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From (13) and (14), one sees that
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Also, from (14) one finds at z = 1 a singularity of
I(z) of type e'i' '~, and hence one cannot calcu-t2(&-&&&i 2

late the multiplicity (n) without inserting appropri-
ate cutoffs to ensure energy conservation. '

In summary: In this simple model, it is seen
that the asymptotic approach to o „,(pp) is from
below. In the absence of explicit energy conser-
vation for inelastic processes, a singularity in the
fugacity plane at z= 1 appears in o „,(z).
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We present detailed results of our previously published calculation of the sixth-order magnetic moment
of the electron. The numerical accuracy has been improved, resulting in a value

a, = -'0/~ -0.32847 (a/n) + 1.21 (a/m), which is in reasonable agreement with the latest
experimental result.

I. INTRODUCTION

In a previous paper" we reported on a numeri-
cal calculation of the sixth-order anomalous mag-
netic moment of the electron. In this paper we
present detailed results and a discussion of our
method. At present there appears to be reason-
able agreement between theoretical calculations
and experiment. In addition to the actual calcula-
tion we present a new method of handling infrared
singularities in Feynman graphs in numerical
calculations.

In Sec. II we summarize past g-2 calculations
and present our results for individual graphs.
We also compare theory and experiment there. In
Sec. III we briefly review the method of reducing
the momentum-space integrals to parametric in-
tegrals. In Sec. IV we discuss the introduction of
ultraviolet and infrared counter terms. We made
no attempt to make use of Ward identities and we
just evaluated each diagram in "cookbook" fashion.
In Sec. V we discuss the actual numerical integra-
tion.

The results presented in Sec. II suggest that a
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FIG. 1. General fermion-photon vertex graph.

slight improvement in the experiment and an im-
provement in the theoretical calculation will give
a very precise value for n, assuming the validity
of quantum electrodynamics (QED). It is hoped
that the detailed results presented here will en-
able others to compare their calculations and iso-
late any discrepancies. It is relatively easy to
improve the accuracy for an individual graph if
such discrepancies are discovered. Since there
are no other published numbers for most individ-
ual graphs, these results should help those doing
analytical calculations. Finally, the method of
treating infrared divergences should prove ap-
plicable elsewhere.

II. PRESENT STATUS OF (g-2),

The amplitude for the vertex function of Fig. 1
may be written

FIG. 3. Topologically unique fourth-order fermion-
photon vertex graphs. Those graphs which vanish after
mass-shell renormalization are excluded.

suits of our calculations for graphs 1-28. All of
these graphs are calculated in the Feynman gauge.
Independent numerical results for graphs 1-3
(see Ref. 14) and analytic results for graphs 2,
11, 13, 21, 23, and 24 (see Ref. 15) are also in-
cluded. Unfortunately, the analytic results are
for graphs which are easy to do numerically. It
is comforting to see that our error estimates are
conservative, as the actual error is less than one-
third of our estimated error. In Table IV we have
collected sums of certain subsets of graphs 1-28.
We use the following set of numbers in evaluating

—ieu(s) y', (q )y„+ i aq„u(~), (2 1) Graphs ( 1-28) 0.943*0.06,

where ~, and &, are the charge and moment form
factors. The anomalous nioment is obtained by
extracting

a =-y, (0) =-,'(g —2)

+ Q ~ +, g ~ + ~ ~ (2.2)

from the perturbation theory graphs. The sec-
ond-' and fourth-order" contributions have been
calculated by several groups. The corresponding
graphs are shown in Figs. 2 and 3. The results
for the fourth order ' are summarized in Table I
for completeness. The sixth-order graphs are
shown in Figs. 4 and 5. In Table II we summarize
the results of the various calculations' "of
graphs 29-40. Graphs 29-31 and 36-37 are known
analytically. In Table III we summarize the re-

(29-31) 0.05429,

(32-38) —0.154+0.005,

(39-40) 0.370 + 0.013,

a, = (1.21 + 0.07) .

TABLE I. Values for fourth-order graphs shown in
Fig. 3 plus their mirror images. a4=-0.328 4794.

Graph a4 Coeff. pf lrgP

—+—71. +—&(3) ——71 ln21 13 2 5 5 2
8 38 4 8

(=—0.467 =P,1)

~~ +~71 (=0.778 =P,2)

——+—7t ——g (3) + —7t. ln287 1. 2 1 1 2
24 18 2

(=—0.564 =P,3)

1
2

Kinoshita and Cvitanovic" have also evaluated
graphs 1-28 and they obtain a slightly higher re-
sult for a6, a6 (1-28) = 1.02 +0.04 and a, = 1.29

FIG. 2. Second-order fermion-photon vertex graph.
Those graphs which vanish after mass-shell renormal-
ization are not included.

(=-0.090 =@4)
11 1 2

= 0.016
38

1

2



ANOMALOUS MAGNETIC MOMENT OF THE ELECTRON

/ w /
/

l7

2l
raI vs /

/%

rJ& /
/r

10

/
/

IB

22

26
/ /

/ 1w/
/

r r-ii/l /
/

rirul a /
/4

l5

/ / \/

l9

r/i/ i /
/

l2

l6
r

w/ /
r

20
r~N/ a//

28

n '=137.03551 +54.

Of this error, 44 is from a'"~ and 10 from a'"
(the discrepancy between our a, and Ref. 16 corre-
sponds to an error of 11). Thus, a modest in-
crease in both the experimental and the theoretical
accuracy will give an independent value for a.
The value of a, calculated by Kinoshita and
Cvitanovic" gives

e ' = 137.035 63.

For further discussion on the present status of
QED, see Refs. 19, 20, and 21. For an alternative
method of calculating these graphs, see Ref. 22.

III. REDUCTION TO QUADRATURES

While the evaluation of vertex graphs is a
straightforward task, the large number of graphs
and their high order has led us to choose a very
systematic procedure for their evaluation. This
procedure is also well suited to implementation
on a computer. The general scheme is that de-
scribed by Chisholm. " We briefly review it.

FIG. 4. Sixth-order vertex graphs without closed
fermion loops.

TABLE II. Results for graphs shown in Fig. 5 plus
their mirror images.

+0.06. Carroll and Yao" have also reported a
calculation with the result a, (1-28)=0.74 +0.06.
Using n '=137.03 608 (+26), we obtain

a& =(1159651.9+2.5)x10-'.

The uncertainty in a'" arises from uncertainty
in n(2.2) and in the numerical a, result (1.0). The
latest experimental value" is

a'"~ = (1 159656,7+3.5)x 10-~,

which is in fair agreement with theory. We can
use the experiment to obtain a value for n:

Graph

30-31

29-31

32-33

34

0.002 558 5
0.002 56 (15)

0,052 870
0.052 (2)

0.05546 (6)

0.0522 (10}
0.0532 (4)

-0.0031 (10)
-0.0032 (3)

0.0274 (5)
0.0273 (3)

Ref. 9
Ref, 7

Ref. 9
Ref. 7

Ref. 6

Ref. 7

Ref. 6

Ref. 7
Ref. 6

Ref. 7
Ref. 6

34

38

3l

38

39-40

-0.1151 (9}
-0.1161 (14)
-0.115446 4

-0.0653 (3)
—0.064 (3)
-0.066 467

-0.0474 (20)
-0.051 {3)

-0.1528 (25)
-0.1556 (31)

0.36 (4)
0.366 (10)
0.37 (1)

Ref. 7
Ref. 6
Ref. 11

Ref. 7
Ref. 6
Ref. 12

Ref. 7
Ref. 6

Ref. 7
Ref. 6

Ref. 8
Ref. 13
Ref. 10

FIG. 5. Sixth-order vertex graphs with closed fermion
loops.

~ Includes analytic result for 36, 37. The errors in
the other graphs were assumed to be random.
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TABLE III. Coefficient of (e/m) for a6. The values
shown are for the graph plus its mirror image (if any).
Graphs marked a were calculated in pairs, i.e. , (16+28)
and (19+27). Consequently the sum is more accurate
than individual terms. The smallest error is for the
sum. The p, 's are finite parts of fourth-order graphs-
see Table I.

A general term with which we must deal is of
the form

Jdk, ~ u(s)y, (g', +p', —m) 'y8(P', +p', —m) '

&& ~ y ~ u(r) k 1 2

10

13

19

20

—2.746 (7)
-2.728 (16)

-3.374 (2)
-3.332 {11)
—3.374 31

6.541 (13)
6.538 (12)

—1.211 (13)

0.832 (13)

2.581 (13)

—2.664 (2O)

-0.083 (6)

0.625 (6)

0.795 (6)

-2.463 (2)
—2.463 23

—0.123 (20)

2.270 (10)
2.264 95

5.515 (25)

—3.951 (40)

—1.763 (20)

0.613 (13)

—4.201 (13)

-O.330 (13)

-O.153 (6)

Ref. 14

Ref. 14
Ref. 15

Ref. 14

Ref. 15

P3 P4

—2p(

-(p3 + 2p, ,)

2@i

(lng2)2

1
4

1
8

1
8

where u(s) and u(r) are final and initial spinors,
y ~ y are internal photon vertices, y„ is the
external field vertex, (f, +P, —m) ' is a fermion
propagator, and k,. ' is a photon propagator. P,
is an external, constant four-momentum associ-
ated with the i th fermion line. P, =r or s depend-
ing upon the line. I, =Q,. a, , k, , i=1, . . . , 6;
a,. &

=+ 1, 0. The fermion propagators are rational-
ized and the denominators are combined by in-
troducing Feynman parameters using

(x),A, d„) '=(x —!)!Jdx, dx„

&|)(l-x,—~ ~ ~ —x„)D ",
where D =Q, x, A, We now have a denominator of
the form D =P„.A, ,k, k,. + 2+, B, k,. + C, where
A, q=Z» a„, a»~x», B, =+dad. (p,. x, , C=p,. (p,

'
—m, ')x, . If we now perform translations and
rotations in k space to diagonalize the denominator
and bring it to the form D =Q, A,',. k,"+ C', the
propagator numerators will assume the form
(f,' + N, ), where N, =(—,

' 8,P + ,' D. , y'+ m),—P=r +s,
and q =s —~. The S,. and D,. are functions of the

x,. only and l,' is a linear function of k,' with co-
efficients depending upon the x, Since the denom-
inator is now diagonalized and even in the k,'. , only
numerator terms even in k,' survive the symmet-
ric dk' integrations. These integrations may now

be done. We note that

TABLE IV. Sums of graphs corresponding to fermion
self-energy graphs (upper) and to gauge-invariant sets
(lower).

22

27a

28~

5.308 (2)
5.308 08

-0.005 (20)

-1.512 (6)
—1.509 70

1.789 (2)
1.790 28
1.777 (13)

-1.286 {13)

-1.888 (6)

1.854 (13)

-0.021 (100)

Ref. 15

Ref. 15

Ref. 15
Ref. 22

p3 —2p 2

p4+2pg

1
8

1
8

1+ 8

Graphs

1, 4, 14
6, 16, 28
2, 11, 21

13, 23, 24
12, 22, 25
10, 20, 26

7, 9, 17, 19, 27
3, 5, 8, 15, 18

1-3
4-13

14—23
24-28

a6

1.559
0.798

—0.530
2.547

-1.414
—1.249

0.097
-0.867

0.421
0.558

—0.483
0.445
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As a result of this kind of integration in addition
to terms where each fermion-propagator numera, -
tor is replaced by N, , there will be terms having

y ~ ~ y in place of two numerators while all other
numerators are replaced by N, . These "pairing"
terms are of the form y ~ y ~ t/„. , where V, &

is
a function of the x, In fact we must consider all
possible terms having 0, 1, . . . , (—,'n) pairings.
While it is possible to absorb the P, term in N,
into S, and D, , we segregate it because of the way
in which it enters into infrared-divergent terms.

The S, , D, , and t/'„are easily found in the fol-
lowing way: Restarting from the initial expres-
sion, let eachP, be a formal, unique variable.
We will give it its actual value much later. We re-
place (f, +P,. ) in th.e propagator numerators by

where 0, is a dummy name for the square of the
mass of the ith electron. This removes all ex-
plicit numerator dependence upon the integration
momenta k. After parametrization the dk inte-
grations can be performed using fdk, dk„/D"
= U" ' '/W" ', where U is the determinant of
the A„. and

A f~» Bf
B,. C

The operator 0, acts upon the B, and C in S".

O, W " =(T, /U+p, )W ". The next operator, 0„
can act on W or on (T, /U+P, ) to give

0, O»W "= +p, —'+p,

&iy gns
2(n-1) U'W"-' '

8'is quadratic in the P;, T; is linear, and T;, is
independent of the P;. There are no worse than
"pairing" terms, although all possible pairing
combinations will arise. When calculating a graph
in this way, it is necessary to include renormali-
zation subtraction terms at this stage —otherwise
the operations above are not always well defined.

We may now let P; =r or s in N', T;, T&, . Going
to the limit q'=0, r'=s'=r s =m'=1 we find that
TV, T;, now depend only on the x;, while T; is lin-
ear in ~ and s with coefficients depending only on
the x, We can now identify T,/U=-,'S, P+ ,'D, q;. -
—T,.&/[2(n-1)U ] = V,» T„, T&„W /[2(n-1)
x(n-2)U'j = V„, V», etc. The Wean be written
by inspection for any graph and U, S, D, V are
just combinations of minors of W and the x, .

Done in this way each sixth-order graph pro-

duces 8671 terms. There are 4' nonpairing terms,
15x 4 single-pairing terms, 45 && 4' double-pairing
terms, and 15 triple-pairing terms. Many of
these terms quickly drop from the calculation and
many others can be combined to provide simpli-
fication. However, initial generation of terms in
this manner greatly facilitates the calculation by
systematizing it.

Finally, we must extract the J;(0) part of a
graph. For renormalization purposes we will
sometimes require the &,(0) part. The usual way
to do this is to multiply the expression between
spinors by a projection operator and take traces. '
However, since the fdk has been done, it is much
easier to extract the contribution to either form
factor directly. At this stage each of the terms
has a product of the factors v (v =P', y', y, S', m),

y„y, y& between spinors. After the usual
~ ~ y identities are utilized, each term is of

the form u(s) y& u(r), where " "denotes
some product of the v's. The vertex function (2.1)
can be rewritten as

'V +S—ieu(s) (F, +F, ) y„-y', u(r) .2'
p

In principle we should include a term q~E, (q'),
but this term vanishes for the sum of a graph plus
its mirror image. In addition the projection tech-
nique we use is orthogonal to F,. Letting L(A, B)
=AP+B and R(C, D) =CS'+D so that I.(O, 1)=R(O, 1)
= 1, we can write a term as u(s)L(0, 1) ~

y„
xR(0, l)u(x). Using the Dirac equation with m= 1
and q' =0, we see that u(s)L(A, B)v =u(s)L(A', B'),
where A' and B' are some linear combination of
A and B which depends upon which n we have.
Similar relations hold for vR(C, D)u(r). We use
these relations to reduce the expression to
u(s )L(A, B)y„R(C, D)u(~), for which F,(0) = (A+ B)
x(C+D) and for which &,(0) =A(C+D)+(A+B)C.
This allows us to readily extract the contribution
to &, , (0) for each of the terms for each graph.
The expression for the contribution to F, ,(0) from
a graph is now simply in terms of 8', U, S, , D, ,
and V,-, , all of which are functions only of the
Feynman parameters over which we must inte-
grate. It is thus reduced to quadratures. The al-
gebra was done by machine using a program writ-
ten by Levine. '4

IV. ULTRAVIOLET AND INFRARED SINGULARITIES

The diagrammatic expansion and the procedures
we have outlined above are plagued by the exis-
tence of nonintegrable singularities in the inte-
grands. In fact, because of these singularities,
many of the operations we have performed above
are only formal. The singularities are of two
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I"IG. 6. Second-order vertex insertion and the renor-
mal izing UV counterterm.

types: the ultraviolet (UV) divergences associated
with the short-distance behavior of the theory and
the infrared (IR) divergences associated with the
long-range behavior of the photon propagator.
These singularities are well understood. Analyti-
cally, they are readily handled by regularization
using UV and IR cutoffs. For example, the sub-
stitution

1 1
A.
' small, A' large

fz

produces finite, cutoff-dependent quantities.
Then, for this problem, renormalization and can-
cellations between graphs produce a result which
is finite as X2-0, A'- ~.

The momentum-space expressions for the dia-
grams have nonintegrable singularities at k =0, ~.
Although we have formally performed the Jdk,
those divergences now appear in parameter space.
%hen certain of the x,. -0, W vanishes in such a
way that the fdx is divergent. We are obliged to
integrate our functions numerically. In that case
it is undesirable to introduce any explicit cutoffs
and either hope for approximate numerical cancel-

FIG. 7. A fourth-order vertex function before and
after the introduction of renormalizing vertex UV in-
sertions. The symbol (3 means multiplication.

lations of cutoff-dependent parts between graphs
or to evaluate the functions for many values of the
cutoff parameters and do an extrapolation to the
appropriate limit. Instead, we have handled these
problems in a way which produced integrable,
cutoff-independent functions in both momentum
space and Feynman parameter space.

For the UV divergences we have introduced the
usual renormalization counterterms. " The ver-
tex function requires one subtraction

A„(P ',P) -A"„(P', P) =A„(P ', P) -A„(P.,P.),
where P, is a mass-shell momentum. This may
be represented graphically for the second-order
vertex as shown in Fig. 6. In Fig. 7 we draw the
main and UV counterterm for the fourth-order
ladder graph. Here we ignore the over-all sub-
traction which does not contribute to the magnetic
moment. Although we may consider the counter-
term numerator to be factored into two second-
order pieces, we parametrize the counterterm
denominator as we parametrized the main-term
denominator:

+V = +main
=

3I ] + A'2 + 33 t X4 + X5

X2+ X3

wX] + X2 + A3 + A~'4

X2 I ~$3 Xg + X2 + Xq + X4

X2+X3+X6 X2+X3

X2 +X3 0

8' =H~
counter

A] +X4 +X5

A]+X4
I

o x+x)
X2 + X3 + X6 X2 + X3 ~

x, +x, 0

For the numerator of the counter-graph we use the
8, D, Vs obtained from W,

'. In this way we pro-
duce a counterterm which when subtracted from
the main term leaves a function free from UV di-
vergences point by point in parameter space. We
treat the electron self-energy insertions in a sim-
ilar manner:

s (p) -s" (p) =s(p) —s(p, ) —()((- m)
»(p)

P p

In Fig. 8 we give an example for a fourth-order
graph. The bar on the electron line represents
the operator I (i.e., there is a propagator on ei-

UV

I

UV
8 I

CA

FIG. 8. A fourth-order vertex graph before and after
the introduction of renormalizing electron propagator
UV insertions. The electron line with the double bar de-
notes the factors (p' —m) t (P —m) (p' —m) . To keep
point-by-point parameter-space cancellation, the numer-
ator and denominator factors cannot be canceled to
give 1. The single bar separates the line into two pro-
pagators, (P' —m) ' Q-m)
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UV

CA CB

UV UV UV
UV

cc CD CE

FIG. 9. Sixth-order graph 3 with UV counterterms.
Both vertex and electron propagator renormalizations
are included. CA and CB have the same denominator as
do CD and CE.

ther side of the bar). The sixth-order graph of
Fig. 9 (graph 3) contains both vertex and propa. -
gator insertions. Note that while there are a to-
tal of six graphs in this case, there are only four
different W's. Those graphs having the same
characteristic denominator are grouped together.
Using this procedure, all UV divergences are re-
moved and the necessary renormalization is per-
formed.

We have used an analogous procedure to handle
the IR divergences. " It is based upon the factor-
ization property used to show general, analytical
cancellation of IR divergences. " In momentum
space the IR divergences arise when some photon
momenta in a graph go to zero. If, as in Fig. 10,
a vertex graph (C) can be written as a combination
of a vertex graph (A) and a. proper two-particle
scattering graph (B), then when all photon momen-
ta in B vanish (ks), we have an IR divergence. If
we are interested in F, (0), then 4 must be of
higher than first order For F. ,(0), the cases
where A is the bare vertex must also be consid-
ered. Such situations arise in main and UV count-
er graphs and in the second subtraction terms for
electron-propagator renormalizations. The latter
are very like vertex graphs as seen from Ward's
identity. While these two quantities are formally
identical, they are divergent and great care must
be taken in handling them.

CC

FIG. 11. Fourth-order ladder vertex graph with UV
counterterm {CA} and IR counterterms (CB) and (CC).
(M —CA) is UV-convergent. (M —CB) and (CA —CC) are
IR-convergent. CB = CC so that the sum of the IR coun-
ter terms is zero.

In the IR limit, k~ -0, the fermion lines joining
A and B go to the mass shell and the graph factors.
The resultant expression for the B part of the
graph is the IR limit of the F,(0) part of the cor-
responding vertex graph (B'). We represent it
graphically as shown in Fig. 10. The IR limit in-
volves deleting all references to the k~ in A and
replacing the fermion propagators in B, 1/(P,.
+ps —m), with the expressions (P,. +m)/t (P,. +Os)'
—m']. In these expressions all numerator terms
involving the k~ are missing. Both the V, , or
pairing terms and the S,. and D,. parts of ¹ dis-
appear. It is towards this eventuality that we have
segregated the P,. term in each¹.

As an example, consider the fourth-order ladder
graph. In Fig. 11 we have drawn the main graph M
and UV counterterm CA, and subtracted (CB) and
added (CC) the IR limits of graphs M and CA, re-
spectively. If we parametrize the subtracted
counterterm (CB) in parallel with the main graph,
as we did for the UV counterterms, the difference

M25 CA25 CB25 CC25

CB26 CC26

FIG. 10. General fermion vertex graph (C) separated
into a vertex (A) and scattering (B) graph. In the IR
limit, k& —0, this factors into a vertex graph (A) multi-
plied by the IR limit of the vertex graph {B')correspond-
ing to the scattering graph.

FIG. 12. Main, UV, and IR counterterms for sixth-
order graphs 25 and 26. (M25 —CA25) and (M26 —CA26)
are UV-convergent. (M25- CB25), (CA25 —CC25),
(M26 —CB26), and (CA26 and CC26) are IR-convergent.
CB25 = CC26 and CC25 = CB26 so that the total added IR
counterterm is zero.
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(M —CB) will be IR-divergence-free in k space and
point-by-point integrable in parameter space.
However, unlike the UV case, this counterterm
has no physical meaning and must finally be re-
included. If desired, this may be done analytically
or numerically to obtain a term like (a+ 5 ink') in
the limit A.'-0. This will be comparatively easy
since we have now factored the graph into lower-
order pieces.

The UV counterterm (CA) for this graph is also
IR-divergent. The necessary IR counterterm
(CC) is, in this case, the same as for the main
graph but of opposite sign. The only difference
between the two IR counterterms is in the label-
ing of some variables of integration. For the
graphs in Fig. 11 the UV divergences cancel be-
tween M and CA, while the IR divergences cancel
between M and CB and between CA and CB. CB
and CC cancel identically after integration. There
is no need to calculate even lower-order IR-di-
vergent terms for this graph.

In general such IR divergence cancellations oc-
cur between graphs rather than within a single
graph. In that case no explicit IR-divergent terms
need be calculated unless one wants a cutoff-de-
pendent result for a single graph. For E,(0) there
are subsets of graphs that are gauge-invariant
corresponding to sets that have the same number
of virtual photon lines crossing the external field
vertex. The IR counterterms cancel within each
subset. We have, in addition, evaluated those
fourth- and second-order IR divergences needed
to obtain an explicit IR cutoff-dependent value for
each of our sixth-order graphs. As a final exam-
ple consider the main and counterterms for dia-
grams 25 and 26 as shown in Fig. 12. In this case
all IR counterterms cancel between the two graphs.

The situation is slightly more complicated for
F,(q') for q'40 or for F,(q'). The same tech-
nique described above will work; however, the
infrared counterterms will have to be evaluated.
Fortunately, they are always of lower order.
They will also have to be calculated for the case
when the two fermion legs have different momen-
tum. There should be no trouble in practice in
generalizing the technique to these cases.

While these procedures produce a great many
counterterms, they are very readily found and
easily reduced to parameter-space expressions
using the same techniques as are needed for the
main graphs. The resultant parameter-space
functions are everywhere integrable and no di-
vergent expressions need to be evaluated. Explic-
it cutoffs are avoided at all stages. For the fourth
order these procedures produce the usual re-
sults.

Alternatively one can try to separate the IR di-
vergences in parameter space. In our opinion
this is considerably less transparent than the in-
troduction of IR counterterms in momentum space,
which is very simple and straightforward.

There are four irreducible fourth-order infra-
red counterterms needed. They are the same
graphs as p, , —p, 4 in Fig. 3 with special rules for
evaluation. The graphs are evaluated with all
photon momenta deleted from numerators of prop-
agators with the exception of D, where we found it
convenient to keep the photon momentum for the
self-energy insertion, in which case the renor-
malization terms are also included.

The values for these graphs are given in Table
V. In Table VI we list the sixth-order IR count-
erterms necessary for each graph.

V. NUMERICAL INTEGRATION AND ERRORS

Having produced integrable expressions in pa-
rameter space we must now integrate them. Cer-
tain trivial integrations can be done analytically
leaving 5-, 6-, and 7-dimensional integrals to be
done numerically in sixth order. We have used
both the adaptive Monte-Carlo technique of
Sheppey" and simple Legendre-Gaussian quadra-
ture in each variable after mapping the simplex
Px,. = 1 onto a hypercube and applying various
transformations mapping (0, 1) onto (0, 1) with
Jacobian x'(1 —x)'. These mappings are used to
control the integrable but singular behavior of
the integrands at the endpoints. The high-preci-
sion runs are done with the Gaussion points. Con-
vergence is gauged by changing the mesh. While

TABLE VI. IR counterterms required by graphs 1—28.
TABLE V. Values for fourth-order counterterms

shown in Fig. 11. A corresponds to p&, B to p, 2, C to
p3, andD to p4.

A = —0.9675 (2) —2 ink

B =2.701 11 (5) +—&~2 +—(Ink )

C = 0.7336 (3) + 8 pn~ )

D = —1.7898 (1) +~ I~ +—(Ink )

Graph

5
6

9
10
12

Counterterm

-C
-D
—A.

-B
-C
-D

2C +A

Graph

13
18
21
22
23
25
26

Counterterm

D

-D
1—2A

2A1
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some graphs are less well behaved than others,
we are typically able to get accuracies of about
0.01(a/m)'. It is not unusual to use over 10' points
on a graph.

Gaussian integration appears to be superior for
the 5-dimensional integrals; however, for the
higher-dimensional integrals the situation is not
so clear. The Sheppey routine gives an "automat-
ic" error estimate whereas the errors we have
quoted using Gaussian integration are "eyeball"
estimates —in most cases quite conservative ones.
The results of DeRujula et al."on graphs 1-3
were obtained using RIWIAD.2' As analytic results
are known for graph 2, a direct comparison is
possible. Table III shows their error —although
small —to be 4 times their estimated 90%%up

confid-

encee limit, which suggests that RIWIAD error
estimates may be too small in some cases.

Our results for the graphs with analytic an-
swers are in excellent agreement. We do not ex-

pect quite such good results for the higher-dimen-
sional integrations.

Due to the limited number of integration points
that can be used, there is a slight chance of a
large error wheri using Gaussian integration. In
fact, the difference between the present answer
and our previously published result' is almost
entirely due to an 8%% error in one graph. To a
considerable extent we have removed this kind of
error by reintegrating all the graphs with a change
of integration variables. The necessity for high
accuracy is easily seen by noticing that the value
of a typical one of the 28 numbers in Table III is
greater than the sum of all 28 graphs. We have
also integrated the absolute value of the integrand
for each graph. These numbers are typically as
large as the largest number in Table III, indicating
large internal cancellations within each graph,
which intensifies the problem of reducing the nu-
merical error.
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