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Two-component models have been quite successful in fitting multiplicity distributions in high-energy
hadronic collisions. The fact that the diffractive component, is considerably smaller than the
short-range-correlation component suggests the possibility of a perturbative expansion of the high-energy
total cross section. We develop such an expansion in this paper, and examine some of its consequences.
Prominent among these consequences are: (i) diffraction dissociation into high masses rises
approximately logarithmically with energy at NAL-ISR (CERN Intersecting Storage Rings) energies, (ii)
the short-range-correlation part of the cross section has high-energy behavior dominated by a "bare"
Pomeron Regge pole, and (iii) the average multiplicity of particles produced in diffractive dissociation
rises logarithmically with energy.

I. INTRODUCTION

Two-component models have been quite success-
ful in accounting for the observed properties of
high-energy multiparticle production. ' ' The
largest component, accounting for about 80% of
the production, is characterized by short-range
correlations (SRC) in rapidity space. The other
20%%uz is diffractive; that is, characterized by con-
stant partial cross sections and by the presence of
large rapidity gaps. In this paper we shall explore
the possibility of understanding the two components
in the framework of a perturbative approach in
which the SRC term is the zeroth approximation.
Elastic scattering and low-mass diffractive disso-
ciation are next in importance, followed by dif-
fractive dissociation into high-mass states.

Diffractive dissociation into high-mass states is
proportional to the triple-Pomeron coupling,
which is known to be small. 4 ' Nevertheless, it
may be an important contribution to the total cross
section at ISR (CERN Intersecting Storage Rings)
energies, because it rises over a considerable en-
ergy range like the logarithm of the energy. "
We consider this contribution in detail in Sec. III,
and show that the logarithmic rise is expected
quite generally, regardless of details such as
whether or not the triple-Pomeron coupling van-
ishes at t =0. At NAL-ISR energies its strength
is determined not by the small dimensionless pa-
rameter q~ introduced by Abarbanel et al. ,

' which
is proportional to g»~'(0), but by an integrated
parameter tip, which is proportional to Jdt g~~~'(t).
Higher-order terms in the perturbation expansion

are considered in Sec. IV, and all the terms with
zero, one, or two large rapidity gaps are cata-
loged in Fig. 8.

The analysis of the c ross section according to
the number of rapidity gaps, "coupled with the in-
ference from experiment that the term with no
large gaps dominates, suggests the utility of in-
troducing the concept of a "bare Pomeron. " The
bare Pomeron is built up out of the SRC portion
of the cross section, and controls its asymptotic
behavior,

0 -Sno{0)
SRC

Evidently n, (0) is not very much less than unity,
because the SBC part dominates the cross section,
which is approximately constant. Moreover, the
bare Pomeron is purely a simple pole in the J
plane.

The diffractive terms, with at least one large
rapidity gap, have asymptotic behavior charac-
terized by a branch point near J = 1, in addition to
the bare Pomeron pole. The way in which these
J-plane singularities combine to form the physical
Pomeron (the J-plane singularity of err at or near
Z =1) cannot be determined without summing all
terms of our perturbation expansion. We there-
fore consider in Sec. V a simple model in which
the series can be summed. The model, which is
a variation of the Chew-Snider model, " shows that
the bare Pomeron pole does not occur in the com-
plete total cross section, but is instead replaced
by a high-lying singularity which is "renormalized"
in position and residue from the bare Pomeron.

To summarize, we construct in this paper a
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perturbative expansion of high-energy total cross
sections in powers of the triple-Pomeron coupling.
The expansion will be useful at NAL-ISR energies,
where only a few terms will provide a good ap-
proximation. As examples of problems to which
this expansion is applicable, we discuss rising
total cross sections, multiplicity distributions in
diffractive dissociation, and (in a simple model)
the relation between bare and physical Pomerons.

II. ZEROTH -ORDER TERMS

A. Short-Range-Correlation Component

o'„(s)-P„,(0)P„„(0)s"o '. (2.1)

We shall call ~, the "bare Pomeron" intercept.
The numbers in Table I indicate n, &1.

It is becoming increasingly well established that
correlations among particles produced at very high
energies are predominantly of short range. The
most direct evidence for SRC comes from recent
measurements at the ISR of two-particle correla-
tion functions. " Less directly, many phenomeno-
logical studies of the energy dependence of topo-
logical cross sections have arrived at the same
conclusion: Between 80% and 100% of the inelastic
production can be accounted for by an SRC mech-
anism, which we shall indicate graphically by the
symbol in Fig. 1(a).

Short-range correlations were expected theoret-
ically from several viewpoints. As pointed out by
Wilson, "and later but independently by DeTar, '
the SRC property of multiperipheral models under-
lies all their characteristic predictions. In re-
cent years it has proven useful, both for concep-
tual and pedagogical reasons, to abstract the SRC
property and use it to understand multiparticle
phenomena without reference to specific models.
Much additional insight and predictive power re-
sulted from Mueller's analysis of inclusive reac-
tions. " In Mueller's analysis it became clear that
the SRC property follows simply and directly if the
highest-lying J-plane singularity is a simple, fac-
torizable pole. Therefore we assume that the SRC
component of the cross section for a-5 scattering
has the asymptotic behavior

(2 2)

where the o„'s are the partial cross sections for
the production of n particles. If all correlations
are short-range, the multiplicity moments f„be-
have as follows:

f„-a„lns + b„. (2.3)

Differentiating Eq. (2.2), one then finds for the
partial cross sections

o„(s)-o(s)P„(lns)s ~, (2.4)

where P„denotes a polynomial of degree n, and
where b =-Q„",(-1)"a„/n i. Equation (2.4) shows
the behavior characteristic of multiperipheral
models, in which all partial cross sections show
the same power behavior. Low-multiplicity cross
sections are observed experimentally to fall with
increasing energy; the fits in Refs. 1-3 yield
5 =0.8 to 1.0. Hence all partial cross sections
arising from the SRC component fall like s ~,

TABLE I. Values of SRC and diffractive cross sec-
tions in p + scattering, according to fits described in
Ref. 1. Superscript n on OD indicates number of nega-
tive particles produced. Since these numbers are ob-
tained using a specific model, no reliable estimate of
their accuracy is possible.

Since it is well known that the idea of a simple-
pole Pomeron singularity at J =1 is fraught with
theoretical difficulties, "we should emphasize at
this point that we are inferring that the SRC com-
ponent of the cross section, not the total cross
section itself, has asymptotic behavior controlled
by the bare Pomeron e, . In Sec. V we shall show
in the context of a soluble model that the total
cross section does not have a pole at J = n, .

While we shall not have need of a detailed model
of SRC production in this paper, nor shall we at-
tempt to construct a realistic model, there is a
second property of the SRC component which we
infer from the data and which will be essential in
defining our perturbation approach: The SRC com-
ponent involves no Pomeron exchange, and there-
fore (with high probability) gives rise to no large
gaps in the rapidity distributions of individual
events. One way to see this is to start from the
Mueller generating function expansion, "
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FIG. 1. Process with no large rapidity gape (SRC cross
section), whose leading singularity is the bare Pomeron
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which !mplies (in a, multiperiphera1 picture) the
absence of Pomeron exchange and a consequent
improbability of large rapidity gaps. This identi-
fication of the SBC component with events lacking
large rapidity gaps has been inferred theoretically,
but it mill be interesting to subject it to experi-
mental test.

In multi-Regge models the power 5 in Eq. (2.4)
is as soc iated with the interc ept of the Reggeon
exch ang ed~

o!~(0)=-1 ——,'5. (2.5)

c (s) = v'~(s) +o'~(s) + ~ (2 8)

This decomposition has the advantage of being well
defined in terms of experimentally measurable
q J.antltles.

In the Appendix we analyze the relation between
0',„'~ and 0 Rc in a simple model. We arrive at the
following conclusions in the model, which we con-
jecture to be true in general: (i) The high-lying
J-plane singularities of o,'„are Regge poles (no

The numbers quoted above from phenomenological
fits give o.'„(0)=0.5-0.6, which coincides with the
location of the known prominent secondary trajec-
tories.

In the preceding discussion me have not given a
precise definition of the SRC component, but we
have tacitly assumed that the extraction of the SRC
component could be made by one of the two-com-
ponent analyses of multiplic ity distributions. All
existing analyses rely, however, on detailed mod-
els of the components. Although it is encouraging
that these detailed models agree rather well on the
magnitudes of the two components, none of them
are attractive as basic definitions. It is therefore
more satisfying if we reverse the logic of our pre-

ntation and make the absence of large rapidity
gaps the defining characteristic.

Following Chew, "we decompose the total cross
section according to the number of large rapidity
gap." (larger than a specified 6) observed in a given
event, For example, Fig. 2 shows a three-gap
event, provided that x, , x„, and x, are greater
than ~. The total cross section can then be de-
composed unambiguously according to the number
of Large gaps:

cuts). Asymptotically,

oo, ~(s) - s 0(~)-'
ab (2. I)

where n, (b. ) & 1." The leading pole position o!,(b, )
(the bare Pomeron) depends on 6, but for a range

(Q) «Q « Y (2.8)

(where (A) is the average spacing in rapidity, and
where Y is the available length of phase space in

rapidity), the pole position o.,(a) is almost inde-
pendent of A . (ii) Long-range correlations a.re
strongly suppressed in o', ;~. Conversely, events
with at least one large rapidity gap will show
strong long-range effects. Therefore, to a good
approximation, 0'„' =0„, where v-'„ is the quan-
tity determined in multiplicity analyses.

The above conjectures are subject to experi-
mental investigation. A reasonable choice of 6
suggested by Eq. (2.8) is b, = 2-3. When making
numerical estimates in this paper, we shall choose
6 such that e ~ = 10.

B. Elastic and Quasielastic Cross Sections

0't =—dt p (t)p (f)~( p)~ s "o't

(2.9)

where all quantities are the same as in Eq. (2.1),
and $,(t) denotes the signature factor of the bare
Pomeron. The couplings P„,are bare-Pomeron
couplings, which are renormalized by higher-order
effects into the coupling P„~ to the complete-Po-
meron singularity. We cannot calculate the rela-
tion between these couplings except in simplified

b

The elastic cross section, with a value of about
7 mb through the Serpukhov-NAL energy range, is
the second-largest component of the total cross
section. In our expansion scheme it is zeroth-or-
der in the triple-Pomeron coupling, but first-order
in the number of large rapidity gaps. The lowest-
order contribution to the total elastic cross sec-
tion is found by replacing the Pomeron in Fig. 3
by the bare Pomeron, which results in the formula

P

(a) (b)

x( x. x x
x) '0 '5

PIG. 2, Example of distribution of particles in rapidity
space in a single event. Particle rapidities are marked
by verti. al lines.

FIG. 3. Process with one large rapidity gap, with no
large-mass clusters produced: includes elastic scatter-
ing as well as single and double diffractive dissociation
to low masses. Double line indicates sum of all low-
mass contributions.
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models, such as the one presented in Sec. V.
The J'-plane singularity of Eq. (2.9) is the usual

AFS (Amati-Fubini-Stanghellini) cut, which results
in a total elastic cross section falling with energy
like (a+bins) ', which is a reasonable first ap-
proximation to the observed behavior of the elastic
cross section up to NAL energies.

At this point the question of self-consistency
must be ~aced. If one approximates the Pomeron
by the b:are Pomeron in the calculation of 0,&, as
we have done in Eq. (2.9), the resulting singula, rity
governing the asymptotic behavior of 0~=@'s„c+0,&
is the bare Pomeron plus the AFS cut. There are
two ways to regard this inconsistency:

(i) Pe~tu~bative approach. Qne can regard Eq.
(2.9) as a. zeroth-order calculation of o.~, which
then defines a first-order Pomeron through 0~ '

=vsRc+v', ~'. Qne can iterate to obtain higher-order
terms. One difficulty with this approach is that
the effective expansion parameter is the ratio of
elastic to SRC cross sections, which is only =—,'.
Even if one could sum these iterations [see (ii) be-
low], the result would be correct only to zeroth
order in the triple-Pomeron coupling.

(ii) Self-consistent approach One .can attempt
to obtain self-consistency between the input Pom-
erons in Eq. (2.9) a.nd the output Pomeron in o' r.
Many calculations of this type have been attempted,
but all involve either unrealistic models or com-
puter calculations. ' Nevertheless, it might be
interesting to return to this problem in the present
perturbative framework, trying for self-consis-
tency only to zeroth order in the triple-Pomeron
coupling and including terms with only one large
rapidity gap. We shall not attempt such a calcula-
tion in this paper, but will rely on experiment for
information about the Pomeron. Accordingly, we
replace the ba, re Pomeron quantities in Eq. (2.9)
by physical couplings and trajectory:

eron can be so represented to a good approxima-
tion.

The quasielastic cross sections, which are also
of zeroth order in the triple-Pomeron coupling
and have one large rapidity gap, are given by Eq.
(2.10), but with couplings P„~~ or P»~~, or both.
When these contributions are added to the elastic
cross section, one obtains what we shall call the
total cross section for diffractive dissociation into
low-mass states, o»,„,given by (see Fig. 3)

1
oD ~&~~(s) = dt P p„~~'(t) p»~z'(i)D, M&Np 16~

a

(f) ~2s2a~(~)-2 (2 11)

where the sum includes a* =a and b* =b, the elas-
tic and quasielastic terms. The magnitude of this
cross section is not yet well known at high ener-
gies. A rough estimate, which is probably a lower
bound, can be obtained by adding the known cross
sections for diffractive N* production at 15
GeV jc; the sum is about 1.8 mb." On the other
hand, the Rochester-Michigan missing-mass ex-
periment at 102 GeV finds the cross section for
single diffractive dissociation into masses M& 5
GeV (excluding elastic) to be 6.8 mb, but a differ-
ent background subtraction could cut this number
in half. " Qther estimates, based on fits to mul-
tiplicity data, do not distinguish between high-
and low-mass diffractive dissociation, but find
the total diffractive component (excluding elastic)
to be 5-7 mb. ' ' Thus we have, at present, rough
bounds on the total cross section for diffractive
dissociation into low-mass states (including elas-
tic), 9&oD „(„&14mb.

III. FIRST-ORDER TERM: SINGLE DIFFRACTIVE

DISSOCIATION INTO HIGH MASSES

A. Contribution to Total Cross Section

(2.10)

where o'~(t) is an effective Pomeron pole. It is an
as sumption, motivated by the succ es s of factor iz a-
tion and short-range correlations, that the Pom-

M
b

~P
Iii! & il&t b

Po p

(a)

FIG. 4. Process with one large rapidity gap, leading
to one large- and one small-mass cluster.

The term which is first-order in the triple-
Pomeron coupling and which contains one large
rapidity gap contributes to diffraction dissociation
into high masses, shown in Fig. 4 (a). The corre-
sponding triple-Regge diagram is shown in Fig. 4

(b). Note that the bare Pomeron occurs on the
left-hand side of the diagram, because we are
considering events with only one large rapidity
gap. It is not quite so obvious whether to take
bare or physical Pomerons on the right-hand side
of the diagram; as we discussed in Sec. IIC, it is
a question of a perturbative approach vs a self-
consistent approach. For logical simplicity we
shall regard these as physical Pomerons, but for
calculational simplicity shall assume that they can
be adequately approximated by effective Pomeron
poles. In this approximation one obtains the usual
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triple-Regge formula, "'"
dv ~s G~o(t) s '"&") M' 0")

s~ g6m M~ s,
where

G (t) =P (t)P...(0)l~, (t)l'g„, (t),

(3.1)

(3.2)

1
o (s) =

D, M&Mp ~ ~ 32~~~P

G~(t) ' s

(3.9)

where g~p, (t) is the function describing the vertex
of two Pomerons and one bare Pomeron. For
simplicity we shall discuss only the experimentally
interesting case b =b', single dissociation into a
high-mass state, but Eq. (3.1) is also applicable
with only modification of the subscripts to the
more general dissociation with one large and one
small mass shown in Fig. 4.

In order to calculate the contribution of Eq. (3.1)
to the total cross section we need to integrate over
the kinematically allowed range of t, and over a
range Mp &M &zs. The lower limit should be
chosen high enough to make Pomeron dominance
an adequate approximation in Eq. (3.1). The
M &Mp contribution has already been discuss ed in
Sec. IIb, and is included in Eq. (2.V). The upper
limit comes from the fact that we are considering
terms with one large rapidity gap. If we let 6 be
the minimum gap length which defines a large ra-
pidity gap, then this implies M'&xs, where

For the physically interesting case that the t de-
pendence of G, (t) is sufficiently steep to permit
expansion about t =0 of the term in brackets in Eq.
(3.9), one obtains the result

Gpp ~s
z) ~)~ (s)-16 ln

M ~,

where

0

Gp —— dt G~o(t) .

(3.10)

(3.11)

We see from Eq. (3.10) that our perturbation
scheme predicts that the cross section for single
diffractive dissociation into high masses should,
to good approximation, show a logarithmic rise
with energy over a finite energy range, regardless
of the functional form of G~(t). The detailed func-
tional form will, however, affect the asymptotic
behavior for very large s. If, for example, we
choose

r = exp (-t), ) . (3.3)
Go (t) ~It+It

then we find that

(3.12a)

We therefore wish to perform the integration

tmin g2g
dM' dt ~M2~t

——VD M
Mp ~ 00

(3.4)

G', In() s/M, ')
16))[I) + 2n~ ln(s/M, ')][5 —2a~ Inr]

'

(3.12b)
where

t = -m, '(M '/s)', (3.5)

(3.6)

and where the lower limit of the t integration has
been replaced by -~. It is also apparent that it is
consistent with our approximation scheme to re-
place t by zero. We can then carry out the M'
integration to obtain'4

If, on the other hand, we choose

G~(t) =G e '

then we find that

G, b + 2a~ ln(s/M, ')
32nn' b -2a' lnrP P

(3.13a)

Although the choic'e in Eq. (3.12) has been a popular
one because it leads asymptotically to a constant
cross section and thereby avoids difficulty with
the Froissart bound, the choice among functional
forms of G, (t) may not be of great importance at
energies available today. Both Eq. (3.12b) and
Eq. (3.13b) reduce to Eq. (3.10) provided that

where 2o.~ ln(s/M, ') «b, (3.14)
e (t) -=1+o.,(0) -2n~(t) . (3.7)

o.~(t) = 1+ n~t,

we obtain

(3.8)

If we now assume a linear trajectory for small t,
with n, (0)= o.~ (0) = 1,

which seems likely to be satisfied at NAL and per-
haps ISR energies, because of the small values re-
ported for the slope of the Pomeranchuk trajec-
tory.

To summarize, we have calculated the cross
section for single diffractive dissociation into
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high-mass states in the approximation of pole
dominance of the Pomeranchuk singularity, and
found that it rises like lns as long as Eq. (3.14) is
satisfied. It will be very interesting to see if the
reported rise in the total cross section is asso-
ciated with this term. " If so, it should persist
only until Eq. (3.14) is violated, or until higher-
order terms become important.

B. Multiplicity Distribution in High-Mass

Diffractive Dissociation

cross section. The factorizable-Pomeron hy-
pothesis permits one to apply the standard mul-
tiperipheral or Mueller-Regge arguments" to in-
fer the asymptotic behavior for large M',

o,~(M', t)(n,'(M', t)) -[P,'~g~(t}A' InM'+B,'(t)]

+0[ (M') &@' '), (3.17)

where g~(f) is the triple-Pomeron coupling defined
in Ref. 7, and to infer that the Pomeron-hadron
cross section should behave as

Factorization of the Pomeron pole, whether bare
or effective, was one of the essential ingredients
leading to Eq. (3.1). If instead of examining the
total diffractive dissociation cross section we

study the partial cross section for dissociation
into n particles (Fig. 5), we still can use the fac-
torization of the Pomeron pole. This allows us to
write the cross section for single dissociation into
a definite number of particles n as

c',~(M ', t) -P,~(0)g~(t) +0[(M')"~~o' '], (3.18)

where o.„(t) represents the highest-ranking sec-
ondary trajectory. For any desired level of accu-
racy there exists a value M, such that for M&M,
the second term in Eqs. (3.17) and (3.18) repre-
senting the contribution of secondary trajectories,
can be neglected. We then obtain the simple re-
sult: The average multiplicity of hadrons of type
i produced in diffraction dissociation into a state
of mass M, where M&M„rises linearly with

lnM,

(3.15) (n,'(M', s, t))D =A' lnM'+B,'(t), (3.19}

where o ~(M', t) is the cross section for produc-
tion of n particles from hadron a and a Pomeron
(see Fig. 5). We further assume that hadron-
Pomeron cross sections are similar to hadron-
hadron cross sections. In order to calculate a
cross section which is more easily measured, let
us now consider events with at least one large ra-
pidity gap, i.e., Fig. 5 rather than Fig. 4. In this
case all three Pomerons are physical.

Consider now the average multiplicity of hadrons
of type i produced in diffractive dissociation of
hadron a into a state of mass M at a momentum
transfer t (see Fig. 5):

d20 fl j
(n, (M, t})D-=Qn(

nj

= gn, o"'(M ', t)/v, (M', f) . (3.16)

Note that (n,')D is defined with respect to the cor-
responding diffractive cross section, not the total

with the same coefficient A. ' (independent of s, t,
and incident particle type) found in the average
multiplicity measured in hadronic reactions.

The average multiplicity for diffraction disso-
ciation into states in a range of M,' &M' &xs at a
given value of t can also be calculated, with the
result

J'd (lnM 2)(M2)«&& lnM2

J'd (lnM') (M')'"'

+ ~ ~ ~ (3.20a)

, +c!(t)+ ~ ~ .XS

0

(3.20b)

Note the coefficient —,'A', half the coefficient found
in the average multiplicity measured in hadronic
reactions. The simplification from Eq. (3.20a) to
Eq. (3.20b) has been accomplished by taking the
approximation e (t) = 0, where e (f) is defined in
analogy to Eq. (3.7) as

M, n e (t) =—1+a~(0) —2n„(t) . (3.21)

(a) (b) b

Provided that this approximation is adequate over
the region in which G~(t) is significantly different
from zero, one can integrate over t to obtain
finally

FIG. 5. Process with at least one large rapidity gap,
with a large mass on one side of the gap and a small one
on the other {single diffractive dissociation into a high-
mass state).

(n,'(M, ' &M' & rs))~ -—,'A' ln, + C,'+ ~ ~ ~ .(3.22)
0

The above result has been derived in the no-
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shrinkage approximation of Eq. (3.14). Just as in
the discussion preceding Eq. (3.13), it is possible
to relax this approximation if a definite functional
form is assumed for G~(t). If, for example, the
choice in Eq. (3.13a) is taken, one finds

(n', (Mo ~M & ts))n

obtain, for e(t)=0 and for n&0 (assuming M, ' &s,),
t. rs damp Gab(t) rs

J 2 dM2'd-t dM'=
16mA

+ n+1, A lns
0

(3.26)

where P (n, x) is an incomplete gamma function. "'"
Integrating over t, we then obtain the following
model for the cross section for the production of
n particles by single diffraction dissociation:

(3.23) a' n(s)= ~ P n+1, A. ln —+(a-b).
Gab rs
16' S~

(3.27)

which, in the limit of Eq. (3.14), reduces to Eq.
(3.22).

The results above follow directly from the fac-
torizable-Pomeron hypothesis, and therefore pro-
vide definitive model-independent tests of that hy-
pothesis. In order to clarify the origin of these
results, it is helpful to examine a simple model,
which is offered in the spirit of exhibiting the sim-
plest possible multiperipheral-type model of dif-
fractive production. Like the Chew-Pignotti mod-
el, of which it is a simple extension, it should
have illustrative value, but it must be recognized
as an oversimplification rather than as a definitive
prediction of the multiperipheral picture.

We construct the model by taking v",p(M') to be
the simplest multiperipheral type of distribution,
a Poisson distribution,

n!

(3 .24)

The two terms represent the dissociation of parti-
cle a and particle 5, respectively. The contribu-
tion of low-mass resonances, which are not in-
cluded in Eq. (3.24), should be added to Eq. (3.27)
to form the complete diffraction-dissociation
cross section. Although this contribution is not
well known, it will affect only the low-multiplicity
cross sections. For this reason, and because of
the approximations which led to Eq. (3.27), we

propose it as a reasonable model only for higher
values of n.

The distribution given by Eq. (3.27) is well
known to physicists; it is just the X' distribution
with the "number of degrees of freedom" &v =n+1,
and with alt' A ln(rs/s, ). It is shown in Fig. 6 for
the case appropriate to E~ =1500 GeV. As is char-
acteristic of X' distribution, it falls to half its
maximum atn =A In(rs/s, ), which is just the aver-
age multiplicity of the nondiffractive component,

6 I I I I I I I I I I I I I I I

Such a distribution has been found in Ref. 1 to be
a. good fit to -80/o of the inelastic production in the
range 100-300 QeP. The remainder of the produc-
tion was taken, in that fit, to be diffractive. For
simplicity we ignore the diffractive component in
Eq. (3.24); this corresponds to calculation of the
cross section for events with only one large ra-
pidity gap, but such differences are not large
enough to worry about in the context of the present
crude model. The scale factor s, is a parameter
of the model, and need not necessarily have the
same value as that needed to fit the multiplicity
distribution in p-p collisions. This reflects the
fact that the parameter J3,' in Eq. (3.19) depends on
the nature of the incident particles.

Substituting Eq. (3.24) in Eq. (3.15) one finds

dg"„G"(I) s ~&"' M' ' " [Aln(M'/s, )j"
dM 'dt 16ws' M' s, nr

(3.25)

That is, the multiplicity distribution of hadrons
produced dlffractlvely into a state of high mass M
is Poisson-distributed in this model. Again, we
can integrate over a range of M, Mo' &M &rs, to

l2 l66 8 l4
n

FIG. 6. High-mass (M & Mp) diffractive contribution
to the multiplicity distribution in p-p scattering at E&
= 1500 GeV [v's = 53 GeV, according to the model given
by Eq. (3.27)]; The nondiffractive contribution is a
Poisson distribution from the fits of Ref. 1. The parame-
ters of the diffractive term are taken to be Mp = s = 15,
A = 1.0, and G&/16vr = 1 mb. The diffractive contribution
is shown as a dashed line for small n, to signify that the
model should not be used in this region because of
approximations made and because the contribution of
diffractive dissociation into low masses must be added
in this region.
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(n') „,„=-',[(n') -A'a] . (3.28)

shifted downward by a constant amount. Its mean
is given (for s, ~ M, ') by

where

p

QQ

(4.3)

IV. HIGHER-ORDER TERMS: SMALL PARAMETERS

A. Double Diffractive Dissociation into High-Mass States

Consider those events characterized by one large
rapidity gap, leading to large missing masses on
both sides of the gay, S,oMp' and s2&Mp', shown
in Fig. 7. In the multi-Regge limit of large gap
size and large s, and s„ this process contributes'

g, ,'(t)P„,(0)P„,(O)

x(s s )"(( (4.1)

As in Sec. III, o.,(0) occurs as the exponent of s,
and s2 because we are limiting our attention to
events with only one large rapidity gap. Hence,
the two blobs in Fig. 7 are governed by the same
singularities as the SRC part of the cross section.

Performing the integrals over s, , s„and t with
the same approximation e (t) =0 as in Sec. III, one
finds for the contribution to the total cross section

This is consistent with Eq. (3.22), but in addition
makes a specific estimate of the constant term.
It makes the appropriate kinematical correction
(reduced length of rapidity interval), but ignores
the possible dynamical effects which could lead to
different constant terms.

No data on high-mass diffractive dissociation
are yet available for comparison with the predic-
tions above. The model-dependent separation of
the diffractive component in Ref. 1 gave detailed
information (not all of which was published) which
is shown in Table I. Note that the multiplicity dis-
tribution of the diffractive component is broadening
with increasing energy, but these data are too
model-dependent and fragmentary to be taken as
conf irmation.

or =P' (4.5a)

The parameter g~ is very similar to the parameter
q~ —= g~~~'(0)/[327(n~ (0)] introduced by Abarbanel
et al. ,

' but is more appropriate to the energy
range and approximation scheme we are consider-
ing; that is, we are concentrating on an energy
range (appropriate to today's accelerators) in
which one can approximately neglect shrinkage
[Eq. (3.14)], whereas Abarbanel et al. tacitly as-
sumed the energy to be high enough that the slope
of the Pomeron trajectory controlled the t depen-
dence.

The small dimensionless parameter q~ arises
in higher-order terms whenever a Pomeron bub-
ble, as in Fig. I(b), is linked to a bare Pomeron
on both ends. Other types of diagrams in which
two Pomerons connect to an external line involve
(7)~)'~'. It is convenient, then, to define as our
basic expansion parameter

(4.4)

We could now proceed to calculate other higher-
order contributions to the total cross section and
catalog them according to their order in A~. The
task is complicated, however, by our ignorance of
the t dependences involved. We cannot compare,
for example, elastic scattering, single diffractive
dissociation, and double diffractive dissociation
without knowledge of the t dependence of p(&) and

gp~o(t).
Since differences in t dependence seem unlikely

to lead to order-of-magnitude differences among
cross sections, it is useful to catalog the various
terms under the assumption that all of them have
roughly the same t dependence, which we charac-
terize by slope parameters b, . In this approxima-
tion one finds

t'ssp 2' »,»». =n»((.,(0(((».(0)*(»~~
p

(4.2)
16mb

D, hf&M p

(4.5b)

(4.5c)

S)

P
Po ~~ Po

P

2 2- ~ gPPO 1 XSSO
DD, M&Np 16 Q

2 M 4
3 p

(4.5d)

If, for the purpose of order-of-magnitude esti-
mate, we take all the b, 's to be roughly equal,
then

(b)

FIG. 7. Process with one large gap, producing two
large-mass clusters (double diffractive dissociation into
high masses).

2
&sap
16~&

and one finds the probabilities

(4.6)
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Process 0
i

Mueller-Regge Diagram Order of viicrT

2

o

1 /

/

~, ~, ~, (Y-~-~f) e( )
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FJG. 8. Relative order of all contributions to the total cross section with zero, one, or two large rapidity gaps. The
parameters are defined, and estimates of their values are given, in Sec. p7.

0

0 ~ 16mb
(4.7a)

And, letting the symbol 0'» „,„stand for all dif-
fraction dissociation into clusters of mass M &Mp,
including elastic scattering, we define

0'
-o = A, A. ,) ln (4.7b) DD, M&Moi T ( D ) (4.7d)

Q& &p & +~~p
(4.7c)

Continuing in a similar manner, we are able to
fill in the catalog in Fig. 8, except for the neces-
sity of defining a third parameter, to which we
now turn.
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B. Multiple Diffraction Dissociation into Low-Mass States

o„„„=V„p...(0)p„„(o)r.', (4.8a)

where L is the inclusive correlation length

The process shown in Fig. 9 has two large ra-
pidity gaps, but does not involve our parameter
A~ because there is no production of high-mass
states. It is, however, believed to be small,
since experimental searches have failed to find
evidence for such a process. " These searches
have, however, not yet been carried out at very
high energies. It seems unlikely that the small-
ness o.' this process is unrelated to the small pa-
rameter X~; nevertheless, we know of no way to
make the connection with our present level of S-
matrix technology and are forced to introduce
another parameter to characterize the strength
of the internal vertex in Fig. 9.

Alternatively, one can use duality ideas to re-
late resonance production in low-mass diffractive
dissociation to the exchange of non-Pomeron
Regge trajectories. Consider, for example, low-
mass diffractive dissociation (including elastic
scattering), shown in Fig. 3. If we assume that
the sum over low-mass resonances can be approxi-
mated by exchange of a Regge pole, then low-mass
dissociation can be represented by the diagram in

Fig. 10. The Regge pole R is a "bare" pole with
vacuum quantum numbers (perhaps a, bare P').
Note the similarity between Figs. 10 and Fig. 7;
high-mass dissociation involves Pomeron exchange
~here low-mass dissociation involves 8 exchange.

If one evaluates low-mass dissociation from Fig.
10(b) in the same approximation as we evaluated
high-mass dissociation in Eq. (4.2), one finds

ISR energies for the reasons stated above in con-
nection with Qp.

In comparing low-mass and high-mass disso-
ciation, Eq. (4.8) vs Eq. (4.2), one sees that the
factor ln's has been replaced by L'. This can
easily be understood as a consequence of the
amount of phase space available in the rapidity
variable y. Low-mass dissociation products are
confined on the average to a region whose length
is less than one correlation length L, while high-
mass dissociation products spread over the entire
available phase space Y' (minus threshold factors
which we discuss next).

In forming Fig. 8 we have used the abbreviation

L. (4.9)

Moreover, one sees by comparing Eq. (4.7d) and
(4.8) that

(gab)2 paaR ( )pbbR (0)
) 2L 2

p„~(0)pbbJ, (0)

Finally, we define

p...(o)

P„p (0)

so that

O SRC
ab yO gO

0 tot a b
ab

(4.10)

(4.11a)

(4.11b)

C. Threshold Factors

Looking back at our estimate of double disso-
ciation into high masses, Eq. (4.2),' it is instruc-
tive to rewrite the logarithm as follows: Recall
that the parameter r is related to the minimum
rapidity gap,

r =I.I as(0))

and where

(4.8b) (4.12)

Then we further define 6&, the minimum rapidity
spread which defines a high-mass cluster

I
A.R -~R 1

dt g „'(t). (4.8c) 2
MO

SO
(4.13)

Note that gR is defined analogously to the triple-
Pomeron coupling parameter q~, which we defined
in Eq. (4.3). Similarly, one can define a parameter
qs ———g2,2s'(0)/[32wn~(0)j analogous to 2)2, of Abar-
banel et al. ,

' but gR should be more useful at NAL-
S—=e

SO
(4.14)

Finally, choose s, such that the available phase
space in rapidity, Y, is given by

b

(a)

P

R
Paaa PbbR

~PPR

(b) b

(a)

FIG. 9. Process with two large rapidity gaps, leading
to low-mass clusters only.

FIG. 10. Representation of low-mass diffractive
dissociation, using duality assumption to replace sum
over resonances by Reggeon exchange.
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The usual choice is s, = m, m„but when working
at fixed transverse momentum with final-state
particles of mass m it is appropriate to take s,
= p,

' = m'+p~'. With the above definitions one can
rewrite Eq. (4.2) in the form

o„„„=~,P...(O)P„,(O)-,'(Y 2~, ~)'

x9(Y 2g~ z), (4.15)

o ~ dx, ' '' dx+5 Y — x;
n+1

(4.16)

where either 6, =6 or 6, =Af, as appropriate to
the given configuration. Changing variables to
g& =x& -6; one finds

0'(x dg~ ' ' 'dg„+z~ Y — Ag — g~
0

o:—,(Y-n&6&-n b. )"8(Y -n&h&-n 6), (4.17)
1

0

where

where we have explicitly written the 8 function im-
plicit previously. The meaning of the 0 function is
evident: Double dissociation with a minimum ra-
pidity gap 6 into two high-mass clusters of mini-
mum spread 4& cannot occur until the available
rapidity is Y~ 26&+6.

It is especially easy to see how to generalize Eq.
(4.15) to more complicated processes if one uses
DeTar's simplified phase space in terms of rapidi-
ties. ' Consider a distribution of rapidities, such
as shown in Fig. 2, divided into an arbitrary num-
ber of large-mass clusters, small-mass clusters,
and large rapidity gaps. Suppose that rapidities
of particles within clusters have been integrated
over, and the sums have been carried out over the
number of particles n» n» etc., within clusters.
Assume further, as we have been assuming
throughout this paper, that these sums and inte-
grals within clusters build up bare Pomerons,
which we take to have intercepts approximately
equal to unity. In this case the cross section re-
sulting from a configuration such as Fig. 2 is given
by

D. Estimates of Parameters

The magnitudes of the parameters we have in-
troduced are not well known experimentally. In
this section we shall attempt rough estimates,
based on NAL and ISR data on proton-proton scat-
tering.

The best known of the parameters is X,.i. The
ratio of elastic to total cross section is not vary-
ing appreciably over the NAL-ISR range; the mea-
sured value is in the range

A. ,i' —= v,i/vr = 0.17-0.18 . (4.18)

The ratio of SRC to total cross section is found in
two-component fits to be =0.6-0.7, implying A, p
= 0.8. In making the rough estimates of this sec-
tion, we shall set A.0=1.

The parameter X~', which is the ratio of elastic
plus low-mass dissociation cross sections to the
total cross section, is not well known. Adding in
a reasonable guess for low-mass dissociation, we
shall take A.~'= ~. Even less is known about the
parameter q~ = A~', but data are beginning to ac-
cumulate on diffraction dissociation into high
masses which will eventually determine this pa-
rameter. If, however, one makes the hypothesis
that the rising proton-proton total cross section
reported at the ISR' is a result of high-mass dif-
fractive dissociation, "one finds that the observed
rise implies (see Fig. 8)

and Snider, "and Goldberger, Silverman, and
Tan, "and Misheloff, 3' have observed that such
threshold effects do indeed occur in multiperipher-
al models, and Chew' has argued that threshold
effects and complex poles are essential to the
understanding of rising total cross sections in
perturbative approaches such as we are expound-
ing.

This discussion of threshold factors completes
the list of ingredients needed to make order-of-
magnitude estimates of high-order terms in our
perturbation expansion. These estimates are
listed in Fig. 8.

n =n&+n —1,
and where n& =number of large-mass clusters and
n =number of large rapidity gaps.

The threshold factors found above can lead to
important physical phenomena, such as oscillatory
behavior of cross sections. It is not obvious from
our derivation, however, that they correspond to
any real physics, since they have entered via def-
initions. If we choose to focus our attention on the
probability for observing events with n rapidity
gaps of minimum size 6, then clearly such events
will not occur until Y&nA. Nevertheless, Chew

d &D, ~&&so
o'P

& d lns ao
T

(4.19)

This gives the estimate p~= 0.0025, or A.~=20.
Finally, the parameter A.~', which measures the
strength of multiple low-mass dissociation, is
related by Eq. (4.11) to AD, I., and Regge residues.
If we identify A with P', and take P and I" resi-
dues to be roughly equal, we have A~'= —,'„and
hence Al = 8.

Although Az'» A~', these estimates of both pa-
rameters are small enough to make the perturba-
tion expansion seem reasonable. It should be
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G a(') ~s
(4.20)

Our estimate above gives X~/X„=—', , whereas
Sannes et a/. "find Gp~p/G~~s -—0.24 at t = -0.33
and 0.25 at t = -0.45.

Using the above estimates, one finds that only
diagrams 1, 2, 3, and 5 of Fig. 8 contribute sig-
nificantly a,t ISR energies. Diagram 5 is about
equal to diagram 3 [which implies an overestimate
in Eq. (4.19)]; tha, t is, of the order of 1 mb. It
would be very interesting to search for this pro-
cess at the ISR.

V. SIMPLIFIED MULTI-REGGE MODEL

A. The Model

To clarify the ideas presented in this paper, we
shall now discuss them in the context of a highly
simplified multi-Regge model of the t =0 J-plane
amplitude. ~'"'"'" The model is characterized by
the following assumptions:

(1) Only two types of input Regge exchanges are
considered, Pomeron and meson. The latter is,
as usual, regarded as representing the average
effect of all secondary trajectories.

(2) The external couplings G are considered to
be independent of the internal couplings, g, shown
in Fig. 11. For simplicity, adjacent Pomeron ex-
change is excluded.

(3) Degenerate kernels are assumed in order to
reduce integral equations to algebraic equations

Gp P

noted from Fig. 8 (or from the model discussed in
Sec. V) tha. t the higher-order terms a,re formed by
adding internal clusters to diagrams 1, 2, and 3;
they therefore form an expansion in powers of A~'

and A.p', not in powers of A,~ or A,D.
It is interesting to compare these estimates with

triple-Regge analyses of high-mass dissociation.
The parameters A~ and A~ measure the strength of
triple-Pomeron and PPR vertices, respectively.
Using the same rough approximation of setting
ratios of slope parameters and external Regge
vertices equal to unity, one expects the rough pro-
portionality

B. Calculation of A(J)

We proceed now to calculate the complete J-
plane absorptive amplitude A(J) by summing the
various contributions. The solution can be found
in the literature, "but we reproduce the calcula-
tion both for completeness and in order to identify
the origin of the various contributions. First, the
meson-exchange terms shown in Fig. 13 give rise
to the following sum:

1 2 1
(J -4) (J—tie)' J-4 -A'

(5.2)

The sum of all the diagrams without Pomeron ex-
change gives rise to the SRC component of the to-
tal cross section (in the J plane),

4

+sRc(J) J —eo

where

~o=4+g~ 2

(5.3)

(5.4)

is the position of the J-plane pole in this approxi-
mation. We shall call this pole the "bare" Pom-
eron, and denote it graphically by the small ladder
in Fig. 13.

FIG. 12. Typical absorptive amplitude in model,
corresponding to Eq. (5.1).

in the standard manner, and AFS cuts are replaced
by effective poles. The two-Pomeron cut is re-
placed by a pole at J =P~, where P~ & 2o~ —1, and
the two-meson cut is replaced by a pole at J=P„,
where P~S 2n~ —1. The meson-Pomeron interfer-
ence term is neglected.

As an example of the construction of a multi-
Regge amplitude from these rules, the process in
Fig. 12 yields the following J-plane amplitude at
t=0

gp

FIG. 11. Coupling constants in model of Sec. V.

I I I I I I l Ill I

/

FIG. 13. Diagrams without Pomeron exchange, adding
up to bare Pomeron.
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The fact that A, Rc(J) has only a single J-plane
pole is, of course, a result of the oversimplifica-
tion of the model. If one wished to make the model
realistic enough for use in phenomenology, it
would be necessary to add a secondary pole to Eq.
(5.3).'» The meaning of a secondary pole as a dual
representation of low-mass diffraction dissocia-
tion was discussed in Sec. IV B.

Since the remainder of the contributions must
have at least one Pomeron link, it is convenient
to think of these contributions as a product of three
factors: two generalized vertices which them-
selves contain no Pomeron links, plus a "dressed"
Pomeron propagator. The vertex diagrams,
shown in Fig. 14, give the following formula:

2+ M gP + M gM gP +e ~ ~ G 2+ M gPQ 2 2 Q 2 2 2 Q

J-&o

namely,

2a, = n, +p p a [(u, —p~)'+ 4g~»]'" . (5.9)

Calculating the residues of these poles, and sim-
plifying them by means of Eq. (5.8), we can write
the absorptive amplitude as

A(~)
f' f'

J—e+ J —n

where

(5.10)

1f.=
( ~ )zi2 I

G~'(~. P~-)"'+G~'(o'. &o—)"']

(5.11)
1

f-=(~ ~ )
i. LG~'(P~ —~-)"'-G~'(o'. —o'-)'"]

+

The total cross section as a function of s is then
(5.5)

v(s) =f, 's~ '+f 's"- ' (5.12)

J —e
(z ~.)(& P) -g~'-' (5.6)

We are now ready to put all this together into an
expression for the complete J-plane absorptive
amplitude:

Gu', [Gp'+ (G~'g~')/(& —&.)](&—o'. )
~ —&o (~ Pp) (&——o'.) -g~'

(5.7a)

G~ (Z- p~) +2GJ, 'G„'g~'+G~»(z —no)
(& P~)(& -u. ) -g-'

(5.7b)

We shall now discuss the implications of this ex-

pressionn.

C. Bare and Dressed Pomeron Poles

Note that the bare Pomeron singularity, which
appears in ASRc (J') in Eq. (5.3), is not a singulari-
ty of the full absorptive amplitude in Eq. (5.7b).
The true singularities occur at J= n„where n,
both satisfy the equation

Finally, we form the "dressed" Pomeron propaga-
tor by summing all diagrams which can occur be-
tween Pomeron links, as shown in Fig. 15, with
the result

1 4

+ + ~ ~ ~

z —p (J P,)'(~-~.)-

What is the interpretation of the two poles n+
and a ? We shall, of course, interpret n, as the
dressed Pomeron, but the identification of n is
less obvious. Chew and Snider speculated that it
could be identified with the P' trajectory. " A
more conservative approach is to identify it as an
effective P-P cut contribution, recognizing that
we have been working in an approximation in which
cuts are replaced by poles. It is interesting to
note, however, that for reasonable values of the
parameters in Eq. (5.11) one finds that f « f+.
This is reassuring, because a large value of f
would contradict the observation that total cross
sections are approximately constant through the
Serpukhov-NAL energy range.

D. Perturbation Expansion in Powers of g~

+ ~ ~ ~ (5.13)

These terms correspond, in the same order as
written, to diagrams 1, 2, 3, 4, and 7 in Fig. 8.

The first three terms of Eq. (5.13) can be taken

Expanding Eq. (5.7) in powers of g~' through
terms of order g~4, one finds

A (J ) = G~ +
G~' 2G~'g~'G J,

'
~- o'o ~ Pg (J Pg)-(J - o'-.)

+ ~M gJ GpEP
(~ P)(~ ~.)-' (J -~.)(~ P)'-

(~, P)(~, ~.)-=g&', — (5.8)

~ » ~ ~ 1iI I I II ~ ~ +

FIG. 14. End of diagram, to left of all Pomeron links. FIG. 15. Sum of all diagrams between Pomeron links.
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, s"o ' —ss& '
+ 2G „'Gp'g~' + ' ~ ' .

o'o — s
(5.14)

Now, we know from phenomenological fits that n0
and P~ are not very different in magnitude; there-

as a theoretical model for the popular two-com-
ponent fits to multiplicity distributions. ' ' Trans-
forming them to the s plane one finds

o(s) =G„'s"o '+Gp'ss& '

fore, a rough approximation consists of taking
n, =P~ —=P. In this case Eq. (5.14) simplifies to

o(s) =ss '[Gs +Gp +2G~'G~'g~'Ins] + ~ ~ ~ .

(5.15)
This approximation can, of course, be valid only
over a finite range of energies; it breaks down un-
less ~n, -P~~ Ins&(1. In this approximation it is
possible to write down the entire series quite sim-
ply:

v(s)s' 8 = (G~~+G~~) 1+—,
' (g~'Ins)'+ —(g~'Ins)4 + ~ ~ ~ +2G~'G~' g~ lns +—(g~mlns)'+ ~ ~ ~

t

= (G„'+G ~') cosh(g~'lns) +2Gs'G~' sinh(g~' lns) . (5.16)

Comparing Eq. (5.16) and Fig. 8, one can read off
the following correspondence between the param-
eters:

~s =g~' G~~cj=G ~ .
M

(5.17)

Since adjacent Pomeron links have been left out of
our simplified model and secondary trajectories
have been left out of A.s«, we have effectively set
A~ =0. There are no threshold factors in Eq.
(5.16); again, our simplified model has left them
out. In analogy to the work of Chew and Snider, "
we find that they can be reinstated by the simple
replacements

~-u-8~)&

(5.18)

The resulting model has complex Regge poles and
an oscillating total cross section, as discussed
recently by Chew. '
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APPENDIX

The relationship between a~Re, defined (theo-
retically) as containing no Pomeron exchange, and
o'~, defined (operationally) as being all events
with no rapidity gap greater than 6, may be ex-
amined most easily in terms of some particular
model. We will use the same model as used in
Sec. V. We will show that for 6 in the correct
range the two cross sections have nearly the same
energy dependence.

The kernels K, (J') = g, '(J —P, )
' used in con-

structing the model in Sec. V resulted from Mellin
transforms of s-plane Regge asymptotic ampli-
tudes as follows:

t "ds sK(J) = —K(s)—
S

0 So

where K„(s)= g„'(s/s, ) 8~ for meson exchange and
a similar equation holds for Pomeron exchange.
These lead to K„(J)=g„'/(J -p„) and K~ =g~'/
(J —p~). Now if we consider generating o'~, a
cross section that allows any exchanges but ex-
cludes all events with a rapidity gap greater than
~, we start with a cutoff on the maximum value of
the subenergy s at s =r s, = s,e ~ [so is defined after
Eq. (4.14)]:

rs0dS S 8
K~(J) = g'—

S S00

~-(J'-8)h,
g2 J—

Although the two exchanges, meson and Pomeron,
require a two-channel "integral equation, " for our
purposes we can most easily study the effect by
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considering a one-channel equation where the
kernel contains both exchanges, i.e.,

e- (z-8~) ~ 1 e- (J-8~)z

(J) g J P
g J P

(The only change we are making by switching to a,

one-channel equation is to allow adjacent Pomeron
exchanges. ) Notice that, because of our limit on
the subenergy, K~(J) contains no J-plane singu-
larities. The fact that g~'» g~' and that P~= 0
while P~ = 1 means that we must handle the two
terms very differently.

After summing diagrams as in Sec. V, one finds
that the amplitude A(J) is proportional to
[1 -K(J)] '. Thus we are interested in looking for
zeros of K(J) —1 near J =1, which means for J =P~.
Thus we write

K(J) -1=g +g~ 6 —1,s J P

where we have assumed (J p~)—b, &&1 for the re-
gion in J which interests us. Now if in addition

g 'A«1, then

K(J)= g~ — —1J -P~
and the Pomeron will have little effect on the posi-
tion of the pole. Now if (J —P s)b, » 1, then the
pole will be at the standard place J =P„+g~'.
Thus this requirement can be written g~'b, » 1.
If this condition is only weakly satisfied, say,
g„'A = 2, then one can see that the position is ap-
Proximately given by J=Ps+ gs'(1 -e ™n)so that
the position of the pole only approaches n, =P~'
+ g~' as A-~. Moreover, the conditions

P ~g«1

and

g 6«1
must be satified for the Pomeron not to affect the
behavior of a '~. Thus the proper choice for A is
in the range

1 1
2 «Q «

gM

The lower limit is just the average spacing in ra-
pidity, (~) =&/(n) . The upper limit 1/g~ is quite
large; a practical limit is imposed by the desire
to keep 6 small enough that events with rapidity
gaps greater than 6 have appreciable probability.

It is also possible to gain qualitative understand-
ing of the effect of our rapidity-gap decomposition
of the cross section by calculating the probability
of large rapidity gaps. In a simplified multi-
Regge model, such as the one considered in Sec. V
V, it is easy to show that the probability of a ra-
pidity gap 6 occurring as a result of the exchange
of a trajectory of type i is given by

dz, (~)

where

a& = 1+ o.'~(0) —2n, (0).
[this agrees, to within logarithmic factors asso-
ciated with neglect of shrinkage, with Eq. (8) of
Abarbanel et at. ']. Thus Pomeron exchange gives
rise to a flat distribution in rapidity gap size,
whereas secondary trajectories give a distribu-
tion falling exponentially with increasing gap size.
Hence the cross section o' ~, which contains one
large rapidity gap, is relatively enriched in proba-
bility of Pomeron exchange and therefore is ex-
pected to show stronger long-range correlations.
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