lco

sults to him.

15M. Gourdin, lectures presented at the International
School of Physics “Ettore Majorana,” Erice, 1971 (un-
published); and Nucl. Phys. B29, 601 (1971). Note that
in Feynman’s notation, Dy, D,, and D; correspond
to®, N, and A quark-parton distribution functions.

16See Ref. 13.

1"Recent experimental information was presented by
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D. H. Perkins and Ph. Heusse at the XVI International
Conference on High Energy Physics, Chicago-Batavia,
11., 1972 (unpublished).

18The results for the simple model of Sec. IV A and
model (B1) differ from the results of model (B2) pre-
sented in the tables and figures typically by 5% or
less.
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The approach to the high-energy asymptotic limit of the pp total cross section and elastic cross
section is calculated using a unitary field-theoretic model, in which simplified versions of all eikonal,
checkerboard graphs are included. The sign of approach to the asymptotic limit is negative.

The approach to the high-energy asymptotic lim-
it of the pp total cross section and the elastic
cross section has been an interesting problem.?

In this note, a unitary field-theoretic model will
be presented, in which it is shown that the ap-
proach is from below, in agreement with Blanken-
becler’s argument, wherein this property is gen-
erated by strong, absorptive, unitary corrections
to inelastic amplitudes.

The model interaction Lagrangian coupling nu-
cleon, neutral vector meson (NVM), and scalar
pion fields is given by

£/ =igl )y, WY+ Ay, w2, (1)
1 u
A formal construction of the eikonal function for

nucleon-nucleon scattering has been given else-
where?; it is

.0 5 . S
eiX = exp<— éﬁf’ﬁ Dc?}ﬁ>exp [zgz/J FH AC(H)EF‘{;J

5!

n=o

(2)

J

where

A = A1+ 111A,)7E,
EF’I'J,(w') =ph. f_” AEB(w =2, ,+ Ep, ,).

In the high-energy limit (s =, #/s—0) it may be
shown that

f Fu A, (1) 4

(+) .
--f B 05, (2, 5 W, (9

A simplified model, in which the emission of arbi-
trary numbers of pions in the manner of Fig. 1(a)
is replaced by pion emission in the form of Fig.
1(b), will be fully solvable in the sense that all
operations of (2) may be performed. In this model
A (M) is greatly simplified, and it is a straight-
forward calculation to show that

(+) ) T _ = -
fd_;"l'_ dz;-) Kc(zl ’ ZZI n) = —"—KO(m b) —mz fdzx KO(rnz"ITb XI) KO(m l XJ)

27

27

h-% % g\
+m2fd“xK°(";Lb X1) K"(;:IXD 8(z, —x)78 (\z22x> i 1 (4)

X/mA(z, - x) *

where b= %,-%,. A further simplification, used where appropriate under the integrals of (4), is obtained

by the replacement

Km|%]) _ 8%
2 m?

(5)
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and gives
dz\" - _ Ko(mb) 1
J-T dz; Az, Zz‘n) o - (/m3I (’2 , Z(—) z(2+))' (6)

With these approximations, one has, easily,
e!X = exp (—lz‘ f—é- D i) exp[ﬁl{ mv) (1- 251, 20 z(")))_l}
2 i [ 61—1 2," 0 m2 29 %1 9 72 =0

* o -te ig? Ky(mb) b) _ A2 .
[ [ fonfiae D402 ],

0 =f€

The divergent quantity —iD,(0) has been interpreted and identified physically elsewhere®; it is

. Tk . s TK®
—ZD¢(0) = m-—z In; = -7;1—2 Y,

where «® is a pion transverse-momentum cutoff parameter, and the phase space associated with each vir-
tual pion grows ~ Y.

The two-dimensional impact parameter representation of the small-angle c.m. scattering amplitude is
then

2p e‘3°g(1 — efx ()

b e‘E'* f d& exp [ ( > ]f E—exp [za& + li Kz(:nb)}}, (8)

with s = = (p,+ p,)? and {= - (pl—p1)2= q®. If we replace £ by £’ and a by a’, respectively, where

T(s, t) = 2’5

2 2
ATy, 9)

E= £ Y,T2 a=a'v P, and Vo= S

there follows

;2
2 “”’[—f ,-g'z ; ,_’_g__f&@_b_)ﬂ 10
S,t) be 1 d& tag +a, 21T7Y_c . ( )
Using the optical theorem o, = (4m?/s) ImT(s, 0) ized probability to produce % pions. This may be
and expanding with respect to g2K,(mb)/27VY,, one calculated here in a straightforward way:
finds
Z zo—fdbl—ZRee‘X+Iz
-9 fdzb g°Ky(mb) <\/— gzKo(mb)/7> O (2= Z [ (2],
211\/? 27T ‘/?c- : (13)

(11)

Even though this model gives a vanishing total
cross section as Y, -, the significance of the [ ARt
calculation is that it provides an explicit demon- )f oo
stration of the general mechanism in which the *
approach to the asymptotic total cross section is
from below.

To study multiparticle production processes, one
can use the formula*

da’p, d’p < f 5 5
>z"p = | —1Z -2 i 2 p =2
2"P, @n® (2n)° exp| +iz GIIID*GHZ)

x T(I,) T7(11,)

(12) FIG. 1. (a) A typical fundamental graph of the exact
I, dy—=0> theory. (b) The pictorial representation of (a) in the
where z is the “fugacity” and P, is the unnormal- limit of large NVM mass between pion emissions.
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_ © da 12 l_g_z_Koz(mb) 2
1= [ - T exp |- bt - - T (122

i 8K (mb)V2 }
2 onvw, T A) gy
From (13) and (14), one sees that
O = 2 fdzb(l - Ree'X), (15)

1 1
0y=30,, ~ fdzb ﬁgzKo(mb)—\/—?: s (16)

showing that, asymptotically,
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1 ~ ~
20 10t7 0 el T O ipel

Also, from (14) one finds at z= 1 a singularity of
I(2) of type ¢**=?*"2 " and hence one cannot calcu-
late the multiplicity (#) without inserting appropri-
ate cutoffs to ensure energy conservation.®

In summary: In this simple model, it is seen
that the asymptotic approach to o,,(pp) is from
below. In the absence of explicit energy conser-
vation for inelastic processes, a singularity in the
fugacity plane at 2= 1 appears in g ().

The author thanks Professor H. M. Fried for
guidance and discussions throughout this work.

*Work supported in part by the U. S. Atomic Energy
Commission. ’

!The question concerns the sign of the two-Reggeon cut
contribution to a cross section approaching its asymp-
totic limit from above or below. For arguments lead-
ing to a positive sign, see, for example, G. F. Chew,
Phys. Rev. D 7, 934 (1973); H. D. I. Abarbanel, ibid.
6, 2788 (1972). For a negative sign, see, for example,
R. Blankenbecler, SLAC Report No. SLAC-TN-72-13,
1972 (unpublished). See also A. R. White, CERN Re-
port No. TH-1646, 1973 (unpublished); V. N. Gribov,

Zh. Eksp. Teor. Fiz. 53, 654 (1967) [Sov. Phys.—JETP
26, 414 (1968)]. -

’R. Blankenbecler and H. M. Fried, Phys. Rev. D 8, 678
(1973). See also H. M. Fried, Functional Methods
and Models in Quantum Field Theory (MIT Press,
Cambridge, Mass., 1972), Chap. 10.

H. M. Fried, Phys. Rev. D 6, 3562 (1972).

‘Reference 2, Chap. 9.

5For example, see the method used by H. Cheng and
T. T. Wu, Harvard Univ. report, 1973 (unpublished).
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We present detailed results of our previously published calculation of the sixth-order magnetic moment
of the electron. The numerical accuracy has been improved, resulting in a value
a, = o/m -0.32847 (a/m)? + 1.21 (a/7)?, which is in reasonable agreement with the latest

experimental result.

I. INTRODUCTION

In a previous paper’:? we reported on a numeri-
cal calculation of the sixth-order anomalous mag-
netic moment of the electron. In this paper we
present detailed results and a discussion of our
method. At present there appears to be reason-
able agreement between theoretical calculations
and experiment. In addition to the actual calcula-
tion we present a new method of handling infrared
singularities in Feynman graphs in numerical
calculations,

In Sec. I we summarize past g — 2 calculations
and present our results for individual graphs.
We also compare theory and experiment there. In
Sec. III we briefly review the method of reducing
the momentum-space integrals to parametric in-
tegrals. In Sec. IV we discuss the introduction of
ultraviolet and infrared counterterms. We made
no attempt to make use of Ward identities and we
just evaluated each diagram in “cookbook” fashion.
In Sec. V we discuss the actual numerical integra-
tion,

The results presented in Sec. II suggest that a



