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Pion-nucleon charge-exchange data below 2 GeV/c have been fitted using fixed-t dispersion
relations, and the hypothesis of two-component duality. Good fits were obtained, and the

resulting amplitudes are in agreement with recent phase-shift analyses. Predictions for the
crossing-even amplitudes are shown to be compatible with experiment.

I. INTRODUCTiON

In this paper we present an analysis of low-
ener gy data for m P —m n, using fixed -t dispersion
relations and the ideas of duality. More specif-
ically, we use the hypothesis of two-component
duality, ' which is the statement that high -energy
Regge poles are dual (in the sense of finite-energy
sum rules) to low-energy resonances, and the
Pomeron is dual to the background remaining
after the resonances are subtracted from the full
amplitude.

Qualitative evidence in support of this hypothesis
comes from the work of Harari and Zarmi, ' who
used mK phase shifts to construct s-channel ampli-
tudes with definite t-channel isospins. The results
showed that resonances in amplitudes correspond-
ing to I, = 1 exchange were accompanied by far
smaller backgrounds than those in amplitudes
corresponding to I, = 0. Similar evidence has been
presented for KN scattering. ' It follows that react-
ions corresponding to isospin exchange in the t
channel should be resonance saturated at low en-
ergies, and this assumption has been used to an-
alyze ~N CEX (change-exchange) data. ' However,
prior analyses assumed resonance dominance for
both the real and imaginary parts of the amplitude
which is unreasonable, since it is only the imagin-
ary part of a resonance which is a local effect;
the real part vanishes at resonance, and is non-
negligible some distance from the resonance.
Thus, from FESR (finite-energy sum rules) argu-
ments, only the imaginary parts of such ampli-
tudes are expected to be resonance dominated.
Given the imaginary part, however, the real part
can be calculated from fixed-t dispersion relat-
ions and this is the method we will employ.

The use of fixed-t dispersion relations in phe-
nomenological analyses of low-energy reactions
is long-established. Some examples are the ex-
traction of threshold parameters for mN (Ref. 5)
and K&V (Ref. 8) scattering, and the construction
of models for low-energy pion electroproduction. '
More recently, fixed-t dispersion relations have

been used in conjunction with duality to calculate
high-energy amplitudes for m P- mon (Refs. 8 and

9) and yN- mN (Ref. 10). The inputs for all these
calculations are (among other things) low-energy
amplitudes, usually taken from partial-wave
(phase shift and multipole) analyses. Far less
work has been done using the fixed-t dispersion
relations to extract such amplitudes directly from
data, although some analyses have been made. "'"
By combining the use of fixed-t dispersion relat-
ions with the two-component duality hypothesis,
we are able to construct an economical, but theo-
retically satisfactory, parametrization which is
particularly suitable for analyzing inelastic react-
ions in situations where data are few, but the res-
onance spectrum (i.e., masses and total widths)
is reasonably well known. Thus, for example,
resonance coupling (partial widths) could be ob-
tained from reactions such as mN-qN, mN-EA,
and yN- KA.

To test whether such a model is capable of pro-
ducing quantitatively satisfactory results, we have
analyzed data for n P- m'n in the region below
2 GeV/c, a.s this is a reaction where much infor-
mation already exists from»phase-shift analy-
ses.

II. FIXED-t DISPERSION RELATIONS

We us the standard mN invariant amplitudes
A'(s, t), B'(s, t), ' and

A"(s, t) = A'(s, t)+ —,, B'(s, t). (2.1)

ReA (v, t) = — dv' ImA (v', t)
I' ", , 1 1
77 p0 P —V V +V

(2.2)

The crossing-odd amplitudes are related to those
for m P- m0n by

AcEx= —v2 A
& Box W2B-

and obey unsubtracted fixed-t dispersion relations
of the form'
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and

ReB (v, t)= + )
G' 1 1
2M v~ —v v&+ v

+ — dv' 1mB (v', f), + —,
P I 1 1
7l' v —v v+v

(2.3)

tice we have investigated three widely-used models
for r (q). These are shown in Table I.""~'~

The resonance form (2.4), with I"(q) given by
one of the models of Table I, was used for all
resonances except the N*(1232). The latter was
treated as a fixed contribution of the form

C~ 5

Im „s)=1+ (q2 q 2)a(I y g2q2)2+ c2qe &

where

(s -u)
(4M)

which gives a good fit to the P» phase shift of
Carter et al. , "with the parameters, a' = 21.4
GeV ' c= 4.27 GeV '

q '= 0.0508 GeV'.

2

2M 4M '

p. is the pion mass, and G' the md% coupling
constant. The unsubtracted dispersion relation
for A' (v, f) follows from Eqs. (2.1) —(2.3).
These relations are valid in principle for all
physical values of I;. However, for a fixed value
of I; we require the imaginary parts for all
v, - v& , and part of this range will, in general,
be unphysical. We have evaluated this in the stan-
dard way by using the usual Legendre expansions
to extrapolate the low-v amplitudes to unphysical
I; values. Examination of the nearest double spec-
tral functions suggests that this expansion should
be valid at least to I t I & 10eV' = 50', '. Another
reason for restricting t to this range is that we
will be evaluating the high-energy part of the
integrals using a Regge -pole model, the parame-
ters of which are only well-determined for ~t~

s 50', '.

B. High-Energy Input

We treat the high-energy part of the dispersion
relations as a fixed contribution, and evaluate it
by a Regge-pole model. The model we use is the
five-pole fit of Barger and Phillips, "(i.e., P, P',
P", p, and p'), which for the crossing-odd amp-
litudes gives

ImA' (,&) = — p, os(-,' u. )(v'- v ')'"' " '

Ima (v, t)= — p p, cos(-,'wo. ,)(v'-v, ')'"~ "'.
PsP

(The precise forms for the trajectory and residue
functions are given in Ref. 16.) The parameters
of this model were obtained by fitting data above
about 4.5 GeV/c, but the model still gives a good
fit to the data when extrapolated down to = 2 GeV/c.
Evidence for its correctness comes from an amp-
litude analysis of 6-GeV/c mN data, "the results
of which are well reproduced by the model.

A. Low-Energy Input

In the spirit of the two-component duality hypoth-
esis, we use resonances alone as the low-energy
input to the integrals of the dispersion relations.
The form we use for the partial-wave amplitudes
of definite isospin is

(2 4)

C. wN Charge-Exchange Data

The pion-nucleon charge-exchange data that we
fitted consist of 620 differential cross sections
(for ~ tj & 50', ') at 81 separate momenta between

TABLE I. Parametrizations for F(q). 1"& is a con-
stant and q& is the value of the momentum q at reso-
nance.

where W&is the mass, I' the total width, x the
elasticity, and W= Ws. To maintain the correct
threshold behavior of Imf»(s), the width I'(q)
must contain a factor q" ' close to threshold, but
away from this region the form of I (q) is some-
what arbitrary. Certainly, to use the q

'+' factor
above the resonance energy would be unreasonable,
as the high-energy behavior would not be expected
to be controlled by a threshold condition. In prac-

Model q &q&

D, (qr)

Comments

Used, for example, by
Harari and Zarmi2

& =2.5p, used, for
example, by Walker

D, is the barrier factor
of Blatt and Weisskopf. 14

~=0.45@ ~.
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0.31 GeV/c and 2.07 GeV/c. " This is part of the
data set used in a recent mN phase-shift analysis, "
and we have used the same renormalizations as
used in that work. In addition, we have fitted the
total cross -section difference

n, o =-o(n'p) —o(m p),

at 29 momenta spread throughout the range. Val-
ues for &a were constructed from tabulated values
of the 71 P total cross sections. " The total number
of data points is thus 649.

III. CHARGE-EXCHANGE SOLUTIONS

The method for finding solutions is as follows:
For an initial resonance spectrum parametrized
by Eq. (2.4) with a particular model for I"(q), we
form ImA and ImB in the low-energy region 'by

the usual partial- wave series [including fixed
contributions from the N*(1232)] . We use the
Regge -pole model with fixed parameters to form
the imaginary parts in the high-energy region, and
then use the dispersion relations to calculate the
real parts. The re sonance parameter s are then

varied to fit the data described above.
The resonance spectrum used was that given in

the N* review section of the Particle Data Group
tables, "with the exception of the D»(1700), which
we omitted as it is not definitely confirmed. There
js a total of 20 resonances [including the fixed N"
(1232)], with angular momenta up to G,~„and
masses up to 2150 MeV. Since the highest mass
state has a width of = 340 MeV, we used the Regge
form down to center-of-mass energies of 2.5 GeV.
(We have checked that in the region of the matching
point the high- and low-energy imaginary parts are
of compa, rable magnitudes. ) For the initial trial
solution we used the average values quoted in the
PDG (Particle Data Group) tables, ' but because
we have considerable information about these
parameters from several standard phase-shift
analyses, we constrained the parameters I', of
each resonance to lie absolutely within the range
I'&+~&, when && is the maximum spread in I',
found by comparing the tabulated value from dif-
ferent phase shifts analyses. " (The values of
&& are somewhat larger than the "errors" quoted
by the PDG.")

The initial normalized X' for all the models of
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FIG. 1, Fits to some sample charge-exchange differential cross sections obtained from solution (b).
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FIG. 3. Fit to the forward charge-exchange differential cross section obtained from solution (b).
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TABLE II. Values of the resonance parameters for
solution (b). The parameters of the P3&(1232) were kept
fixed in the analysis.

19. (A few points from the analysis of Pietarinen"
are shown as crosses. ) In all cases the agreement
is very good, and there are no systematic discrep-
ancies.

Mass Width
State (Me V) (Me V) x

Mass Width
State (Me V) (Me V) x

IV. CROSSING-EVEN AMPLITUDES

S~ge

Pygmy

P(3
D(3I
D~3

1532 65.5 0.32 S3i 1660
1688 110 0.51 P 3f 1943
1472 291 0.53 P3) I 1232
1646 142 0.15 P33 v 1750
1808 434 0.19 P33 i.~ 2130
1514 130 0.49 D 33 1649
2029 301 0.26 D3) 1913
1665 175 0.46 E3) 1913
1682 140 0.56 P 37 1925
2001 250 0.12
2148 338 0.33

199 0.33
200 0.27
113 1.0
185 0.12
290 0.24
300 0.18
311 0.16
165 0.15
209 0.45

The fit to the CEX data determines the resonance
couplings, but only in the combination (A'~' —A'~').
Thus, it is necessary to check that the predictions
for the crossing-even amplitudes are compatible
with experiment. This prediction is not, however,
unambiguous, as we now need a model for the
imaginary background, which in the two-compon-
ent duality hypothesis is the Pomeron.

We consider firstly, the amplitude B+(v, t) where
we have

I'(q) was &20, and after minimization fell to 5.6,
3.4, and 3.8 for models (a), (b), and (c), respec-
tively. While model (a) gives a qualitative descrip-
tion of the data, models (b) and (c) give quantita-
tive fits comparable to those obtained in energy-
dependent nN phase-shift analysis, "and to illus-
trate this we show in Fig. 1 the predictions of
solution (b) compared with some sample differen-
tial cross sections, and in Figs. 2 and 3 we show
the predictions of the same solution for the cross-
section difference &o, and the forward differen-
tial cross section, as functions of energy. The
parameters of this solution are given in Table II.
To compare this solution in detail with the results
of phase -shift analysis, we show in Figs. 4 —7

Ac» '(v, &) and Bc»(v, t) for 0 ~
~t~ ~1.0 GeV' and

0 ~P„b - 2 GeV/c obtained from solution (b) (solid
line), and the same quantities obtained from Ref.

ImB+ = ImB' + ImB~, v& v,

= ImB~+ ImB~, (4 1)

The real part may be calculated from an unsub-
tracted dispersion relation for B'(v, t), which,
using Eq. (4.1), may be written

where v, corresponds to the matching energy
W=2. 5 GeV, and Res, I', and A stand for the con-
tributions from the resonances, the Pomeron, and
the sum of other I = 0 Regge poles (i.e., P' and P"),
respectively. Thus, we need the Pomeron contri-
bution for vo

& v& v, . As a first approximation we
have used the parametrization of Barger and
Phillips" extrapolated to low energies. The Regge-
pole terms of Eq. (4.1) a,re then given by

ImB,"(v, f ) = vP, sin(-,'nc(, )(v' —v,')~+ "~',

i = P, P', P" (4.2).

Rett' ( t) v— = v — dv ' tmB (v t); '„—',, )
I 1 1 ", +

2M V~ -V V~+ V 7)~ V —V V + Vvc

+ —
(

dv'ImB„+„(v', f), —, + ReB'(v, t),
77 et IJ V —V V + V"Up

(4.3)

where

ReB~(v, t) = —tan( ,'na p)ImB~(v, t), -(4.4)

which follows from the specific form of Eq. (4.2)
for the Pomeron. We show in Fig. 8 the values
of B+ (v, t) for t = 0 and —0.04 and 0 & p„b & 2 GeV/c
obtained from Eqs. (4.1) and (4.3) using solution
(b) as the low-energy resonance input. The agree-
ment with the phase shift results of Almehed and
Lovelace" is quite satisfactory, despite the fact
that no modifications have been made to the Pome-

= ImA'„++ ImA'&, v& v,

where the Regge pole terms are given by"

ImA' f (v, t ) = y, sin(-,'wo(, )(v'- v,') '~',

(4.5)

i =P, P', P". (4.6)

ron term in the region v, - v - v, .
For A" (v, f ), the two-component duality hypoth-

esis gives for the imaginary part
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The situation for the real part is more complicated because the dispersion relation for this amplitude
requires a subtraction. For f =0 we considered a dispersion relation for the amplitude A" (v, t) subtracted
once at threshold,

~„( 0)
2(v'- p, ) d, v'ImA'+(v', t), ,

( )
4G Mp, v'- p, )

1T „(vI —p, )(v t2 —v2} ~ L(2~v)2 —Q4] (4~2 —p2) (4.7)

where lmA" (v, t) is given by Eq. (4.5) and the subtraction constant can be evaluated in terms of s-wave
vN scattering lengths. "

0 ~ I

V

I ~ I ~

t= -04

o~4

0.5
I

1,0

t =-08
I

1.5

p (Gs Y/c)
lab

0.5

t=-1 0

I

1.5

FIG. 4. ReA'„„(&, t) at flied t (in GeV2) obtained from solution (b) (solid lines), from the ~ phase shift of Almehed
and Lovelace (Ref. 19) (circles), and from the analysis of Pietarinen (Hef. 11) (crosses). (Units: 5 =c =p, =1.)
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In Fig. 9(a) we show (dashed curves) values of
ReA'+(v, t = 0) and ImA'+(v, t = 0) for O~P„„~2
GeV/c obtained from Eqs. (4.5) and (4.7) using
solution (b) as the low-energy resonance input.
There is a marked discrepancy between the pre-
dictions and the amplitudes obtained from phase-
shift analysis, "which is due to the extrapolated
Pomeron contribution being far too large in the
low-energy region. This fact has been noted in
previous calculations. However, we are free to

modify the Pomeron contribution, provided the fit
to the high-energy data is maintained. As an illus-
tration of this we have modified the Barger-
Phillips form for ImA'+ by the function f(v) = I
—exp( —np„b'), i.e., we have used

ImA'z+(v, t ) = yz(v'- vo)"~/'sin( —,'wn~)f (v) . (4.8)

With n =0.36 GeV ', f(v)= I for p„b & 3 GeV/c, and

5— ~w- ~ W I OJ~t

t =-0.2

t =-0.4 t = -0.6

I ML I a
0 ~

t = -0.8

0.5
I

1.0
I

1.5

P( h
(GeV/c)

I

0.5
I

1.0
I

1.5

FIG. 5. Im4cEX(v, t) in the notation of Fig. 4.
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the original form is recovered.
The solid curves of Fig. 9(a) show the modified

predictions for ImA'+(v, t = 0) and ReA" (v, t = 0),
where the latter quantity is again calculated from
Eq. (4.7). The agreement between the predictions
and the phase-shift solution is now satisfactory
except at the highest energies, and this may well
be due to neglected higher resonances. For ex-

ample, this discrepancy is approximately halved
if the conjectured H»(2200) and H», (2450) reso-
nances are included.

For t40 the subtraction constant ReA' (vo, t)
cannot be evaluated without a knowledge of mN

scattering lengths for t ~ l. A convergent relation
can, however, be obtained by writing an unsub-
tracted fixed-t dispersion relation for the ampli-

I

I r
e ~ ~ ~

h.l e ~—,', ~~ ~ ~ ~ ~ ~

~ ~

4

t=o t= -0.2

~r ~ ~
W

I'L =~=

-4—
0 8 4 t = -0.6

I I

I I ~ ~ a-=~ &0 ~

t = -0.8

l

0.5
I

1.5

P~ h
(GeV/c)

0.5
I

1.0
l

1.5

FIG. 6. ReB~gv, t) in the notation of Fig. 4.
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tude'

The predictions for 4' '(v, t = -0.4) obtained in
this way are shown in Fig. 9(b) using solution (b)
as the low-energy resonance input, and the un-
modified Pomeron and I" parametrizations. The
agreement with the phase shift solution is not as

good as at t = 0, but again we have the freedom to
modify the Pomeron (and now also the P') contri-
bution.

Finally, we have checked that the real parts of
the amplitudes (both crossing-even and crossing-
odd) at high energies, calculated from the disper-
sion relations are in substantial agreement with
those given by the fit of Barger and Phillips, "and

—-1Q—

t=0 —-15— t= -Q2

~ ~ ~

2—
I ~ ~ 0 Q Q 0

I

t = -0.4 t = -0.6

t = —0.8 t =-1.Q

I

0.5
l

1.Q
I

1.5
I

0.5
I

1.0

p~, b (GeV/c)

F&6. 7. ImB&EX(&, t) in the notation of Fig. 4.
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this is true even when we use Eq. (4.8) for the
Pomeron.

V. SUMMARY AND CONCLUSIONS

%e have fitted pion-nucleon charge -exchange
data below 2 GeV/c, using fixed-t dispersion rela-
tions and the hypothesis of two-component duality.
Good fits were obtained, and the resulting ampli-
tudes are in agreement with recent mN phase-shift

analysis. ' Predictions for the crossing —even amp-
litude B (v, t) obtained using the Barger-Phillips
form for the Pomeron are also compatible with the
phase -shift results, whereas those for 4' '(v, t )

show significant discrepancies. However, these
can be removed to a large extent by suitably rnod-
ifying the Pomeron contribution at low energies.

These results show that fixed-t dispersion re-
lations together with the two-component duality

~ I

Irn 8 (t =0)

05 1.0 1.5

p ( GeV/c )
lab

I

0.5
I

1,0
I

1.5

Ime'(t =-0.4) ReB (t = -04)

~ I ~

0 ~

0.5
I

1.0
I

1.5

p {6eV/c)
lob

0.5
I

1.0
l

1.5

FIG. 8. B (v, t) for t =0 and —0.4 GeV in the notation of Fig. 4, obtained using the unmodified Barger-Phillips
parametrization for the Pomeron.
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hypothesis, provided an economical and theo-
retically satisfactory parametrization for analyz-
ing data on two-body reactions. Work is in prog-
ress on analyzing data. for mN-KA.

We thank Dr. S. Almehed for assistance in inter-
preting the data compilation used in Ref. 19. We
also thank the Rutherford High Energy Laboratory
for providing computing facilities.
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FIG. S. (a) (upper diagrams). ReA" (v, k=0) and ImA'+(v, t=0) obtained using the unmodified Barger-Phillips
pararnetrization for the Pomeron (dashed curves), and using the modified form (solid curves), (b) Power dia-
grams). Re A'+(v, t=-0.4) and ImA'+(v, t=-0.4) obtained using the unmodified Barger-Phillips parametrizations for
the P and P'.
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The multiplicity distribution a~(s) for the Koba-Nielsen form of the dual-resonance model is

computed in the limit of large Wand s. It is noticed after simplifying approximations that cr„(s) has
the form of the absolute square ~4„~ of the statistical-mechanics partition function of N unit charges
free to move on an infinitely thin circular wire. This partition function of a Coulomb gas has been
evaluated by Dyson, and gives a closed-form estimate of cr~(s). Using this estimate, the properties of
the multiplicity distribution are obtained. In the language of statistical mechanics, a first-order phase
transition is found in the limit of infinitely narrow resonance widths. If the resonances are given finite

widths, a second-order phase transition or critical point can occur. In the language of high-energy

physics, these possibilities correspond to the second moment f, = &X(N —1)& —&N& increasing
like (lns)' or like (lns)'+", 0 & v & 1, respectively; the multiperipheral model predicts f, - lns, while

two-component models predict f, - (lns) .

I. INTRODUCTION

One of the distributions most easily obtained in
high-energy hadron collisions above 100 GeV/c is
the multiplicity of charged secondary particles. '
If n is the number of charged prongs, and o„ the
cross section associated with that multiplicity, the
multiplicity distribution is given by (o„/o„,). If
particles were produced in a statistically indepen-
dent fashion this distribution would be Poisson in

n. Such a distribution is not far from what is ex-
perimentally observed in collisions at 50 and 70
GeV/c (see Ref. 2) but at higher energies the dis-
tribution is observed to be broader; large devia-
tions are seen that indicate strong (positive) cor-
relations.

The description of multiplicity distributions, and
their comparison with theoretical models, is
greatly facilitated by the employment of the lan-
guage (but not necessarily the physics) of statisti-


