and uses the spin structure of

Born graphs in a parton-model calculation of the
elastic form factors, asymptotic scaling of G~/G„
obtains only in the case of vector exchange for
which y, ~y, —1 and lim„, EG(x)/E, (x) constant.

Strict, local duality predicts that Fo/F, must
be constant near threshold if Gs/G„ is to scale
asymptotically. " However, one must be skeptical
of local duality arguments based only upon elastic
contributions since they are disjoint from the rest
of the inelastic structure functions [they are pro
portional to 5(~ —1)J.

Landshoff and Polkinghorne have argued" that
the structure function F,(x) for e'e annihilation
is given by an equation identical to Eq. (10) with
E,-F, and V, -V, . They claim that for large k',
V, (k', s') factors exactly like V,.(k', s') with the
same exponent y,. and function f; (up to a factor)
as in Eq. (14). Their claim is based on a study
of Feynman graphs in softened field theories which
produce scaling. If we accept this, a strong bound
on lim„„E,(x) may be derived.

As x-~ according to Eq. (12) k' again becomes
infinite. The x» limit is best extracted by re-
defining the variable k~' [cf. Eq. (12)J by k', =x'ki'
which leads to

&&~+,(&) =&' " ds'f (s')+x' " J ds'f (s') (16)

provided 5,. defined above are negative. If they
are positive" we obtain instead

The bounds on 5, required by the scaling of E,(x)
and Eo(x) together with the observed threshold
behavior of E,(x) [-(1—x)'J imply lim„„E,(x)
-x"(n& 1), a more restrictive limit than that ob-
tained in Ref. 11. In both cases the multiplicity
in e'e annihilation is finite.

The restrictions 6, & y, - 1, 52 & y, —2 also bound
Landshoff and Polkinghorne's prediction" for in-
clusive pion production at high p~ in pp collisions.
If n = 2 or if ii, & 5, + 1 (for instance, n = 0, but
5, =5, —1 if the spin structure is governed by the
vector Born graph) the bound is more restrictive
than that which they give.

To summarize we have found that in canonical
theories with only spin--,' constituents v'R/M'Q'
scales and has rather striking behavior near x = 0
[Eq. (V)J and perhaps also near x=1 [Eq. (9)J, the
latter depending on an assumption regarding the
off-mass-shell behavior of parton-proton ampli-
tudes. Constraints on F,(x) and inclusive pion
production in parton models follow from Eq. (9)
and similar assumptions. In models with some
spin-zero constituents R scales and should be
constant near x = 0. Present data are inconclusive
regarding both the form of R and the consistency
of a particular choice of R with the scaling of
vW, (Q', v).
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