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A unitary model of multiparticle amplitudes with multiperipheral and diA'ractive production
mechanisms is presented. The model has a bootstrap solution for the elastic amplitude of the form

I(J —I) + [(J —I)' —ll st] '"
) ', leading to constant total cross sections at high energies. Inelastic

cross sections and multiplicity distributions may be predicted in qualitative agreement with experiment.

I. INTRODUCTION

It is generally accepted today that a realistic
model of particle production in hadron collisions
at high energies should contain both multiperiph-
eral dynamics and diffractive fragmentation, ' while
at the same time satisfying the constraints im-
posed by the unitarity condition. ' Unitary models
of multiyarticle amplitudes where particle pro-
duction comes exclusively from multiperiyheral
mechanisms have been developed by several au-
thors. ' We present here a model in which the S
matrix is unitary at high energies, but which in-
cludes both multiyeriyheral and diffractive pro-
duction. Besides, a bootstrap solution exists
which leads to a constant total cross section, in
contrast with most previous models in which self-
consistent solutions lead to (logs)' behavior of the
total cross section, thus saturating the Froissart
bound.

The model is based on the eikonal approxima-
tion with the inclusion of the possibility of pro-
duction of excited states of the external yarticles.
The masses of these excited states are allowed to
vary continuously within the limits imposed by the
validity of the approximation. The excited states
are allowed to decay into a nucleon and pions.

We thus have an infinite-channel model in the
external "nucleons. " In Sec. II we show how the

inclusion of the possibility for excitation of the
incoming particles leads to results similar to
those obtained by Aviv, Sugar, and Blankenbecler
(AS+),s but with the inclusion of an energy-depen-
dent function I(s)„which is essentially an integral
over the squares of the coupling functions for the
excited "nucleons. " The basic amplitude is speci-
fied by the diagram of Fig. 1.~ All S-matrix ele-
ments are then shown to satisfy unitarity exactly
at high energies. In Sec. III we show that there
exists a bootstrap solution for the elastic amplitude
which when combined with a restriction on the as-
ymptotic behavior of the function f(s) gives scat-
tering amylitudes leading to constant total cross
sections. We then compute inelastic cross sec-
tions and particle distributions, showing how a
particular choice of coupling functions for the
excited "nucleons" (which also determines their
decay amplitudes) may lead to results in qualita-
tive agreement with experiments.

Section IV contains a brief summary of the re-
sults and some concluding remarks.

II. THE MODEI.

To define the kinematics, let us follow ASH and
write

Jst = mt (coshy„O, 0, sinh y, ),
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P, = m, (cosh y„0, 0, sinhy, ),
where P, and P, are the momenta of the colliding
nucleons, characterized only by their rapidities
y, and y, (we ignore spin and internal quantum
numbers, and for the incident particles m, = m2
= m, ), defined in the usual way:

P, +Pg

At high energies,

(p+p)2 m sells- sls—m 2s

Since multichain exchanges must be included to
satisfy the unitarity condition, the 8-matrix ele-
ments will have contributions from diagrams of
the type shown on Fig. 2.

In the center-of-mass system the amplitudes
are functions of Y, the rapidity difference between
the incoming nucleons; B, the impact parameter
between the same nucleons; m„rn„m, ', and m2',
the initial and final masses of the "nucleons"; and

q& and y&, the transverse momentum and rapidity
of the ith produced pion from the chains.

Let us for the moment consider the "nucleons"
as stable against decay, and find the contribution
to the scattering amplitude from quasielastic scat-
tering (direct exchanges with no pion production)
only. Each exchange contributes a factor 6(Y, 5;
m,', m,', m„m, ), where 6 is the two-dimensional
Fourier transform of the amplitude for a single
exchange, i.e.,
6(Y;5; m,', m,', m„m, )

With the usual treatment of the relativistic ei-
konal model we readily find the matrix element
for (quasi) elastic scattering:

M „(Y,5; m,', ms, m„ms)

where

(l S(~(r'B)I(ss)/as)
I(s)

x g(m,")g(m,")g(m, ') g(m, '), (5)

/Vs 2

l(s) =( dm'[s(m')]'
leap

Now let us turn to particle production. Using
Eq. (4) for the coupling functions G(m', m", t), we
can write the basic production amplitude of Fig. 1
as

The upper limit to the integration over m2 is de-
termined by the validity of the eikonal approxi-
mation. p, is the mass of the exchanged object.

Equation (5) can be written

M„)(Y,5; m~, m,', m„m, )

2fs(] s(b(r ~ 8;sly, ms, ag, ms)/ss) (7)

if we regard this as a matrix equation in the (con-
tinuous} indices m,', m,', m.„and m, . Thus we
can identify the two-body'S matrix (between states
of specified initial and final masses) as:

S /Y5'm' m' m m)=s(~(r'B' I ~ & ~

qual x y y ly 2y ly 2I =

5(Y Z)
(2 )'

x Q(mp, m, ', f)G(m,', m, ', f}, (3)

where t= —42. In order to have a solvable model
we now make the basic assumption that the cou-
pling function G(m,",m', f) is factorizable in each
of the arguments and then neglect its I dependence:

= W(Y, 5; y, 5)g(m,")g(m,")g(m„') g(m, '), (9)

where 5 is the coordinate conjugate to the trans-
verse momentum of the produced pion. We may
write Was a product of two-body amplitudes as
follows:

G(m", m', f) =g(m") g(m') .
It follows that we can write'

(4)
W(Y, 5;y, 5) = XM(y, -y; —,'5-6)

xM(y —y, ; —,'5+b) . (10)

6(Y, 5; m,', m,', m„m, )

=5(Y, &)g(m,")g(m,")g(m, ') g(m, ') .

Notice that M is a two-body amplitude without

the external coupling functions and represents a
process in which only one of the external particles

P2, AlP

FIG. 1. The basic ampler. tude
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can be excited.
We can now write down the amplitude for production of n pions from the chains (pions produced in what

we choose to denote as the "pionization region'")':

Mno(~s ~s yap tt«' ' ynt «ns mz &m2&mz&m2)

AD fr(s) n
=-e' i"' l ~'l~" g(m")g(m,")g(m, ')g(m ')QW(F 5 y b ) (11)

J=l

where the exponential factor in front comes from the quasielastic two-body scattering. Similarly the con-
nected part of M „ is

e I e
""fmn ( ~ t ~~ yx s «x s ' ' ymt «mi yet box ' ' ' yn t bn t ml s ma s m1& m2)

~ f(+ n+m -1
=e' ' ' "—' g W(i) fI'W(j)g(m, "')g(m")g(m ')g(m ') (l2)2s

where W(i) stands for W(F, 5; y, , b, ). The amplitude where some of the pions are disconnected is simply
the connected amplitude multiplied by momentum conserving 5 functions for the disconnected pions.

We now show which constraints unitarity imposes on the model. For diffraction scattering we expect the
elastic amplitude to be purely imaginary at high energies, therefore defining

a(r, 5) =--—5(r, gl), (12)

and writing down the unitarity equation for the elastic two-body amplitude Moo, we find that unitarity is
satlsf led lf

g (1;g) =, d'bdy
j W(1; 5;y, 6)j

' . (14)

Following ASB we write the 8 matrix in an explicitly unitary operator form:

d2bdy g)(F, 5; y, b; m,', m,', m„m, )a(y, 5) .
Bws

a(y, 5) is the pion destruction operator, in the normalization:

[a(y, b), at(y', 6')]=4mb(y y') 5'(6-6'-),

a)(F, 5; y, 5;m,', m,', m„m, ) = dm,"dm,"dm, 'dm, 'W(l; 5; y, 5; m,', m~, m„m, )

x d ~t (m,') j0 & ( 0, j d, (m, ) dt (m,' ) j 0 ) (0, j d, (m, ) ~

j 0(& ls the vacuum state with respect to the 'lth nucleon
The "excited nucleon" creation and annihilation operators d~~ and d& satisfy the commutation relation

[dg (m;), dt (m,')] = 5g, 5 (m(' -m,") (19)

and matrix elements are to be taken between states labeled by the masses of the two "nucleons" and the
pion coordinates, e.g.,

jmi ma~a 5&~" y. ~5.&=di(mx)-d2(m2)a'(yi~6i)" at(y. ~bn) Io& .
To take matrix elements it is convenient to write 8 in normal ordered form:

(20)
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e(F, %m,', m2, m„m2) = 2[X, X']

=A (};I}f dm,"dm,"dm, '.dm, 'g(m,"}g(m,' '}g(m, '}g(m,'}

xdt(m, ') ]O,&(O, )d, (m, ) dt(m,') ]O,&&O, (d, (m, ) . (22)

One can easily see that this 8 matrix leads to the amplitudes (11) and (12).
In particular we write down the amplitude for producing two excited "nucleons" in the final state from

two initial nucleons of mass m, . Normalizing the coupling functions so that g(m, ') =1, we have:

(F g ' ' )=2zsg} " 'g( ' '(1-e "(rl()&(&))

The corresponding amplitude for the production of two "excited nucleons" and n pions coming from the ex-
changed chains ("pionization region"} is:

i s
M„o(F, 5;y,5„.. .y„,5„;m,', m,', mo, mo)=

2 QW(Y, 5;yq, E, )e ("'" "g(m,")g(m,") .
2s g=x

Notice that everything so far reduces to the model of ASH if we set all "nucleon" masses equal to m,
[and thus I(s) =1].

Let us now turn our attention to the production and decay of the "excited nucleons. " In order to allow
the "excited nucleons" to decay into an ordinary nucleon and yions, while at the same time retaining uni-
tarity, we must consider the "excited nucleon" itself as a "resonant state" consisting of pions and one
nucleon. The amplitude D for producing this state, must be closely related to the "coupling function, "
g(m ). Assuming for simplicity that the pions are produced independently of each other, we may write
the amplitude for producing n pions with momenta q& and one nucleon in a "resonant state" with invariant
mass m [Fig. S(a)] as':

(25)

~ ~ ~

p Ws
$ p.Ms

dm'[g(m')]'= — dm' Q ~D„(m, q, . . .q„)~'g (propagators) d'(t}„' .
sto sto n=O

d' g is the phase space for the "cluster" of pions plus one nucleon. Making the approximation of puttmg
all the particles on their mass shells, we can write

(26)

where (}.(m') is some arbitrary function of m', and h(q) is a function giving the pion distribution. The nu-
cleon momentum will thus be determined by momentum conservation only. From Fig. 3(b) we see that the
connection between g and D is:

where
n

C1, 4yC" a~d&&+P
4n 2 ( } P Z qi P LL (2+)8 2g (2+)3 gpss

0

P' is the total cluster momentum and P' the momentum of the nucleon in the cluster.
We can now write down the full scattering amylitude for the production of N yions, of which n, come

from the chains and n, and n, from the "clusters"; with cluster masses m, and m, '.

(28)

where

( r, Z; q~. . .q„;q~. ..q„', , q,".. . q„" ) =M„(r, p; q~. ..q„; m„m ) D„(m„q ~q„' ) D„(m2, qj~, ...q„"),
2 r 2 2

(29}

p=4(p''- p")
is the transverse momentum transfer conjugate to 5.
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OI. PROPERTIES OF THE MODEL

A. Bootstrap Solution

As we have shown, the model is completely
specified once the function W(F, 5; y, b; m,', m,',
m„m, ) and the cluster decay amplitudes
&„(m„q,. . . tI„) are given. According to Eq. (10)
we can write 8"is a product of two "basic" two-
body amplitudes M, where each of these corre-
sponds to a process in which only one side of the
diagram has a nucleon-type particle that can be
excited. Therefore, with our definition of the 8
operator, these amplitudes have the form [see
Eq. (23)]:

(32)

For the input and output forms to be consistent,
we must require that e "goes to zero at least like
a se/, ative polver of s. This implies that I(s) can-
not increase faster than a power of lns, i.e.,

I(s) s /t(ins) 2,

where

0 ~&) ~&2 .

(33)

(34)

For this asymptotic behavior of I(s) the boot-
strap is complete, except in a ring of radius
.8=BOY and width proportional to Y'" ' ' . The
area of the "grey ring" in which the bootstrap
fails, increases with energy (except for @=0, in
which case it remains constant), but becomes a
negligible fraction of the total interaction area
mAO'Y for large s.

B. Cross Sections

The elastic amplitude now becomes [Eq. (23)]:
M(r, 5)„„„., —=M (r, gi;m, m, m, m )

e(R, F-B) .Is (35)

The total scattering cross section is therefore:

3l 3s 2 [I(s)]l/2M( — -'5-5) = ' (1-e t"t ': &' ')

(30)
where s, =-m,' p. e ~ ' is the subenergy between the
pion and the "excited nucleon"; with a correspond-
ing expression for M(y-y» —,

' 5+6). A is given by
Eq. (14).

We then choose an input function of the form

(I-e-"t"'1) = e(R,F-B) (31)

which through Eqs. (30), (10), and (14) gives:

g2 4

FIG. 3. (a) The amplitude D„(m, q~, ...q„) for pro-
ducing a "resonant state" of invariant mass m, con-
sisting of one nucleon and n pions. (b) The sum over
all intermediate "resonant states" in this diagram gives
the connection between g(m ) and D (m q&. ..q ).

o„t (s) =— d'B ImM( Fs 5),q„,,
1

I(s)
The elastic cross section is:

(36)

d'B IM(&, &)„„,, I'
1

ego Y2
(3V)[I(s)]'

Asymptotically, o„, (s) ~(lns)' " and o,„„,, (s)~ (lns)' '". For t1=2 the total cross section be-
comes constant, while o,h„;, falls off like (lns) '.
For g = 0, on the other hand, both the total and the
elastic cross sections increase like (lns)', satu-
rating the Froissart bound, while o,h„;, becomes
a constant fraction of o„,. We shall show below
that the production and decay mechanism implicit
in the nova model' corresponds to couyling func-
tions g(m2) that produce tl =2. It is also interest-
ing to notice that if there exists a mechanism
which strongly suypresses production of clusters
with mass larger than some Mo, a total cross
section which is constant for s&M, '/ttt2 would
start to increase for larger s, asymptotically
growing like (lns)'. '

For the case g= 2 we compute the J-plane struc-
ture of the amplitude, and find:

4~5', '
( s )elastic +f (g 1) + [(g 1}2 R 2t]1/2} ( s )s

(38)

where C(Z, t) is a nonsingular function near J = 1.
We thus have a branch cut in the J plane between
the two points J= I +iR, tt-t. The cut collapses to
a simple pole at J =1 for t=0, giving rise to con-
stant total cross sections.

If we treat the pions in one cluster as distin-
guishable from those in the other cluster and from
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those in the pionization region, we can write the
phase space for n pions and two nucleons as
followsa:

dp„= —,dm, dm2 d4&„'& d4)„'2d(t&„" .

d(I&'„& and d(t&'„2 are given by Eq. (28), and represent
the phase spaces for two clusters containing n, and
n, pions, and with invariant masses m, and m„
respectively. dp„" is the phase space for two
clusters of momenta p'& and p'2 and n„pions in
the pionization region (see ASB):

d'q, d'P'& d'P'2
n (

' ' ' &~ ' II (27f)'2q, (2»)'2p'& (2w)'2p'2

n, t 4s +P, (2»)' 4r (2')' (39)

The cross section for production of n

p Ws

a„(s)=, Q Q Q dm, '
& S

ny 0 n2 on&sso mp

pions is therefore given by:

PWS

Ikfq&„, (&(y& pq qyq 3'yq ' * 'q» & Xn„) I dg&& ID„(m~; q~&. . .q„' ) I

0
2

This can be written as:

xdy.", ID.,(m 'q" q.",")I'df.; 6...„„,,„.. (40}

a„(s)= Q g Q o, (n, ) o, (n, ) o„(n,) 5„„,„,„„,
ny"-0 n2"-0 n&s 0

where

p~
q. (q&-=— q 'f Iqq„(m, q, . q. &I'dq'„ (42)

q.(q) -=—f Iqq. (q q; t&, ,f„.. .q„, q„) I'qq." .

To compute the inelastic partial cross sections a„, we introduce the generating function:

W

a(x) =- Q x"o„= g x"'o, (n, ) g x"2o, (n, ) Q x"~a„(n„)
n=o I-n~=o - ~n2=0 - -n~&0

(44)

o„(s) is then given by:

d
o„(s)=—

d „o(x) = Q g a. (P) a.(n-P-k) a.(k)
p=o o=o

(46)

To compute a', and a„explicitly we need to make a specific assumption about the form of the decay am-
plitude D. Note that 0, is an invariant, so we can consider the decay in the cluster's rest frame. Follow-
ing Hwa' we assume a Gaussian pion distribution in the cluster rest frame and write Eq. (25) as

D„(m; k„.. .k„)=a(m') ff f(k, ), (46)

where

(4 l)

D is the decay matrix element in the cluster rest frame, k, is the momentum of the ith pion in the same
frame, and E =(%')'~' can be taken to be 350 MeV.

Now we can compute [g(m')]' from Eq. (27), obtaining:

[g(m')]'= g I
o((m') P ', 5(m'-m„'), (48}



(49)

where po(n) is the average value of the zeroth component of the four-momentum of the final nucleon in the
cluster;

p (n) =(~'+m ')"'

m„=n a&+p,(n), (5o)

(() = (E'+ )),„')' ', and the 5 functions arise from making the approximation of using average values for the
zeroth components of momenta in the momentum conservation 5 function.

To obtain a constant total cross section we must demand that [g(m')]' - m ' for large m. Otherwise the
coupling functions are nearly arbitrary. VYe now show that a function similar to the one used in the nova
model' shows that behavior for [g(m')]', namely

exp(-p/(m'-m„'H)
&

8 0 0
(51)

where p, y, and P are parameters, and the 5„o takes care of the case of no excitation. Our normalization

IISO + AIII

[g(m, ')]' =-, dm'[g(m')]'=- I
IIIO -~III3

demands p=(2moap+E ), and we can write (5'i) as:

(52)

Comparing with E(l. (48) we see that a(m') is determined by

We can now write down o', (n) directly from (42), (46), and (53) as:

o, (n) =()„,+) " --~, , — exp[-P/(m„'-m, ')] 8(n' „-n),m„[2P~(n) (a+E']
PQ S Bl II PPl 0

(54)

z/2
n'

IIISX

Furthermore, for n&O:

2ae .2(rX)!(s)[2A(r -B)I(s)]n e(nw -n)
nl [f(s)]' y max

—,—x-,'(2c)-"I (n+-', ) e(n' -n),[f(s)]' ni.

and n' is a cutoff which we may choose as n" = c(B,y)' to ensure that the pion production is peripheral.
For n=0, o,(0) = o,„„;,.

Putting all this together we arrIve at the following expxession for the n-particle cross section:
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c„(s)= ', 5~, + y ', , exp [-P/(m~'-m, ')]wR, 'F' 2p,(p)&a+E'
I s ', ~' m, '-m, '

«„,o+y ', , exp -P m„,'-m, ' 8 n' -p 8 n' -n+p2P,(n-P)(u+E'
np™o

ff 1 n-P
2p p (d+E

I48)3 pro a=1 mp -mo

2p, (n p k-)~+-E', , F(k+ —,')
x 5 p )tt o + j 2 2 exp P m ~ y mo

mn-p-0 ™0 ~',~+&

xe(n' „-p) e(n'„n+-p+k) e(n' —k}. (58)

The first sum is the contribution from the amplitudes with all the pions produced in the clusters, while
the second (double) sum corresponds to the case where at least one of the pions is produced from the
chains.

IV. CONCLUSIONS

With the choice of coupling functions suggested
by the nova model, our model has four free pa-
rameters. These correspond to the strength of the
coupling functions (y}, the most probable mass of
the excited states (P), the coupling constant for
producing a pion from a chain (A), and a parame-
ter related to the radius of the absorbing disk(E, )
There are also two cutoffs forced upon us by the
validity of the eikonal approximation, although the
results are only dependent on one of them; the
cutoff in the cluster mass.

In Figs. 4 and 5 we show a set of partial cross
sections obtained from Eq. (58). While the param-
eter P was taken directly from Jacob and Slansky, '
the remaining three parameters were determined
by requiring a constant total cross section, both
as obtained from the optical theorem [Eq. (88)]
and from the sum of partial cross sections:

o„, (s) =g o„(s) .
n=o

It can be observed that at laboratory energies
of the order of 2-300 GeV diffractive production
dominates the low multiplicity region, while at
higher energies diffraction becomes important
also for larger values of n. The tail of the par-
tial cross sections is always dominated by the
production of pions from the chains, and there-
fore the behavior of the average multiplicity de-
pends strongly on the multiperipheral mechanism.
In our model the simplistic assumption of produc-
ing only one pion from each chain leads to average
multiplicities of the form:

(n) =a+sr'. (59)

Finally it can be shown that the sum of the
quasielastic partial cross sections, i.e., the cross
sections for producing n pions only from the clus-
ters, equals one half the total cross section, while

3.0

2.5—

2.0—
C)
E

1.5—

l.o-

7 I

400 GeV'

a~(s)
2.0—

o~(s)

E i5-
o-,o(s)

o; (s)
I.O—

0.5- 0.5—

0
0 2

I l I l

lo I2 14 l6 Ie
0

0 600 l 200 I 800 2400 3000
s in GeV

FIG. 4. Inelastic partial cross sections as a function
of the number of pions produced, computed from Eq, (58),
for three different values of the energy.

FIG. 5. Behavior of some of the inelastic partial cross
sections as a function of energy.
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the other half comes from the cases where Bt least
one pion is produced from the chains.

We have presented here a very simple way to
introduce a diffractive production mechanism into
unitary multiperipheral Bmplitudes at high ener-
gies. The model so constructed is completely
determined by the definition of two functions; the
basic amplitude gr(y' j$ y 5 ~,~ ~~ ~ ~ )
and the coupiing function g(m') for the production
of an excited state of the external particles. The
first function may be obtained by the requirement
of self-consistency of elastic amplitudes, but of
course it will always depend on the kind of multi-
peripheral mechanism that is being adopted. The
second function, g(m'), requires a detailed knowl-
edge of the dynamics of excitation of the external
hadrons. However, here again unitarity and the
consistency requirement limit the asymptotic be-
havior within mell-defined bounds. It is interesting
to notice that the integral over the square of the

coupling function plays a prominent role in deter-
mining the asymptotic behavior of total cross
sections, and through unitarity also in determin-
ing the nature of the Pomeranchuk singularity. In
our model the amplitude leading to constant tota1.
cross sections has the appealing fea'ure of pro-
ducing a singularity structure in the J plane that
collapses into a simple pole at J = 1 when t = 0.
On the other hand, the amplitude leading to total
cross sections saturating the Froissart bound

gives an elastic cross section which is a constant
fraction of the total cross section, a behavior that
seems to be appearing in the latest experiments.
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