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A possible modification of the V-A weak interaction at high energy is studied through the
introduction of an intermediate vector boson with derivative couplings or of a phenomenologi-
cal momentum-dependent leptonic vector current. It wQ1 be shown that a small contamina-
tion of a certain derivative coupling both changes the sign of the longitudinal polarization of
the muon in the neutrino-nucleon inelastic scattering in the scaling region and lets the ratio
0(i )/0(~) increase as the neutrino energy gets larger. A different momentum-dependent
vector current leaves the sign of the polarization and the ratio 0(v)/o(v) unchanged.

I. INTRODUCTION

The conventional V-A theory of the weak inter-
action' has been able to describe low-energy lep-
tonic interactions remarkably well, in spite of the
fact that higher-order contributions in perturbation
theory badly diverge. But this seemingly satisfac-
tory consistancy of the V-A theory with experi-
ment cannot be regarded as proof of the validity
of the theory; rather it implies that present data
are not sufficient to fix uniquely all the general
nonderivative coupling constants. In fact Jarskog'
claims that up to 30%%uo scalar and tensor couplings
would not be contradictory to the experimental
muon decay data. Moreover, even at the phenom-
enological level, there is no fundamental reason
why the current-current theory should prevail at
higher momentum transfers. The idea of a mediat-
ing particle for the weak interaction analogous to
the photon in quantum electrodynamics or the
Yukawa-type pion field in the strong interactions
has long been attractive, because this nonlocal
theory reduces to the local current-current inter-
action at low energies. Although the intermediate-
vector-boson theory is no less renormalizable, the-
oretical consequences were examined extensively
in the literature. But this line of effort has always
been embarrassed by the fact that intermediate
vector bosons are not observed experimentally.
This is also the case for the renormalizable theories
of spontaneous symmetry breakdown, which employ
unobserved gauge bosons and/or heavy leptons.

Qn the other hand, it would be very interesting
to know what kind of theory, even with a phenome-
nological Hamiltonian, would explain the experi-
mental data far above the unitary limit. ' Pecently
a model of weak interactions at high energy by
Appelquist, Bjorken, and Chanowitz extending the
conventional current-curi ent theory to incorporate

possible higher-order effects has been proposed.
In this paper we investigate some theoretical con-
sequences of a derivatively coupled intermediate
vector boson (IVB), or, equivalently, a phenome-
nological momentum-dependent vector current, in
the Bjorken- Johnson-Low scaling limit. Previous-
ly, IVB theorists excluded the possibility of a de-
rivative coupling on the grounds that: (a) in the
observed leptonic weak interactions, momentum
transfer q is so small as to be neglected, and (b)
introduction of a derivative coupling provides a
momentum q at each vertex in higher orders,
making already divergent Feynman diagrams more
so. Nevertheless high-energy accelerators avail-
able at present or in the future may be able to de-
tect the momentum dependence of the leptonic
weak vector current directly, if it exists at all.
Also the argument of divergent graphs may be by-
passed in the meanwhile because we are dealing
with the phenomenological Lagrangian anyway.
In fact, it turns out that a certain derivative cou-
pling is no worse than the conventional V —A. inter-
mediate-vector-boson theory of weak interactions
as we will see later. In Sec. II we present a model
Lagrangian and vector current. This model is used
to calculate the polarization of the muon in the deep-
inelastic neutrino-nucleon scattering in Sec. III.

II. PHENOMENOLOGICAL LAGRANGIAN
AND VECTOR CURRENT

Consider a general coupling of lepton and charged
vector boson fields, '

@=g~f),( )(ax, —b,y, )g, (x)e W (x)

ig'p, (x)y, (1-y, )y„(x)W, (x)

+

~angry,

(x)o~ (a —b y~)$~(x)[8gW„(x) —B~wg(x)]

+g,"Z,(x)W„(x),
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where J~(x) is the hadronic current. We can write
this in another form, viz. ,

III. POLARIZATION OF THE MUON IN vX ~ pX

Z, =g,'[j,(x) + Z, (x) ]W, (x) + H.c. ,

where

j~(x) = (,(x) i —(a, —b,y, )q z —iy &(1 —y, )

—i —o).pqg(a2 —k2y5) 4„(x),

g (x)q), P,(x) = if' -(x)g,(x)J,
(3)

The phenomenological current (3) discussed in
Sec. II shall be used to compute the polarization
of the muon in the neutrino-induced inclusive re-
action. To simplify the calculation we invoke the
following assumptions:

(1) Only the left-handed neutrino takes part in
the leptonic current, i.e., a, =b„a2=b2. Choose
a, = a, = 1 without loss of generality.

(2) Time -reversal invari ance, i.e. , $ and q are
real. Then if we put

m g~
' m g~

' (4)

where m is the muon mass. %'e introduce the
muon mass in (3) to make $ and q dimensionless.
In general, a,. and 5, are invariant functions of the
momentum transfer q. We may regard (3) as a
natural modification of the conventional V —A lep-
tonic weak current. Notice that these derivative-
coupling terms when applied to hadronic physics
with strongly interacting intermediate fields yield
steinberg's form factors' with 3 specific choice of
a, and b;. Derivative couplings similar to (1) in
principle have been used by Igarashi et al. in their
strong-meson-dominance model' to get the V —cyA

theory of P decay even though they used the V-A
leptonic current. Also it is well known that the
decay v —p, v& can be described phenomenologi-
cally by the derivative coupling of the pion directly
to the lepton current, ' i.e. ,

we have"

d 2cr G'
dQ'd v 4''E'

where

& &~
= P mm. &p(k') I j„(o)lv(k)&(v(k)l j~t(0)IV(k')&

vspm

"d4x-
&"'"(&(p) l I&„(x),&.'(0) J I&(p') &

&u&&

2 ~u 2 @P ~X. 2@~ 2

(6)

2=g,Ipy„(1 —y, )v~+ eye(1 —y, ) v&] 9&C', +H.c.
(5)

Therefore, it may be interesting to see the conse-
quences of a current-current theory with jz(x) de-
fined as in (3). This would not change the well-
established low-energy predictions of the V -A
theory for sufficiently small $ and ri. Then this
result can readily be translated to that of the in-
termediate-vector-boson theory, Lagrangian (1).

Cheng and Tung' have discussed tests of the V—
A theory in neutrino-scattering processes assum-
ing the most general form of local (nonderivative
V —A and S —T) interaction in the helicity formal-
ism. Here we are interested in the nonlocal devia-
tion from the U —A. theory, which does not origi-
nate from the second-order radiative corrections.
As for the scalar and tensor hadronic currents,
their commutators, hence those hadronic structure
functions, are relatively unknown to us simply
because only those of the vector and axial-vector
hadronic currents have been the focus of attention
up to now. Therefore we will restrict ourselves
to the vector and axial-vector hadronic currents.

euxnsP q quqz (Puqz+pÃu)
2M2 3 M2 4 2M2

The average over the proton spin is taken in 8'»
and q = k —k' = p' —p, v = q p =M(E —E'), q' = —Q' & 0,
where F. and E' are the laboratory energies of the
neutrino and the muon, respectively. For the sake
of illustration, we use the quark model version of
the structure functions, which exhibits a scaling
behavj. or. A more general case can be worked
out, leading to similar conclusions. Thus we as-
sume that

limW, (q', v) =E,( ), x
Bj

lim, g 2, , q, v = I"2 3 x,
8~

2lim, W~, (q', v) = E, ,(x),
Bj

where x= -(q'/2v). On the other hand, from (3) to
(6), it follows that"

(o) . (s)SKpv=3Ruv + DRuv
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where

3Rc~~=(k„'k, +kqk„—Gq, k k')(1+ $)'+ieq, ~pk"k~(1+ $)'1, 2 1 1+ —,(k k')q, q.q2+ —,(k k')fq„(k+k')„+q„(k+k'), ]gt+ —,(k k }(k+k )„(k+k ),g2

and

+ (k,q„+k„q,)(q+ g$) —[k~(k+ k'), + k„(k+ k') ]($ + g')

+SR'„'„=-m[s„k, + s,k„—6„„sk](1+$)'aim~„„~s'k~(1+ $)'
2

+ (s —k)q„q, + c,—~z,k "sl'k [ q„-(g+ g$) + (k+ k')„($ + $')]

,e~—p„k"s~k"[ q, (ri-+g$)+(k+k'), (g+$')]

[(s k)k—' q —(k k') s q ](g+ gt) + —[(s k)k'„q —(k k')s„q, ](g+ g$)

y —(s.k)[q~(k+ k'), + q„(k+ k')„]qg+ —(s k)(k+ k')„(k+ k')„$'

+ —[(k.k')s„(k+ k'), —k'„(k+k'), (s k)](g+ $')+ —[(k k')s„(k+ k')„- k,'(k+ k')„(s k)]((+$'),

where the upper and lower signs refer to the neutrino and antineutrino, respectively. I'urthermore, from
now on, the following expressions will be used:

q (1-y)
2Mxy ' 2Mxy1, , 1+y, 2M'x'y'

(1O)

(1 —y), M'xy
2mxy (1 —y)q' '

where y = v/ME = 1 —E'/E and s is the longitudinal polarization vector of the muon. Now averaging over
the muon spin, we get with the Callan-Gross relation

F, = F2/2x,

g7 2g 62 g2y~

Q Q 3Rq,Wq,

(1 —y) —,F,(x)+, F,(x)[y'+ 2{1—y)+ 2y'$ —y{2—y)g']

~ ( )(y(2 —y
)(1~ $)'+M Ytl'1'5,

( )
2M'x~1(2 —&)~

Thus we see that

d2g G2$2
limd, =(1 —y), xF,(x)+0 —,

Bj d dv 1Tm

while the V —A theory yields the term of the order of 1/Q'.
Next we turn to the computation of the muon polarization. We define the polarization P and the longitudi-

nal muon polarization vector S such that

da(-) —do.(-) E'
k, ~k'~

der(-)+der(-) ' m ' m
(13)

Then a straightforward calculation yields the longitudinal polarization P:
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where

2m' ' 2x y' ' ' 2x ' ' ' ' 2x 2xm' 2x1n' y

(14)

a, =1+(+(', b, =1+2(,
2(1 —y) (4 —y)

y

2(1 —y) (2 —y) &.

1 (2 —y) 2(4 —y), (6 —y)&, &
(2 —y) 1 (15)

a, = — (', b, =~q~q&+&+ ,(q'+$-),(1+y) 1 2 2

4x F4 —2x F,
F2

Furthermore, if we adopt the spin- —,
" parton model, we have the Callan-Gross relation E, =E,/2x. Then,

(1 —y) ~ m
( ()2 2(l —y) 4 2 2 xE, (2 —y)( ])2 4 4 2 Myq 2Mx ~F, (2 —y)

(16)

We note that in the vector-gluon model" the parameter y in Eq. (15) is a, constant given by y = (mJM)',
where m~ is the bare proton quark mass. The constants g/m &0.1 GeV ', q/m &0.1 GeV ', i.e., $ &10 ',
g &10 ' seem to be reasonable from the low-energy experiments which agree with the V-A theory. More-
over, as is well known, the positivity condition gives 0 &-xF, &F,. Therefore for practical purposes we
may write, if y 0 1,

F2
m xy2 2E~+F3 —(1 —y) F~ —

2P =+1+ for pure V —A,
2 —gq'(1 —y) xy'E, +(1 —y)E, +xy E,

(17a)

P =+I+» +2+ ', for q, g, and V-A,
m' y' xE, y(2-y)

1 —y E, 1 —y

2(l —y) xE, 2 —y M 'yq'
1 +

y~ F2 y m2

(17b)

(17c)

These results indicate that P approaches 1 in-
stead of -1 for large Q' and 0 & y & 1 if $ o0. We
illustrate P~ for y=-, in Fig. 1. But P will not
change sign if t' = 0 and (M 'yg'/m') «(2/y'), as
long as the assumption F, = —xF, is used. This
corresponds to y «&X10, which means that m~
«28M in the vector-gluon model, when q = 10 '
and y = &. An estimate" is that y = 1.6&10 ', i.e.,
m~=120 MeV, which leads to P~= -1.

An important feature in the estimate described
above is that the momentum transfer at which the
change of the muon polarization occurs is very
sensitive to the value of $ and g. Because complete

I

right-handed polarization needs extremely large
Q', it would be interesting to see the value of Q'
at which P goes to zero before it changes sign.
In Fig. 1, we see that, for (/m=0. 1 GeV ', P~
vanishes at Q' = 200 GeV', while for (/m =0.05
GeV ' that occurs at @~=800 GeV'. The perpen-
dicular polarization would not given any insight
about the g or r) term, because it is proportional
to m sin8, which is very small at high energy.

If we do the above calculation in the intermedi-
ate-vector-. boson theory, i.e. , Lagrangian (1), we
can easily obtain the result by simply replacing $,
g, and G in Eqs. (11)-(17)by
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m' q'
, +q, —1

mw mw

G2- G2

(1+2MxyE/m„, )

(18)

(19b)

As far as power counting in Feynman diagrams is
concerned, the g term is not worse than the V-A
theory with an IVB, because y„q„q = mq, and

pL
+I

Therefore we conclude that unless Q'/m~'» 1,
the previous results would not be modified. Notice
that as far as the $ term and polarization are con-
cerned we cannot distinguish between the interme-
diate-vector-boson theory, or a momentum-depen-
dent weak current. In fact the merit of the polar-
ization measurement rather than that of the cross
section in view of testing the V-A theory as for-
mulated here, is that the change of the polarization
is not as sensitive to the validity of the Callan-
Gross relation or the breakdown of scaling as the
cross section is. Nevertheless, one might expect
that the general IVB theory given by the Lagran-
gian (1) would be appropriate to describe high-en-
ergy phenomena rather than the current-current
theory with j ~(x) in (2). In that case, if we assume
F,=2xE, =-xE, and E4=F, =O, the violation of
scaling in the expression d'o/dxdy may be parame-
trized by

2 2 -i 2 2

E,'(x) = E,'(x) 2+, (1 —y) 1+, (19a)m J mw

and

2 2 Q2 2

F,"(x)= I' ",(x) 2(1 —y)'+, (1 —y) 1+

o„,q„q„q =O. We summarize all the results in
Table I. Obviously the realization of the limits in
Table I depends upon the value of y = I -E'/E. A
larger y requires higher Q'.

In the recent analysis of momentum-independent
S-T-P weak currents, Cheng and Tung' state that
"to the extent that the lepton mass can be neglect-
ed, a purely left-handed outgoing lepton indicates
V interaction, a purely right-handed one indicates
S —T interaction, and the coexistence of both in-
dicates a mixture of the two. " Accepting the prem-
ise that no matter what the additional term is, it
must be small compared with the V-A term,
Cheng and Tung predict P = —1 + u when there
exists a small contamination of S —T interaction.
Here n is a small positive constant. However, our
result is that, as can be seen in Table I, a purely
right-handed outgoing muon at high energy indicates
the existence of the $ term whether the interaction
is via current-current theory or IVB theory. It is
interesting to note that even though the g term con-
tains momentum transfer q which makes us antic-
ipate that it might dominate over the V-A term at
large momentum transfer, it turns out that all the
higher momentum-dependent parts involving q
cancel out so that it does not dominate over the
V-A term. But a small contamination of the g
term would mean P = —1 + a as in Cheng's and
Tung's case with the momentum-independent S —T
interaction. Therefore if a future experiment
indicates that P =-1+a, a very elaborate anal-
ysis would be necessary to decide whether that
is due to Cheng's and Tung's momentum-indepen-
dent S —T interaction or our momentum-dependent
g-type coupling. However, we notice that the re-
sult described above concerning the g term is a
consequence of the assumption (8). If we assume
a different scaling law, such as

0.5%

TABLE I. Longitudinal polarization of the muon in the
vN pX at the scaling limit. MDV refers to the mo-
mentum-dependent weak vector current. The values of
P+ given are the limit of P~ as Q2 ~. These values
seem to be realized, because of the smallness of $ and

g, at much larger Q2 than the one at which structure
functions begin to scale in the Bjorken-Johnson —Low
limit.

I I I I I

200 400 600 800 1000
Q' (Gev~)

FIG. 1. Longitudinal polarization of the muon in
pX with the assumptions F4=F5=O, -&&~=I'2,

E& =F2/2x, only for illustration. Percentage on the
curve refers to that of mgz~ with respect to the vector
coupling constant g~v. We put y =$, which is the aver-
age value of y calculated in Ref. 13.

V -A.

MDV $, V-A

$, g, V-A

g, V-A

P =+1

depend upon y

IVB V -A

$, V-A

$, g, V-A

R, V-, A

P =+1

~1

Q2
al if 2 &&1

SPYw

Ll2
+1 if ~«1
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and

limA =1,
Bj

where

&x"E )= 1

dx

d2g
dyx" E

dxdy
0'

o

The above conclusion will not be modified as long
as the ratios F,/F„F4/F„and F,/F, scale, as in
the IVB theory. The CERN result"'~ A =0.377
+0.023 may indicate the deviation from A = —,',
although it is obviously too early to draw any def-
inite conclusion. However, various models pre-
dict different values of A.. The spin- —,

' parton mod-
el yields A = —,', while other constituents would give
—,
' &A& 3. In general, from the positive semidef-
inite property of W&, and the scaling behavior of
structure functions given in (8), it follows that
E, ~ 2xE, & —xE„which leads to A ~ —,'. However,

V
2 4 ~ 5 4, 5(

Bj

the role of the q term would be similar to that of
the $ term

Another interesting prediction of the momentum-
dependent vector current ($ type) is that the ratio
o(v)/&x(v) increases as the neutrino energy gets
larger, i.e.,

the above ratio is constant unless scaling breaks
down to the extent E,(x) =xE,(x)G(E) =xE,(x)G(Q'/
2~xy), where G(E) is some function of E. There-
fore in order to detect the ( or q term, we have to
look at the energy dependence of the ratio A.

One might expect that the g term (or q term)
could be obtained as a result of the radiative cor-
rections in the framework of the V-A theory as
in the eel vertex correction in quantum electro-
dynamics. However, that this is not the case can
be seen by the following argument. First, the
radiative corrections" to the p, vWcoupling (which
do not have vertex corrections in the second order)
fail to induce the $-type effective coupling. Sim-
ilarly in the Weinberg theory, "the p. vW vertex
correction" due to a neutral vector boson Z„rules
out this possibility because of the 1+y, structure
of the interactions. Thus we cannot as of now tell
where the extra derivative coupling may come
from. Nevertheless, the other higher-order cor-
rections might well lead to the same conclusions
about the polarization of the muon deduced from
our formalism. On the phenomenological level,
however, we conclude that the polarization mea-
surement of the muon in the inclusive reaction
vN- pX at high energy will provide a good crite-
rion for the existence or nonexistence of a phe-
nomenological momentum-dependent weak vector
current or of the intermediate-vector-boson the-
ory with Lagrangian (1).
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A Weizsacker-Williams method is derived which handles the elastic and inelastic target form factors
properly. The method is applied to calculate energy-angle distributions of photoproduced lepton pairs:
electrons, muons, and heavy leptons, using target form factors appropriate to each case. The agreement

hrga".

with the exact result is found to be excellent. Simple formulas for pair production of spin-0 and spin-1
particles are also given.

I. INTRODUCTION

Some of the cross sections which involve one-
photon exchange can be quite complicated. The
best example is the calculation of the W pair pro-
duction, y+Z-8" +W +anything, which involves
threefold integration of roughly 3000 terms. With
the advancement in the modern computer technique,
even such a complicated calculation can be handled
easily. However, it is often desirable to have a
simple expression which shows all the gross fea-
tures of the problem, such as the dependence of
the cross section on the incident energy, outgoing
energy, angle, mass, magnetic moment, radius of
the target, etc. The way in which one can do this
quickly was originally suggested in 1924 by Fermi, '
who noted the similarity between the electromag-
netic fields of a rapidly moving charged particle
and a pulse of radiation. Basing their work on this
observation, WeizsÃcker' and Williams' showed
independently in 1934 that an incident particle with
charge Ze, mass M, and energy F = yM would pro-
duce the same effect as a beam of photons with a
spectrum p(v) given by'

Z2
p((o) = ( 2xK, (x)K,(x) —x'[K,'(x) -K,'(x)]]

2Z'o. 1.123y 1

x « I & (o&mm 2

the minimum impact parameter, and K, and K, are
the usual Bessel functions. The second expression
is valid when x«1, which is the usual cash when y
is large.

The above formula, which is known as the pseu-
dophoton flux of the classical WeizsKcker-Williams
(W.W. ) method, has enjoyed wide applications in
processes involving one-photon exchange in the
past because of its conceptual and mathematical
simplicity. However, it can sometimes lead to a
numerical value which deviates considerably from
the correct one, mainly because it does not prop-
erly take into account the effect due to the rapid
variations of the form factors. As an example,
let us consider the pseudophoton flux of a nucleus
with a form factor G, ' = Z'/(1+t/d)' to be used for
the pair production of particles of mass m [see
Appendix C, Eqs. (C6) and C9), and also Eq.
(3.23)]:

2Z'n co ' 1 I +d(y/&u)'
p (d 1+2 — — ln

7T(d
'

y d 1 +d/tup

(~/r)' 1+2(t.p/d) f
t., I+(f„,/d) )'

(1.2)

where t„~ =m'(1+l)'. In the limit d-~, i.e., the
case of a point particle, we recover (1.1) if we
identify

where ~ is the photon energy, x=&ub /y, b is b = 1.123/(t„p)"'. (1 3)


