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Two topics are treated in this paper: the explanation of the
~
BI (

= —,
' rule based on the

symmetric quark model and the tests for this explanation in Q nonleptonic decays. From the
"color-quark, " the three-triplet, and the paraquark models, the

~

nI
~

= 2 rule follows for
the octet-hyperon, the Q, and the kaon weak nonleptonic decays as a consequence of current
algebra, pion PCAC (partially conserved axial-vector current), and dispersion relations.
Gronau's successful numerical results for the octet-hyperon decay amplitudes also follow in
these alternatives to the Bose-quark model. However, though the origin of both explanations
is the Fierz reshuffling property of the V+A interactions, the explanations of the

~
DI~ = 2

rule are quite distinct, e.g. , in the Bose-quark model this rule is exact whereas in the other
versions it is only approximate, being violated by continuum contributions to the absorptive
parts. Because (0~3C ~Ã) and (z~3C ~X) vanish in the symmetric quark model, the usual
current-algebra soft-pion argument for ( DI~ = 2 rule and the K*-pole-dominance assumption
(as a Feynman diagram) for K& 27t are not convincing. On the other hand, the ordinary
Fermi-quark model supplemented with octet dominance can be excluded, as it predicts D/F
= 3 in the SU(3) limit for the matrix element of the parity-conserving Hamiltonian for two
baryons in the nucleon octet (D/E = —0.85 from P-wave fits). The AK decay mode of the Q
should be predominantly P wave (parity-conserving), whereas the = ~ mode should have the
I' wave strongly s&PPressed and comparable to the D wave (parity-violating). This implies
I'(Q 7t)/I'(Q —AK ) ~&1. The estimated total Q decay rate is consistent with the pre-
sent experimental number.

I. INTRODUCTION

One of the important questions in the phenorne-
nological theory of weak interactions is whether
the current-current form of the effective Hamil-
tonian can successfully explain the observed

~
ES~ =1 nonleptonic weak decays. Unfortunately,

even the most striking qualitative aspect of these
decays, namely, the well-established

~
AI

~

= —,
'

rule, does not immediately follow from the cur-
rent-current theory because the product of an I
= —,

' current with an I =1 current can belong to an
I = —,

' or —,
' representation of the isospin group. Re-

cently, using the Fierz reshuffling property of
the V+A. interaction, several authors' have shown
that in the version of the symmeA ic quark model'
in which the quarks are bosons (Bose-quark mod-
el), the nonleptonic weak Hamiltonian is a member
of an SU(3) octet and so the

~
AI

~

= —,
' rule immedi-

ately follows. Furthermore, Gronau' has shown
that the Bose-quark model leads to the following
interesting relations:

(l)

(2)

(4)

where 8C is the parity-conserving (pc) or parity-
violating (pv) piece of the nonleptonic weak Hamil-
tonian density B]p is a 3q baryon belonging to the
—,
"s-wave decuplet while B is any Sq baryon.
is a ground-state s-wave 3q baryon (56, I.r =0')
in the quark model and B*is any baryon whose
three quarks are in an orbitally or radially ex-
cited state. Similarly, M is a ground-state s-
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wave qq meson (36, L =0 ), whereas M* is a
spatially excited qq meson. The derivation of
these equations does not prescribe the range of
momentum transfer and in this paper we will as-
sume they are valid at least when the squared
four-momentum transfer vanishes. Using Eqs.
(1) through (4), Gronau' has demonstrated that
one can quantitatively explain the nonleptonic weak
decays of all the hyperons in the nucleon octet in
the framework of current algebra and PCAC (par-
tially conserved axial-vector current), with SU(3)
conserved at the vertices but broken in the had-
ronic masses. ' The two-parameter fit' of the
eight independent S- and P-wave amplitudes is in
very good agreement with experiment. It should
be noted that in order to obtain this good fit, con-
tributions of the K* pole diagram to the parity-
violating decay amplitudes had to be included.

Although these results are impressive, the Bose-
quark model itself suffers from some serious dif-
ficulties. First of all, from a fundamental point of
view it is disturbing because in local field theory
the association of Bose statistics with half-integer-
spin quarks leads to a conflict with the micro-
causality condition for physical currents construct-
ed from these quark fields. Hence, there probably
exists a conflict with basic analytic consequences,
such as dispersion relations involving these cur-
rents. Second, if the constituents of hadrons are
bosons, then the fermion character of the baryons
becomes a deep mystery. It is even more troubling
that in the Bose-quark model, the physical cur-
rents formed out of the quark fields have the wrong
charge-conjugation properties. These are serious
difficulties even if the quarks are fictitious mathe-
matical objects.

It is more natural to resolve the statistics prob-
lem of the ordinary Fermi-quark model by intro-
ducing a second degree of freedom for each of the
quarks, as is done in the "color-quark model"'
and in the three-triplet quark model in either the
SUB (see Ref. 6) or Han-Nambu' versions. It is
interesting to ask whether the

~
EI

~
=~ rule can be

derived in these models where the quarks obey
Fermi statistics. It was partly answered by the
work of Pati and Woo.' ' In the three-triplet mod-
el, they took the simplest choice" for the weak
current and demonstrated that although X does
not entirely belong to an SU(3) octet, only the
octet part of 8C will contribute to the matrix ele-
ment (B,~X ~ B,), where B, and B, are 3q baryon
states and at least one" is an SU(3)" singlet. An

equivalent result holds in the "color-quark" model
(see Appendix A), as it is quite similar to the
three-triplet model —the principal difference is
that in it a different choice is made for the electro-
magnetic charges for the nine fundamental quarks.

Similarly in the pai"aquark model" (see Appendl.
B), only the octet part of X contributes between
two 3q-baryon states even though the para-Fermi
fields of order three do not Fierz reshuffle. The
octet dominance of this matrix element when sup-
plemented with current algebra and PCAC, Pati
and Woo a,rgued, will lead" to the

~
AI

~

= —,
' rule

for the nonleptonic decays of the hyperons in the
nucleon octet.

However, unlike in the Bose-quark model, it is
not obvious that these versions of the symmetric
quark model imply octet dominance in the non-
leptonic decays of the K meson and the 0 hyperon.
In fact, even if one accepts the extrapolation of
one or more pions to zero four-momentum in K
meson decays, the usual current-algebra explana-
tion' ' is not convincing, because in the symmet-
ric quark model the matrix elements (0~X„~K)
and (v~X ~K) vanish. " [The vanishing of the
latter is easily found (see Sec. III), as a side re-
sult of dispersion calculations for the 0 decays. ]
Second, although Eqs. (1) through (4) of Gronau
also hold in the color-quark, the three-triplet,
and the paraquark models (see Appendixes), the
vanishing of these matrix elements is not consis-
tent with the assumption of Gronau that the K,'
-2n amplitude is dominated by the K* pole in the
sense of a Feynman diagram.

These matters are resolved in Sec. IV: We
first show that the

~
&I

~

= —,
' rule and Gronau's

successful numerical fit' of the S- and P-wave
amplitudes of the octet hyperon nonleptonic decays
can be reproduced by a dispersion-theoretic ap-
proach valid in all versions of the symmetric
quark model. Throughout this paper we apply
current algebra and PCAC working in a disper-
sion-relation framework based on Regge asymp-
totic behavior and resonance saturation of absorp-
tive parts according to Eqs. (1) through (4). Sec-
ond, we then argue for K* dominance in the ap-
propriate once-subtracted dispersion relations
for the invariant amplitudes involved in the pro-
cess K,'+S~" 2w and calculate the physical Ky
-2n decay amplitude by means of current algebra.
The numerical value of the important matrix ele-
ment (w~X~" j K*) is evaluated by comparing the
theoretical expression for the K,'-2n amplitude
with the experimental decay rate. Next, exploiting
analyticity in the form of finite-energy sum rules,
we argue that the octet property of the matrix
element (B,~X ~ B,), valid in all versions of the
symmetric quark model, leads to the octet domi-
nance of matrix elements of X between two mes-
ons. The approximate

~
LI

~

= —,
' rule in the K and

0 decays then directly follows.
While the color-quark, three-triplet, and para-

quark models are as successful as the Bose-
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quark model in describing the nonleptonic weak
decays, the ordinary singlet triplet Fermi-quark
model' is not. In it, the Fierz reshuffling prop-
erty of the V+A interaction leads to a weak
Hamiltonian which is symmetric in the SU(3) in-
dices under interchange of two Fermi-quark
fields. Consequently, this model must be supple-
mented with an additional assumption of octet
dominance, but then in the SU(3) limit, it follows"
that D/F =3 for the matrix element of K~' between
two baryons in the nucleon octet, instead of D/F
= -1 as obta. ined' from Eq. (1) in the symmetric .

quark model. Experimentally, a good fit' of the
P wave a-mplitudes requires D/F = —0.85. There-
fore, the Fermi-quark model supplemented with
octet dominance can be ruled out.

Nevertheless, the truth of the proposed explana-
tion of the

l
&I

l
= —,

' rule based on the symmetric
quark model is not established by these results
and this consistency. One needs further predic-
tions (preferably strong qualitative ones) and more
tests of Eqs. (1) through (4). Therefore the second
goal of this paper is to apply these equations to
the nonleptonic decays of the 0 hyperon. This is
of interest principally for three reasons. First,
the tests in 0 are stxongez than in the case of
the decays of the octet hyperons. These predic-
tions depend only on Eqs. (1}through (4), current
algebra, PCAC for pions, dispersion relations,
Regge asymptotic behavior, and resonance satura-
tion of their absorption parts. Second, experimen-
tally, in about two years there should be a thousand
or so 0 events, enough to test these predictions.
Third, there seems to be some confusion in the
literature" about the application of current algebra
and PCAC to the 0 decays. We would like to dispel
this confusion by making a more careful analysis.

The format of the paper regarding the 0 test
is as follows: In Sec. II we consider the conse-
quences of current algebra, and Eq. (2) for the 0
decay amplitudes. We obtain the soft-meson con-
ditions and formulate the problem in such a way
that dispersion relations can be easily applied.
In Sec. III, we argue, on the basis of Regge as-
ymptotics, for unsubtracted dispersion relations
for the invariant amplitudes that are involved and
calculate the dispersion integrals. We make use
of PCAC for pions and the results derived in Sec.
II to obtain information on the physical parity-
conserving and -violating 0 decay amplitudes,
namely A and B. In Sec. V, we estimate the 0
nonleptonic decay rates. The predicted total non-
leptonic decay rate is consistent with the present
experimental value. The strong prediction is that
the branching ratio

The reader who is mainly interested in the first
topic of this pa.per —the explanation of the l &Il =-,'

rule based on the symmetric quark model —need
only read Sec. IV and Sec. VI, which summarizes
the predictions and discusses the different origins
of the breaking of the l &I

l

=
& rule in alternative

versions of the symmetric quark model.

II. EQUATION (2) AND THE SOFT-MESON

CONDITIONS

There are three nonleptonic weak decay modes
for the —,

"0 hyperon:

and

-A+K

where

-=u, (P')q "(A + y,B)u„(P), (5a)

p=p +g (5b)

and A and B are, respectively, the parity-conser-
ving (P-wave) and pa.rity-violating (D-wave) ampli-
tudes. Next, we define

x d'x e""
x (B,(p') I

7'(& "&'„(~)&.(0))l & (p)),

where m; is the mass of the pseudoscalar meson
in the final state of the 0 decay. By the LSZ
(Lehmann-Symanzik-Zimmermann) reduction
technique, we have

T,,(q'=m, p, p')l ~ ~ „=K;,. (7)

In general, T;, defined by Eq. (5) can be considered
to be the amplitude for the reaction

0 (P)+S(h) —B,(P')+P', (q), .

where the four-vector h is defined by

p+h=p'+q,
A'=0

(sa)

(Sb}

S(h) is a spurion carrying the four-momentum h

In general the amplitude for any of the above three
processes can be written

p p/ 1/2
—(2~)9/2(2q )1/2 0 0

MqM,

x(B,(p )~;(q)leap (p)If' (p))
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and it is represented by the local field K„(x).
F,'(q) is an off-mass-shell pseudoscalar meson
represented by the interpolating field 0 2 s "A'„(x)/'

f;m,.'. The Lorentz-invariant functions devoid
of kinematical singularities and zeros are de-
fined by

T,, = q "u(p')[(F, + y,F,)+ ~(&q+h)(G, + y, G,)]u„(p)

+ h"u(P ') [(F,'+ y, F,')

At this limit

S -P'=M q',

u-M, ',
t- q',

2 2

and

(12)

+2(q+h)(G', + y, Gl)]u„(P}. (9) so by taking the h-0 limit of Eq. (9) we obtain

s = (P + h)' = (P
' + q)',

&& = (P —q)' = (P
' —h)',

f =(P -P')'=(q- h)',

with

s+t+u =Mq'+M, '+q'+h'.

(10a.)

(10b)

(10c)

The F,'s, G s, F' s, and G' s (i =1, 2) are func-
tions of s, t, q', and h' where

A. = F,(u =M, ', t = m, q' =m, h' = 0)

+ 2(M o —M, )

x G (u=M, ', t=m, q'=m, h'=0),

B=F (u=M, ', t=m, q'=m, h'=0)

—~(M o+M, )

x G, (u =M, ', f =m, q'=m, h'=0) .

(13)

When 0-0 and q'-m, ', we have the physical arn-
plitude for the decay

Il (P)-B,(P'}+P;(q) .
In order to consider the q- 0 limit of Eq. (6), we
rewrite it in the usual way, namely,

p pI &/2 2 2

&;;&q, P, t"& = &2w&'( '~ M2, ' q"f d'xe" '*(»;&& '&& T'(4', (x&&„&O&&l » &»&&M~M, ~ m&

d'xe" "B, ') 5x' A,'x, K 0 0 (15)

Because of Eq. (2), the term multiplying q on the right-hand side of Eq. (15) has no singularity as q-0,
so we obtain

T,,(q=0, P, P'}=-i(2v)' ' ' — —(B,(P')I[F,'(0},&~(0)]III (P)).
0

But in the current-current theory,

[F,'(0), Z.(0)]= [F'(0),X.(0)], f =1, 2, 3

(16)

(17)

and thus for pions the right-hand side of Eq. (16) vanishes because of Eq (2). For ka.ons, the right-hand
side will vanish in the SU(3) limit where (B'~F

~
II )=0 for B' not in the —,

" s-wave 10. Then Eqs. (16),
(9), and (10) lead to

F,(u=M„', f=o, q'=0, h'=0)--.'(M„-M, )G,(u=M„', f=o, q'=0, h'=0)=0, (18)

F,'(u =M „', t=0, q'=0, h'=0)+;.—.(M„+M,)G,'(u =M„', t=0, q'=0, h'=0) =0. (19)

It should be noted that Eqs. (18) and (19) hold ex-
actly for pions, whereas for kaon;.. they are valid
only in the SU(3) limit. This need not concern us
in this paper, however, since we will not use Eqs.
(18}and (19) to determine the amplitudes for the

-AK decay. In general for either pions or
kaons, Eqs. (18) and (19) do not impose any re-

strictions" on A and B given by Eqs. (13) and (14)
since we are dealing with two different sets of
functions in the two sets of equations. But within
the framework of a model for calculating the in-
variant amplitudes, Eqs. (18) and (19) may help
to determine A and B. In this paper we assume a
model in which dispersion relations and Regge
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asymptotic behavior for the invariant amplitudes
are valid. We also assume the validity of the
quark-model relations, Eqs. (1) through (4).

III. DISPERSION RELATIONS AND THE CALCULATION

OF THE PHYSICAL AMPLITUDES 2 AND B

For the application of dispersion relations we
have to consider the =m and AK decay modes of
0 separately.

A. Q ~ "m Decay

To be specific let us consider the 0 —= +7t'.
The amplitude for the process 0 -™0+m will be
automatically determined since the model pre-
dicts the I

rI I
= —, rule (see Sec. IV). First of all

let us try to calculate the parity-conserving ampli-
tude A. For this consider the reaction

f~ (0)+&"()t)—:-(P')+71'(q),

where So'(h) is the parity-conserving spurion
carrying the four-momentum h. In the u channel
of this reaction, no known resonances exist since

the quantum numbers of this channel are S= —3
and I= 1. Therefore, according to Regge asymp-
totic behavior, the fixed-u dispersion relations
are unsubtracted and moreover the dispersion
integrals must be highly convergent. Dispersion
relations are written for I", and G,' dispersing in
the variable t, keeping u =M z' and q' =m, '. Thus,

EI(u=M&', q =m, ', t=0)

1 ",Abs, F,'(u=M&', q =m, ', t')
(t'+ i~)

(20)

and

G,'(u =M z', q' = m, ', t = 0)

, Abs, G,'(u=M„', q'=m, ', t')
(t'+ ie)

(21)

The absorptive parts in t' of the invariant ampli-
tudes, for fixed u, can be determined from the
relation

1/2

Abst, .Tp-. -=— ' q, "' 2m
' 2m '5' '+P„-P 7t' q Kp' 0 n n j-.—0 0

0 n

—g(»)'~'9 '+ q -P.)& ~'(q) I j=--(0) I ~)&~I &"(0)
I
~ (t )) (22)

We now assume" that single-particle and reso-
nance intermediate states alone will saturate the
summation over the complete set of states in the
absorptive part in Eq. (22). Then, because of Eq.
(2) the second term on the right-hand side of Eq.
(22) does not contribute. In the first term K' is
the lowest mass state in the sum over intermedi-
ate states. The contribution of the higher-mass
intermediate states to the dispersion integrals in
Eqs. (20) and (21) must be highly suppressed, first
because of Eq. (4) and second, because inside the
dispersion integrals they appear with a higher
denominator. Therefore in the symmetric quark
model it is reasonable to make the assumption
that K' saturates the dispersion integrals. Thus,
using Eqs. (9), (20), and (22), we are led to the
results

E'(u=M ' '=m ' t=0) =n~ 9'-mw
~ 2

mg

(23)

Because of the PCAC assumption of smoothness,
either in the "strong" or "weak"" 'o version, Eqs.
(23) and (24) will hold even if E,' and G,' are eval-
uated at q'= 0 rather than at q'=m, ' with u and t
at the same values. Then, using Eq. (18), we
obtain

f "Xo(0)Glo= n 0---
mg

Equation (27) has only one possible solution,
namely,

(27)

where

(2w)'(4koqo)"'&vo(q)IK"(0) Iso(k)) =f,ohio((k —q)')

(25)

and

f„ogo(0) =0. (28a)

G,'(u =M „', q' = m, ', t = 0) = 0, By considering the "'m decay mode, we can also
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derive

f. » (-0)-=o. (26b)

f"-'(o)G- =--n-
(m»' —m, ') (29)

because of Eq. (28). Therefore in our model the
parity-conserving (I' wave) -amplitude of the de-

By writing unsubtracted dispersion relations for
F

y and G, in the variable t, keeping u at I ' and
q' at m, ', and then using Eq. (13), we obtain in
a similar manner

cay 0 - =w is essentially zero, or in any case

Next let us consider the parity-violating ampli-
tude J3. For this, consider the reaction

0 (P)+(&""(h)-:- (P')+v'(q) .

As in the case of the parity-conserving amplitude,
we can consider fixed-u unsubtracted dispersion
relations in the variable t for the invariant func-
tions of this reaction. The role of E ' is now

taken by the vector meson E*'. Using arguments
mentioned before, we obtain

F,'(u =M „', q' = m„', t = 0) =— ' », [G"' ——,
' G"'(M-. ' —M „'—m»~'+ 2m, ')],

mK
(30)

G,'(u =M „' q' =m, ', t = 0) =— 0 —*o(0)G

K
(31)

where

(»)'(4koqo) "'(v'(q)
I
X'."(0)

I
K* (» X))

and

=g,o»*0[(k —q) ]e» +o(k, X) q (32)

= -[G("u-.(p') y,u„(p) e»" *(k,X)

+d 'u (p') y, y,u„(p)k" E s(k, X)

G+u(~(p')y, „pu( )p&k~;. ( k~)] (33).

2y p 1/2
(2v)' "' ' u, (p') &ff'*'(k, l)) Ig, -(o) In-(p))

G,' are evaluated at q' =0 rather than at q' =m„',
with u and t at the same values. With this in mind,
we substitute Ec[s. (30) and (31) into E(l. (19) (the
soft-pion constraint on E2 and G,'), and obtain

G' —(Mo+Mn)G' '

+-,'(M„'+m, .' —M.' —2m, ')G'" = O. (34)

Next, by writing unsubtracted dispersion rela-
tions for F, and G, in the variable t, keeping u at
M3," and q~ at m„', and using E(ls. (14) and (34),
we have, in the approximation of saturation of the
dispersion integral by K* which is justified by
E(l. (4),

As before, using the PCAC assumption in its
"strong" or "weak" version, "' we argue that
Eqs. (30) and (31) will be valid even when F2 and

2 2 2

LmK~' —m, ' (36)

B. 0 ~ AE Decay

First let us calculate the parity-conserving amplitude A of this decay defined by Eq. (5a). For this, con-
sider the reaction

n (p) +S"(h) - -A(p') +If (q).
-

As we will see, even though K meson is involved, u&e do not have to invoke the smoothness assumption of
kaon PCAC to obtain the results we seek.

The t channel of the above reaction is exotic since there is no known meson with S = -2. Therefore, ac-
cording to Regge hypothesis, fixed-t dispersion relations must be highly convergent and in particular we
can write unsubtracted dispersion relations for the invariant amplitudes F, 's, E", s, G, 's, and G,"s in the
variable g for fixed t. The absorptive parts in u of these invariant functions can be calculated from the

expression
( 1/2 ( ~m 2)

s b'()sw)'( „', P (2w)'n'(q+p„— )')(A(p')I))."„'(o)lm&(mls"a* (o&ln (p)&
0 A K~K

n

—g (»)'6'(q+p' —p.)(A(p') I 8 "&p (o) In) &nI&."(0)Ifl (p))
'

(36)
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S",(u=M„', q'=0, f=o)=0,

G,'(u=M„', q'=0, f=o)=0.
(37a)

(37b)

So the soft-kaon constraint given by current alge-
bra and the quark models, namely Eq. (18), is
trivially satisfied. Thus, no conditions on the cou-
pling constants are imposed. In deriving Eq. (37)
it is gratifying to note that one does not Save to
make use of kaon PCAC since here we write the
unsubtracted dispersion relations for fixed q' =0
and can argue that in general (that is, even for
q' =0) the contribution from -' to the absorptive
part of T~ A does not contain a term multiplied by

By considering the dispersion relations for F]
and Gy for fized t =m~ and q' =ng~', we obtain the
physical decay amplitudes

Again, as in Eq. (22), we assume" that the single-
particle and resonance-intermediate states alone
will saturate the summation over the complete set
of states in Eq. (36). Then, because of Eq. (2),
the second term (the contributions from s-channel-
resonance intermediate states) will be zero. In the
first term the -' intermediate state will dominate
over all the others because of Eq. (3).

In passing, we note that if we use this =' dom-
inance (justified in the quark models) in the unsub-
tracted dispersion relations written for fixed q
and fixed t =0, we would obtain

=0

since the absorptive part of T~"-A does not contain
a term multiplied by k". From Eqs. (38) and (41),

a f,.o(0) (M-. -M, )
A. a =o(0) (M=+M )

' (43)

It should be noticed that b)) o(0) vanishes in the
limit of exact SU(3) symmetry whereas aA-0(0)
does not. Therefore from Eq. (43), we may safely
conclude

B—(( jl. .
A.

(44)

Jn other words, the AK decay mode of Q i:s pre-
dominantly" P wave with little admixture of the
D-wave amplitude.

(

IV. IVIII= 2 RULE FROM THE SYMMETRIC

QUARK MODEL

A. The Vanishing off z(0)

I 3 /2

(2~)'(~'I" (A(( )Ix„"(o)I='()))

= I A=-o {(P—P')')uA(P') r,u=-(P) (42)

Also,

F,'(u =M „',q' = 0, f = 0) = G', (u =M „',q' = 0, t = 0)

D
~A=- (0)G==oz. n-

(M-. -M, )
(38)

There is a very important consequence for K,- 2g decay of our analysis of the 0 nonleptonic
decays: From Eqs. (25) and (28) we have

1/2

(2w)'( ' ' (A((')
l
&".(0) l:-'() ))

f. (0) =- (»)'(4k qo)"'&&(q) ISC"(0)IK(k))

=0.
{q -k)2 =0

(45)

= aA 0((p —P')')u)((P')u-. ( p) (39)

(2 )s Puo "'(-q'+mr')
M „M~ f~m~

=G~o». „-u (P')q"u„(P) . (40)

The principal ingredients in the derivation of Eq.
(45) were the dominance [following from the sym-
metric-quark-model relation, Eq. (4)] of the K
intermediate states in the unsubtracted dispersion
relations and the current-algebra soft-pion con-
straint given by Eq. (18). It should be noted that
there is a direct derivation of f,~(0) =0 from the
symmetric quark model, Since 3C„'" has the quark
structure (qq)(qq) whereas the K meson is a qq
state, it is obvious that

By considering the reaction
&o I&'."(0) IK& =o, (46)

n-(P) + S'"(k)-A(P') +K-(q)

and using the same arguments used to obtain Eq.
(38), we can now derive for the parity-violating
amplitude 8 [given by Eq. (14)] that

kbA-. o(0)Ggo~+~~
(M.-+f(f,)

so if a once-subtracted dispersion relation in the
momentum-transfer variable is assumed for the
vertex ()T(q) I

X~'(0)
I K(k)) with the subtraction-point

chosen at the soft-pion limit [given by Eq. (46)],
and if the dispersion integral is saturated by res-
onances alone, one also obtains Eq. (45). Both the
subtraction constant and the dispersion integral
vanish as a consequence of Eqs. (1) through (4).
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, (m»' —m „') . (47)
PPlK 4

However, in the soft-pion limit,

7(K',(p„)+S'"(h)- m'(p„) +~-(p );p, =0)

=—&~ (p )I[F' (0),&"(0)llK'(P, )&
2 (PK-p )'=0

, (m»'+m, ') . (48)

Only the m' and & intermediate states contribute
to the commutator in Eq. (48) and thus by Eq. (45),
xfv=0. Therefore, by Eq. (47), the E', -2m decay
rate vanishes.

B. Reproduction of Gronau's Fit of the 8

Hyperon-Decay Amplitudes in the

Dispersion Approach

We will now demonstrate that Gronau's success-
ful fit of the 8 hyperon-decay amplitudes can be
reproduced in a dispersion calculation, in spite of
the technical difficulty mentioned above. This dis-
persion approach is also needed to derive the

I ni
I
=-,' rule for these decays in the color-quark,

the three-triplet, and the paraquark models. Fol-
lowing a method suggested by Okubo, " "we con-
sider the amplitude defined by

Equation (45) is inconsistent with Gronau's as-
sumption' that the K,—2v amplitude is dominated
by the K*-pole diagram. This is easily seen as
follows: In the notation of Sakurai, "the K', - 2m

decay amplitude in the approximation of K*-pole
dominance (in the sense of a Feynman diagram) is

T(K', ( p, ) +S'"(h)- v'(p„) +~-(p );h =0)

p p' »2 (-q'+m, 2)
1";,(q, P, P') =- i(2~)'

k m

X d 4g ef1'x

x(B„(p')I T(9"A'„(x)K (0)) I B)(p)&

=- ~2(p') [(F,+r,F,)

+ 2(tt+ 4)(G, +r,G, )J~~(p)

=-u, (P')[(H, +y, H, )

+[It, d](~, +r, ~ )2]&~(p).

B . =H(s=.M ' t=m ' q'=m '). (51)

The method" consists of writing once-subtracted
dispersion relations for the H, 's (i =1,2), dispers-
ing in s (with fixed t =q' =m, '), and choosing the
subtraction point s0 to have the value of the soft-
pion limit, that is,

Equation (49) can be considered to be the ampli-
tude for the process

Bj(P)+S.(h) -B,(P)+ »', (q),

where S (h) is a massless spurion of four-momen-
tum h and m',. is an off-mass-shell pion defined by
the interpolating field (W2/f, m, )2SA2(x). The
Lorentz invariants E, , G, , H, , and J, (i =1, 2) in

Eq. (49) can be considered to be the functions of
the variables s, t, and q'. At the limit h-0 and
q'-m, ', Eq. (49) gives the parity-violating and
parity-conserving amplitudes A, , and B,,- of the
physical decay

B,(P)-B,(p') ",(q) .

lt is clear, '4 that

(50)

II, (s =M, ', t =m, ', q'=m, ') =H, (s, =M, ', t=m, ', q' =m, ')

(52)

Next, the PCAC smoothness assumption can be used to identify the subtraction constant with the value of
the amplitude at the soft-pion limit, namely, H, (so =M,', t =0, q' =0) given by the familiar equal-time com-
mutator term (ETC)." The absorptive parts of H, and H2 can be calculated from the expression

(2 )3 i 1/2

g (»)'5'(q+p' —p.&&B2(P')Ij„(o)I~&&22I&~" '(o&IB~(P&&
n

—g (»)'5'(q+ p. -P) (B.(p') I&.""'(0)l~& &~lj., (0& I B&(p)& (58)

The sums of the subtraction constant and of the
contribution from the nucleon-octet intermediate
states to the dispersion integral give" expressions
for the hyperon-decay amplitudes identical in form

with those (see Gronau) where the baryon Born
terms are included in addition to the ETC terms
in the current algebraic treatment. However, in
the dispersion approach, there is the pleasant dif-
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ference that the intermediate baryons are on the
mass shell a.s they should be, strictly speaking, to
make use of Eqs. (1) through (4). In the approxima-
tion of resonance saturation, "because of Eq. (3),
one might expect the contribution of the higher-
mass resonances to A/, (H,) .and B,, (H, ) to be neg-
ligible. However, Gronau's work' has demonstrat-
ed that for II„ the addition of a K*-pole term to
the equal-time commutator term [baryon-Born
terms for A, , are assumed to be negligible since
they vanish in the SU(3) limit] is necessary to ob-
tain an over-all good fit simultaneously of the I'-
wave and the $-wave decay amplitudes. In the
dispersion theory this K*-pole term must come
from the resonance contributions to the disper-
sion integral in the s variable I see Eq. (52) ] .
In spite of Eq. (3), such contributions to H, may
be important for the following reasons: (i) The
dispersion integral is not as highly convergent as
in the case of the 0 amplitudes where the crossed
channel was exotic, or as in the case of 0, where
K and K„Regge poles are exchanged in the crossed
channel. (ii) The K and K„Regge contributions to
H, must be suppressed since the corresponding
Regge residues should be small because of the
symmetric-quark-model relations, Eqs. (4) and
(45). (iii) Finally, due to the presence of very
closely spaced baryon resonances (unlike the case
of meson resonances) the sum of such resonance
contributions to II, may be significant even though
each contribution separately may be small. Sever-
al authors" have shown that this higher-energy con-
tribution to 0, gives a term with the structure of
the K*-pole term, provided Regge asymptotic be-
havior (for H„ the leading Regge pole exchanged
in the crossed channel is that of K~) is assumed
for the amplitude in question. Furthermore, in
the approximation of resonance saturation" of the
dispersion integral, such a K*-polelike term must
satisfy the octet property and the I VIII

= —,
' rule since

the matrix elements of the form (B,]3C I B,) have
these properties in the symmetric quark model
(see Appendixes A and 8). With the SU(3) approx-
imation for the vertices involved in the Regge res-
idues, there are two unknown parameters coming
from this term, instead of only one as in Gronau's
treatment. ' The numerical fit of the eight indepen-
dent hyperon-decay amplitudes will be even better.
Nevertheless, the values of the fitted parameters
should be approximately equal to those obtained by
Qronau' in his "best" fit as it is already in good
agreement with experiment.

C, The Dispersion Calculation of the E, ~ 2x Amplitude

Here we calculate the amplitude for the K', - 27/

decay, using once-subtracted dispersion relations,

&&(~-( p ) I T(s„a",.(x)x"„"(0))IK', ( p, ))

to be the amplitude of the reaction

K',(~,) S'"(I)-."'(P,)" (~ ),

(54)

where 7/" (p, ) in general is an off-mass-shell pion
with s "/4„' (x)/f, m, ' as its interpolating field. S~"(h)

is a massless spurion of four-momentum h defined
by energy-momentum conservation

(55)

T defined by Eq. (54) is a function of any two of the
Mandelstam variables s, t, and u and q', where

s =(p~+8)'

=(p, +P )',
t =(p, —p, )'

=(p -a)',
~=(u, -u )'

=(t, r)'-
(56)

At the limit h-0 and p, '-spy, we have the physi-
cal decay amplitude of K', (pr). That is,

II -=(2~)"'(6P'P'P')"'

(P, ) -(P )Ix."(o)IKl(P,))

(57)

Next we write a fixed-u (u =m, ') once-subtracted
dispersion relation, dispersing in the variable t
and choosing the subtraction point to be the value
of t in the soft-pion limit, (i.e. , t mo~'). Thus
we have

current algebra, and Eqs. (3) and (45). Such calcu-
lations using subtracted dispersion relations and
current algebra have already been done by other
authors" in the past, but not in the framework
of the symmetric-quark-model relations, Eqs. (1)
through (4) and (45). As we will see, Eqs. (3) and

(45) lead to important differences in the final re-
sult. We present this calculation here for two rea-
sons: (a) The final expression we get for K', —2m

amplitude will enable us to understand the
I
aI

I
=-,'

rule in all nonleptonic decays of the K meson, and

(b) it will help us to evaluate the constant g, o~*o
appearing in Eq. (35), which will lead to an esti-
mate of the Q —=m decay rate.

As in Secs. II and III we consider

+m gT —f(2 )3(4poPQ )1/2 ( 0+
~PE ~
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I g, ««-(0)G«««o, , (m»' —m, ')x= 7

2 mg
(59)

where g„„~ and G~~~o, + are defined by
1

(2&)'(4p,p')' '(&-( p ) le."(0)
I
K*-(p, x))

=g, -»«-(h')e»«(p, x) ~ p (60)

and

(»)'(4p.p')'"(K' (p, &) li. (o) IKl(p ))

=-G»«-»o, +e»« ~ (p, +p»). (61)

It is amusing to note that if the K', —2w amplitude
were dominated by the K* pole in the sense of a
Feynman diagram, in place of Eq. (59) we would
have obtained

2g, -««-(0)G»«-»o, .(m»' —m, ')

mg Q
2

which is four times the value given by Eq. (59).
Using Eq. (59) and the experimental widths"

I'(K, —m' m ) = 0.799 x 10" sec ',
I'(K*- Kv) = 50.1 MeV,

we obtain

Ig. —»«-I=6 7x10 ' GeV (62)

D. The ~AI~=
z Rule for the K and Q Decays

Unlike in the Bose-quark model, in the color-
quark, the three-triplet, and the paraquark mod-
els the nonleptonic weak Hamiltonian K does not
entirely belong to an SU(3) octet and so the I VII I

K =T(t =m, ', u =m, , P, =m, ')
= T(t, =m»', u=m, ', p, '=m, ')+ (m ' —m, ')

(t' —m, ')(t' —m, ' i—~)
(58)

Note that for fixed u =m „', the dispersion relation
in the I, variable must have at least one subtraction
in orde.." to have a convergent dispersion integral
since 6* is the leading Regge pole exchanged in the
u channel. The subtraction constant in Eq. (58)
vanishes since by using the PCAC smoothness as-
sumption, "we can identify it with the value of T
at the soft-pion limit, namely, T(t, =m»', u =0,
p, ' = 0), and the latter is zero because of Eqs. (45)
and (48). Moreover, if we assume resonance sat-
uration, by Eq. (4) the dispersion integral is ap-
proximately saturated by the contribution of the
K* intermediate state alone. Thus Eq. (58) leads
to

[1 - f «n» «(t&]

Fg (visit) P»«(t) .
( ( ))

v ~ (63)

The lowest-moment finite-energy sum rule written
for F is

N @pe g(t)
dv Abs„F', '(v, t) = P„*(t)

0 Q»« t/ +1 (64)

As is well known, "only analyticity and Regge
asymptotic behavior [Eq. (63)] go into the deriva-
tion of Eq. (64), and for sufficiently large N one
expects it to be very accurate By E.q. (53),
Abs, F', ', in the approximation of resonance sat-
uration, involves only matrix elements of the type
(Bs IÃo

I BJ) and (B.l&'." IB&) In the color-quark,
the three-triplet, and the paraquark models, only
the octet part of 3C

" contributes to these matrix
elements and so the left-hand side of Eq. (64) must
be octet-dominated. This result in turn implies the
octet dominance of the Regge residue P«„(t). Since
within irrelevant factors

P««(™««)g„»«Gyp«« ~ (65)

we have the result we sought, namely, the octet
dominance of the matrix-element (vl3C~" IK*). In
fact, by considering Eq. (64) at appropriate values
of I, it easily follows that the matrix element of
X„"between the pion and any Regge recurrence
(with spin-parity 3, 5, 7, etc )of K (1., 890)
is also octet-dominated. Similarly, by the use of
finite energy sum rules written for F',", the part
of F, which is even under s-u crossing, we also
derive the octet dominance for the matrix element

=-,' rule of the nonleptonic weak decays does not
immediately follow. In particular, in these mod-
els we still have to prove the rule for the K and Q

decays. From Eqs. (32), (35), and (59) it is clear
that the octet property and the

I
AI I

= —,
' rule for 0

—=z and K- 2z decays will follow if the matrix
element (vl3C~" IK*), i.e. , g„««, is octet-dominated.
We will prove the octet dominance of this matrix
element by means of finite energy sum rules ap-
plied to the amplitudes involved in the hypothetical
reaction

By(P) +So"(h) -B„(P')+», (q),

and by means of the symmetric-quark-model re-
sult that (B,IK'„"IB,) is octet-dominated.

The invariant amplitudes F, and G, [see Eq. (49)]
of the above reaction can be taken to be functions
of the two variables v=(s —u)/(M, +M,) and t, as-
suming the pion is on the mass shell. Let F', ' be
the part of F, which is odd under s-u crossing.
Since the leading odd-signature Regge pole ex-
changed in the I; channel is that of K*, one can
write" for

I
vl&N (N being sufficiently large)
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(xiÃ~" IK„), where K„ is either K„(2', 1420) or any
of its Regge recurrence with spin-parity 0', 4', 6',
etc. By analogous considerations applied to the
process

B (P)+S"(h)-B (P')+~;(q)

we can furthermore argue for the octet dominance
of the matrix elements (wlK" IK) and (mlK" IKJ,
where K and K„could be K(0, 495) and K„(l', 1240),
respectively, or any of their Regge recurrences.

Two further points are worth noticing. First,
the

I
b,I

I

= —,
' rule for K- 2p and 0 -:-m decays will

hold even if we do not neglect the higher resonance
contributions to the dispersion relations, so long
as these higher resonances are Regge recurrences
of K*, K„, or K meson. Second, if the lb.II =-,'
rule holds for K-2p decays, it can be shown to be
valid" for K- 37t decays by making use of two facts,
namely (1) the amplitude for the latter is propor-
tional to the former in the limit of any one soft
pion, and (2) experimentally, the amplitude for
K-3~ is linear in the energies of ea.ch of the pions
to a good approximation.

V. NONLEPTONIC Q DECAY RATES

By means of the general results of the preceding
sections plus the additional assumptions of vector-
meson dominance for the electromagnetic form
factors and of SU(3) symmetry for the vertices,
the Q nonleptonic decay rates can be estimated.

A. Q ~.n Decay Rate

The decay rate for the process 0-(—,")-B(-,")
+w(0-) in terms of the amplitudes A and B defined
by Eq. (5a) is

in the region of N*(1236) resonance. The decay
process

N*'(P) -P (P') + y(e)

can be described by the Gourdin-Salin invari-
ants"" C„C4, and C, defined by

y/2

(»)' ' ' (P(P') I ~'„(0)I
N*' (P)&

MpM„+

a (MN s2 -M~2)~
32 kg g5

(69)

x
I M ~ -M ) C, (0) + M„*(M„~-M ) C,(0) I',

(VO)

where z is the fine-structure constant. However,
SU(6)~ symmetry implies that the E2 transition is
forbidden' and the empirical estimates" also
indicate that the E2 contribution to N* excitation
in z photoproduction is probably not more than
0.1/p at the resonance energy. Hence from Eq.
(VO},

=«(P')r, I.C (e')(q ra„. r„-e.)

+C,(e')(e Pz„, -P,c.}
+ C5(Q ) ( I g pp Igloo)1 +N + (P) ~ (66)

In terms of these invariants, the magnetic-dipole
and electric-quadrupole contributions to this decay
are" "

o. (MNx' -M~2)'
96 M~ g'

x
I (3MN~+M~) C,(0) +MNs (MNs -M~) C~(0) I',

I'(Q -Bw)=,[(Mo+MN)' m'j-
C, (0) = -M„*C,(0) . (71)

x I&l'+IBI' +"
(Mo+MN) —m

(66)

At resonance, assuming a pure M1 transition,
the total cross section for m' photoproduction is
given by

lz.~z*p I
=

I (~2)"'a, -N *- I

=4.8&10 'Geg. (67)

So, from Eqs. (29) and (35) it is clear that the
constants g„0~go and G~'~ determine the Q- -"g
decay rates, From Eq. (62) and the fact that the
matrix element ( w I X p"

I
K* ) is octet-dominated,

&„., =(rP-PN') =
3
2 4m r„, (72)

where I'r denotes the total N*(1236}width and q*,
the c.m. photon momentum. We take the values
used by Dalitz and Sutherland" in their analysis
of Ml photoexcitation of the N*(1236),

To estimate the constant G't'~ of Eq. (35), we use
vector-meson dominance to relate it to the m'

photoproduction reaction

y+ p "p+m'

o (yP -Pmp) = 260+ 6 p.b,
Res

r, =0.119 GeV,

and find

C4(0) = -1.VV GeV '.

(73)

(74}

(V5)
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+B,(q')P „q.]~»*V ) (76)

and write unsubtracted dispersion relations for the
invariant B; 's, dispersing in q'. Saturating the
dispersion integral by the contributions of the
intermediate p meson ((d and y do not contribute
since this is an isovector transition), we obtain

B,(0) = (M»g+Mq) C,(0)+ 2 (M»g' -M~') C,(0)

(77)

Next we use vector-meson dominance" " to con-
nect C, (0) to G&'). In the spirit of the rest of the
paper we follow the dispersion theory approach"
to the vector-meson dominance. To implement
the dispersion approach, we consider an alterna-
tive redundant choice for the form factors

p pr 1/2

(2~)'( ' ' (p()')IJp (0)IN"()))

=~, (p')v (Bi(q'}I;„,+B2(e')~„(f.+B3(e')P„q.

of Eq. (54). We have assumed that the parity-
conserving amplitude A is strictly zero for the
0 - "m mode. Strictly speaking, the quark models
through Eq. (3) only predict that A/B«1. There-
fore, because I'{0--"))) c([[P)'+ [(D)'], where

P=A,

(M„-M,)'-m„' '~2

(Mo+M-. ) +m ~

A and B will contribute almost equally to the
decay rates even if A/B= 1/10. Hence, the esti-
mates given by Eqs. (84) should be expected to
be valid to no better than a factor of two.

It is encouraging to notice that Eqs. (Vl), {77),
(78), and (79) are consistent with Eq. (34) within
approximately 15%. Because of Eq. (Vl), Eqs.
(77} through (79) predict a relation among G(',
G ', and G ' . This relation will be equivalent
to Eq. (34), provided

(M»g+M, )M»g —,(M„, -Mp )

l/2 G(2)
B.(0) =-C.(o) = -—

P

(78)
1=(Mo+M-. )M»g- 2 (M„'+ m~„'-M-„' -2m ') .

(86)

2 j./2 G (3)
B,(o) =-c,(o) =—

3
p

(79)

(81)

with G&')-„(i =1, 2, 3) defined by Eq. (33). By
Eqs. (75) and (79) we obtain, for f '/4m=2. 0+0.1,38

[
G~"

) =10.8 GeV-'. (82)

Substituting Eqs. (67) and (82) into Eq. (35) we
obtain

[Bi =25xlo ' GeV '. (83}

Now, using Eqs. {29), (83), and (66}, we have the
decay rates

I'(0-- =-~') =1.2x 10' sec-',

I'(0-- ='v-}=2.4x10' sec '. (84)

Besides the SU(3) assumption for the vertices and
the assumption of vector-meson dominance, there
is another possible source of error in the estimate

where f ~
is defined by

m. '(2~)')'(2y, )')' (0~ J'„(0)
~
p'(k, X)) =e '

~ (y, z),
P

(80)

and the (2/3)'~' comes from the SU(3) relation

The left-hand side of Eq. (86) is about 2.4 GeV',
whereas, the right-hand side is about 2.8, only a
15% discrepancy. In view of the SU(3) approxima-
tion for the vertices used in deriving Eqs. (VV),

(78), and (79), this result is quite remarkable.
We emphasize that this is a nontrivial consistency
check of the model we are using.

B. Q ~ AE Decay Rate

The parity-conserving amplitude A. for 0 -AK,
given by Eq. (38), is simpler to estimate numer-
ically. Since we have shown in Sec. IVB that
Gronau's fit' of the octet hyperon-decay ampli-
tudes can be essentially reproduced in the frame-
work of dispersion relations and the symmetric
quark model, we accept the "best fit" value for
a~-o, namely,

aA-„o—- 10.5&10 '. (87)

While the coupling constant G=.o~+„- is not directly
measurable, it can of course be related to the
experimental width (N*"-pv') = 120 MeV by
SU(3). However, in the application of SU(3) sym-
metry to the couplings of the —,

"hyperon decuplet
to the nucleon and pseudoscalar meson octets,
Rotelli and Scadron' have found that some account
of SU(3) breaking at the vertices is necessary in
order to obtain good agreement between the pre-
dicted decay rates and experiment. They have
shown that a simple, successful procedure is
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to define SU(3) symmetric, dimensionless coupling
constants g», by

We choose this form for the reduced vertex for
kaon couplings and so applying SU(3) symmetry,
obtain

-D i ~ ==os+ n-
(89)

Substituting Eqs. (87) and (89) into Eq. (38), we

find

A = 6~ 10-6 GeV-'

and a decay rate

From Eqs. (84) and (91) we find the total non-
leptonic decay rate to be

I'" =1.5X10" sec ',
to be compared with the experimental value,
namely,

(9o)

(91)

(92)

I"„"'= (1+0.3) && 10" sec -' . (93)

It must be stressed that the decay rates are very
sensitive to the errors in the amplitudes, e.g. ,
a reduction by a factor of two in the latter will
reduce the former by a factor of four.

VI. SUMMARY OF PREDICTIONS AND
CONCLUDING REMARKS

In spite of the tentative nature of the estimates
of the Q decay rates presented in Sec. V, there
are strong qualitative predictions which are in-
sensitive to the errors in these estimates and
which can be put to an unambiguous experimental
test in the near future. If we accept the usage of
dispersion relations, "Regge asymptotic behavior,
and the resonance saturation of the absorptive part,
the results summarized below pose a test of Eqs.
(1) through (4) based on the symmetric quark mod-
el. Since the proposed explanation of the ~bI~=~
rule is likewise based on the symmetric quark
model, these results also stand as a test of the
truth of this expalantion:

(i) From Eq. (43) we find that the parity-violating
amplitude B of the AK mode is highly suppressed
compared to the parity-conserving amplitude A.
This prediction implies that the D-wave effects
should be almost entirely negligible in this decay

mode.
(ii) The prediction of Eq. (29), that the parity-

conserving amplitude A vanishes for Q —=m de-
cay, should not be taken literally. Strictly speak-
ing, through Eqs. (2) and (4) the symmetric quark
model only predicts that the A amplitude is sup-
pressed compared to B, that is to say, A/B«1.
Because of the inherent angular momentum sup-
pression of the D-wave amplitude, there could
still exist a P-wave amplitude comparable to that
of the D wave. So here the qualitative consequence
of the quark model Eqs. (1) through (4) is that the
D-wave amplitude is at least equal in strength,
whereas ordinarily without the suppression of A
we would expect the natural dominance of the P
wave.

(iii) From the results of (i) and (ii) discussed
above, we have a very strong qualitative predic-
tion, easily testable against experiment when
more 0 decay events are available. Because of
the suppression of the parity-conserving ampli-
tudes in 0 —-m decays, the 0 —AK decay mode
is much more probable than the Q - =m mode,
i.e. , 1'(0 —"w)/I'(0 - AK ) «1. Preliminary
estimates in Sec. V indicate that the ratio of the
decay rates may be as small as (,——'). We find
this prediction to be quite striking since it is dis-
tinct from that of any other model discussed in the
literature. '

Two features of the results are already encourag-
ing. First, the predicted total nonleptonic decay
rate of the 0 is consistent with experiment.
Second, Eq. (34) relating the strong-interaction
form factors, which was derived using Eqs. (2)
and (4), implies a mass formula Eq. (86) that is
satisfied empirically to 15%.

In closing, we make brief remark on the contrast
between the origins of breaking the ~AI

~

= —,
' rule in

the Bose-quark model and in the other versions of
the symmetric quark model. In Sec. IV D we found
that in the color-quark, the three-triplet, and the
paraquark model, the octet dominance and the
~bI

~

=-,' rule of all the observed nonleptonic weak
decays can be obtained by making use of analyticity,
Regge asymptotic behavior, and the resonance sat-
uration of the absorptive parts. Besides resolving
the serious spin and statistics difficulties associat-
ed with the Bose-quark model, the explanation of
the ~nI

~

= —,
' rule using one of these other models

has a further advantage. In the Bose-quark model''
the nonleptonic weak Hamiltonian is a member of
an SU(3) octet and the ~aI

~

= —,
' rules are exact So.

in this model the observed breaking —e.g. , 5-10%
in the amplitudes for K- 2m, 3w decays '—of the
~b,I

~

= —,
' rule must come either from electromag

netism or from an intermediate W particle of
large mass (M~ =37 GeV). Both these effects
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could be of order cy and hence, too small. On the
other hand, in the color-quark, the three-triplet,
and the paraquark models, there is the gratifying
difference (see Sec. IV) that the

~
nI

~

= —,
' rule is

only aPPso&image —it will be broken by continuum
contributions to the dispersion integrals.

Note addedin P~oof. We used the old-fashioned
pre-gauge-theory point of view in this paper. In

gauge theories all the above arguments still apply
in lowest order to ordinary weak processes (those
not involving real W mesons) when the momentum
transfers involved are less than M~, This is the

only region which has been studied in any detail
experimentally.

We would like to point out an important assump-
tion made in the paper, namely, that the current
and constituent quarks could be taken to be the
same objects as far as taking the matrix element
of X (constructed out of the current quarks) be-
tween two baryons (made of three constituent
quarks). This may look like an unreasonable as-
sumption, since the distinction between current
and constituent quarks seems to be necessary,
especially if we want to relate partons to quarks.
We would like to justify this assumption by pro-
posing the point of view that as far as matrix ele-
ments of currents involving small invariant mo-
mentum transfer are concerned, the current and

constituents quarks can be taken to be the same
objects. On the other hand, from considerations
of deep-inelastic scattering of electrons by pro-
tons one should conclude that in matrix elements
of currents involving high momentum transfer the
distinction between current and constituent quarks
is required. Besides preserving the results of
this paper, this attitude, me think, is a very rea-
sonable one since all of the so-called "bad" quanti-
tative results of the naive quark model in low-en-
ergy phenomena can be avoided without losing the
identification between current and constituent
quarks in low-energy matrix elements. The quark-
model results, G„/G v = —,', I'(b.' ' —pw') = 200 Me V,
I'(B'- Bm) =0 for B' and B belonging to two differ-
ent SU(6)~ multiplets, etc. are obtained only if we

assume SU(6)~ wave functions for the constituent
quarks of the baryons. SU(6)~ is, of course, far
from being a perfect symmetry of strong interac-
tions. So by modifying the wave function of the
three-quark system from the pure SU(6) type (or
by properly taking into account the relativistic
correction) one has the freedom to improve all of
the above results. It is not necessary to set the
current and constituent quarks different for the
calculation of these matrix elements. It should be
emphasized that SU(6)-type wave functions are not
necessary for the derivation of any of the quark-
model results presented in this paper. We would

also like to point out that in a hypothetical world,
w"ere SU(6)~ is a perfect symmetry, there is no
need to distinguish between current and constit-
uent quarks as has been shown by S. P. de Alwis
and J. Stern, "'
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C P(, ;)r„(I r, +)

x [(A., + i X,),~cos8+ (.)t., + i)i,),~ sin8] gi ~,. ) .
(Al)

The usual SU(3) group (with the familiar I, and Y'

generators) acts on the Latin indices (i, j, etc. ) in
Eq. (A1), whereas a second SU(3) group, called
SU(3)", acts on the Greek indices (a, P, etc.). The
coefficients C 8 determine the SU(3)" structure of
the current. If the nonleptonic weak Hamiltonian
density is taken as

X.=(-,')"'G(Z„,Z~'},
the ~b, Si = 1 part of it contains, in general, the
SU(3) octet and 27-piet parts. We will now show
that the 27-piet part will not contribute to the ma-

(A2 )

APPENDIX A: THE COLOR-QUARK AND

THREE-TRIPLET QUARK MODELS

The purpose of this appendix is to show, for the
current-current weak Hamiltonian density 3C con-
structed out of the "color-quark" or three-triplet
quark fields that (a) only the octet part of K"'"'
contributes to the matrix elements of the type
(B,~3C~"' '~ B,), where B, and B, are any two 3q
baryon states of which at least one is an SU(3),,~„,

or SU(3)" singlet state, and that (b) Eqs. (1) through
(4) of the text hold.

For the sake of definiteness we will prove these
assertions in the SUB version' of the three-triplet
model which has the approximate symmetry group
SU(3) x SU(3)". By a mere relabeling they can also
be proven in the Han-Nambu' version, where the
basic group is SU(3)'x SU(3)", a.s well as in the
color-quark model, where it is SU(3) x SU(3)„~„,.
The hadronic weak current in the SUB model can
be written as'
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trix element (B,I K„IB,) .
Consider the Ib, SI =1 part of K . It can be written

as a linear combination of terms of the form

~& ", ~'I", ,
'a'& -=Q~, ;&(x)y„(1+y, )4& 8, , ) (x)]

&&BI ~(x)y" (I+y,)0~, „(x)], (A3)

each of which by Fierz reshuffling ' is symmeA ic
under the interchange (a, i) -(y, k) or (P, j) —(6, I).
To be definite, let us assume that B, is the SU(3)"
singlet state. When the matrix element of X is
taken between B, and B» a nonvanishing contribu-
tion occurs only when g&&, ~

and |)~ z, ~
act on the

quarks in the same baryon. The same statement
will hold for g&„;& and (&». Let the quark fields
g~ s,.

~
and g&z, &

lead to the destruction of the two
quarks in B,. Only that part of (A3) which is anti-
symmetric under the interchange (P -6) will con-
tribute to this process, since B, is an SU(3)" sin-
glet baryon whose quark wave function is complete-
ly antisymmetric in the SU(3)" indices of any two
constituent quarks. Because of the symmetry of
(A3) under the interchange (P, j) -(6, l), it then fol-
lows that only the part of (A3) which is antisymmet-
ric in the SU(3) indices (j-I) will contribute.
Since the 27-piet part of X„must be symmetric
under the interchange (j-l), it is now obvious that
only the octet part of K will contribute to the ma-
trix element (B,IK„I B,) Furthe. rmore, since"

~["., '~'&'l'", .'&' =-(
tC

~ .„&(x)y,(I —y, )0( e, , ) (x6

x(y(y a)(x)y" (1 —y,)((s,)(x)j (A4)

is also symmetric under the interchange (o., i)
-(y, k) or (P, j) -(6, l), the matrix elements
(B,IK~"

I B,) and (B,IX'„'I B,) separately have the
octet properties.

Equations (1) and (2) of the text can now be prov-
en. (='IX'"'~'I Z') will vanish since the quark wave
function of Z is symmetric in the SU(3) indices u
and d, while only the part of Kg&~'& antisymmetric
in the u and d indices will contribute to this matrix
element. The matrix element (BIX"'""~IB„),where
B is any 3q state, will be zero since the states in
the 10 are totally symmetric in the quark SU(3)
xndxces.

If we treat only orbitally and radially excited 3q
and qq states B* and ~*, Eqs. (3) and (4) will also

follow since X„"'"'describes the interaction of four
quarks at the same space-time point and any two
quarks in B* and M* are much less likely to be
found at the same space-time point than their
counterparts in ground states B,(56, 0') and
M (36, 0 ). However, for qq-pair excited or
SU(3)" excited states Eqs. (3) and (4) can be vio-
lated. But this need not concern us because at
present there are no established resonances of
these types and even if they exist at higher ener-
gies they should not contribute significantly to
low-energy processes in a dispersion-theoretic
approach.

APPENDIX B: THE PARAQUARK MODEL

In this appendix we show the following results
for the nonleptonic weak Hamiltonian in the para—
quark model": (a) The parafermion fields of order
three entering into the nonleptonic weak Hamilto-
nian density do not undergo a Fierz reshuffling, un-
like boson or fermion fields. (b) Only the octet
part of the nonleptonic K"'"'& contributes to the
matrix element between two three-quark baryon
states, namely, (B,IX"'""'IB,). (c) Equations (1)
through (4) of the text hold also in the paraquark
model.

The hadronic weak current in the paraquark mod-
el can be chosen as

J~ (x) = cos8[g„(x),y„(1+y, )g„(x)]

+ sin8[q„(x), y„(I+ y, )q, (x)],
where the ('s are parafermion fields of order
three. These local currents (in the sense of space-
like commutativity) and their commutation rela, —

tions are the usual ones, e.g. , one has all the re-
sults of current algebra. The nonleptonic weak
Hamiltonian density is

Kw(x) = (z)"'G (J„(x)~
J" (x)1, —(0I same

I
0) ) ~

(H2)

where the vacuum expectation value has been sub-
tracted off to remove the usual divergences. This
procedure is used instead of normal ordering since
the commutation relations are trilinear.

The ~S = 1 part of Eq. (B2) can be written as

X~ ='~ = (2)'~'6 cos8sin8([[ g„(x),y&(1+y5)g„(x)],[g,(x), y" (I+y,)P„(x)] ],—(OI sameI 0)),
where each P(x) has the usual expansion:

A(x) =Q Iar iUi i(x.)+&i', &,, ,(x)1,,

(H3)

(134)

where the index I, (over which the sum is taken) denotes the momentum and spin quantum numbers and I is
the SU(3) quantum number of the quark, namely l=u, d, or s. The U's and V's are defined by
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1!2
U, ~(x}=( „„—u, (p, s)e '~'", 1/2

~t, z (x) =
(2
„„—vt (P, s)e' (Bs)

In Eq. (B4) n» is the annihilation operator for the quark, whereas b, ~ is the creation operator for the
antiquark. The part of Eq. (B3) which will contribute to the matrix element between two 3q baryon states
can be written in the form

3C",
" =(—,')'~'Gcos&sin8 g [[[a, zU, ~(x), y&(1+y, )n~ xU» «(x)], [n ~U ~(x), y" (1+y,)n„„U„„(x)]],

L, K, N~N

—(0) same[0&} . (B6)

T~, =T y', —(oITL'81o&, (B7)

There are also other pieces in Eq. (B3) which will
involve the creation and annihilation operators of
antiquarks. If the quark fields undergo Fierz re-
shuffling in (B3), it is clear that each of these
pieces must undergo Fierz reshuffling separately.
That is, a necessary condition for Fierz reshuf-
fling in Eq. (B3) is that K," given by Eq. (B6) is
either symmetric or antisymmetric in the upper
and lower indices. We will now prove that net. ther
is true in the case of para-Fermi fields of order
three.

It is easily checked that the interchange of
(U, ~—U ~) or (U, x—U„„) in Eq. (B6) introduces
only a minus sign. So the symmetry or antisym-
metry of 3C "will depend, respectively, on the
antisymmetry or symmetry of the object,

8 = -16p(8p —16)(p —1), (B15)

which does not vanish for P=3. (As expected, it
does vanish for P = 1 so that K f" of Eq. (B6) is in-
deed symmetric in l and m for ordinary fermions. )

Next consider

n, 8=X
C=— 5 (0~ [a„,as] T&8[a&, as] ~0),

n, 8=1
(B16)

where y g5 and fixed. C should be zero if T&8 is
symmetric in o. and P, i.e., if case (ii) holds. On
the other hand, using Eqs. (B10)—(B14) we find

ordinary fermions and P = 3 for parafermions of
order three), we can calculate B given by Eq. (B9).
If we take for simplicity ¹1,and all the indices
u, P, y, and 5 the same and equal to 1, we find,
using Eqs. (Blo)-(814),

where C = -32P[P —PN+ N' —2N+ 1]. (B17)
T&'=[[a'„,n,],(n', n,] ], (B8)

and the Greek symbols u, P, y, and 5 denote both
the SU(3) index and the momentum and spin quan-
tum numbers, so u =(l, L), .. . The question now

is: Is T„s either (i) purely antisymmetric in o
and P, (ii) purely symmetric, or (iii) neither .
We proceed to eliminate (i) and (ii), so (iii) is
true.

If (i) were true, the following object:
n, 8=x

a= 5 (0][n„,n, ]„Tl'g [n,', n,'J, (0&.
n, 8=1

(BQ)

[[n„,n, ],apJ =-26 pa, ,

[[n„,n, J, n, ] =0,

[[n„,n, J, nt] = 26, pn„—25„,n, ,
P

and the equations

n„i 0& =0 Vp. ,

n„n~( 0& =ps„, ( 0& yv. , v,

(B10)

(B11)

(B12}

(B13)

(B14}

where P is the order of the parafermions (P = 1 for

should be obviously zero. Using the trilinear com-
mutation relations for parafermions, " I, p, y& = [["., nl]„.,'], i 0&, (B18)

each of which is completely symmetric in the
quantum numbers a, P, and y. Therefore in the
matrix element of X"," between two single baryon
states, only the symmetric part of T&ss (sym-
metric under o.—P and y 5) can contribute.
Therefore, ns far ns taking the matrix element
between theo single baryon states is concerned,
X," of Eq. (B6) can be rewritten as [the inter-
change of U„and U& introduces an additional neg-
ative sign in Eq. (B6)J

Since N is arbitrary, this only vanishes for p=0.
Hence only case (iii) can be true, T „s is neither

symmetric nor antisymmetric in n and P. This
implies that X","„defined by Eq. (B6) is neither
symmetric nor antisymmetric in l and rn and so it
is not a pure SU(3) octet operator. In spite of this
we will now show that only the octet part of X,"
will contribute to the matrix element (B,~3C

~ 8,&,

where B, and 82 are 3q baryon states, and that
Eqs. (1) through (4) of the text still hold.

The crucial point is to notice that the baryon
states" in the paraquark model are linear combin-
ations of states
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X»" = —(»)'~'Gcos8sin& g [[[at „U „(x),y„(l+y, )a, «U» „(x)],[a, ~U, ~(x), y "(1+y,)a„,„U„,«(x)] ],
L»Eo AlsN

—(0( same( 0)]

= —(-,')"'Gcosesine Q [[[a ~U ~(x), y„(1+yo)a» «U, „(x)],[a, „U, „(x),y (1+y,)a„„U„„(x)]],
L,E, M, N

—(0( same(0&j

The last line of Eq. (B19), on comparison with Eq. (B6),
baryon states,

kn ~An
lm ml '

(B19)
is seen to be -3C"",. Therefore, betzveen Aao 3q

(B2o)

Equation(B20) of course implies that only the octet part of the nonleptonic K„contributes to any matrix ele-
ment of the form (B,~K ~ B,).44 By the arguments given at the end of Appendix A, it is now obvious tha, t
Eqs. (1) through (4) of the text will also hold for the paraquark model.
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