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We consider the photon-photon channel, y +y—e* + e~ +e* +e~, with respect to the possible
relevant experimental roles it plays in (i) the photoproduction process y +Z —Z +e* +e~
+e* +e”, (ii) the colliding beam process e* +e"—e* +e” +e* +e” +e* +e”, and (iii) the
absorption of high-energy cosmic photons. Discussion of the first role includes calculation
of rates at different energies, error estimates, and effects of screening and threshold cuts.
In the second role, emphasis is placed on scale changes due to energy and angle kinematic
cuts. Competition with the single-pair absorption process (i.e., v +y—e* +e7) at the higher
cosmic y-ray energies ~ 102 eV is discussed in the consideration of the third role.

I. INTRODUCTION

In the past few years, we have seen the fascinat-
ing emergence of the importance and even domi-
nance of higher-order quantum-electrodynamic
(QED) processes at high energies. It is probably
accurate to state that these developments began
with the study of all elastic two-body amplitudes
by Cheng and Wu.! In electron Compton scatter-
ing, for example, they showed that for large cen-
ter-of-momentum (c.m.) energy Vs the second-
and fourth-order amplitudes approach a constant
while the sixth-order amplitude increases propor-
tionally with s (lns factors are disregarded in
these statements). Further theoretical research?®:3
showed that two-photon intermediate states were
more important at higher energies than the single-

photon annihilation process in hadron production
through electron-positron collisions. In fact, de-
tailed calculations by Brodsky, Kinoshita, and
Terazawa® demonstrated that pion production via
the two-photon mechanism was more probable at
beam energies as low as 2 GeV. This mechanism
has already been taken into account as a back-
ground in single-photon data.*

The reason for the importance of higher-order
processes can be presented rather simply in terms
of the “scale” of the cross sections involved. The
inverse-mass-squared dimension necessary for a
cross-section expression is provided by s~ in
many lowest-order calculations. [See Eq. (1.2)
below for an example of this.] However, the scale
can be set by some particle’s mass m in some of
the higher-order “corrections” to these calcula-



3084 R. W. BROWN e? al. 8

tions, with the end result that corrections domi-
nate at large enough s. A specific example is real
photon-photon collisions, which are central to our
work here and will be discussed in detail. It is
important to note that once the cross sections are
found to be constant ~m ~? (within logarithms) in
some order, we do not continue to find higher cor-
rections with higher powers of s/m?. (This would
certainly overshoot unitarity bounds quickly.)
Rather, we find only additional powers of loga-
rithms which cannot overcome the concomitant
powers of o /7 for any practical energy regime.
The aforementioned photon-photon example is
the higher-order (fourth-order) two-pair creation

(i) y+y=e'+e +et+e,
whose asymptotic cross section is constant®'¢;

4
o3[ 175¢(3) - 38] = 6.45 b,

o;(s)=
s/m?-w». (1.1)

Here m is the electron mass and £(3)=1.202 is the
zeta function with argument 3. The lower-order
single-pair creation

(ii) y+y—e‘+e”
has an asymptotically decreasing cross section”:

4ne?

o,(s)= [In(s/m?)-1], s/m?~w. (1.2)
We see that Reaction (i) dominates over (ii) when
sz 1 GeV?, a circumstance which motivated most
of the work reported here.®® Part of this work
reports on the details of the earlier work.® We ad-
dress ourselves to the possibility that study of Re-
action (i) will lead directly or indirectly to rele-
vant experimental statements. '

Since we do not have photon “targets” readily
available to use in the laboratory, we are led to
consider (a) the possibility of using virtual photons
(whose source is electron or nuclear currents) for
initiating Reaction (i), or (b) the background radia-
tion permeating the universe as targets for the
high-energy y-ray component in cosmic rays. The
first consideration is introduced in more detail be-
low, after which the introduction to the second is
also expanded.

The first possibility suggests looking at

(ili) y+Z—-Z+e"+e” +e " +e”

as a generalized Primakoff-type reaction where
the Coulomb interaction of the nuclear target (Z)
provides us with a spacelike virtual photon. The
intermediate-state reaction then resembles Reac-
tion (i), and a leading-logarithm expression for
Reaction (iii) is®!°

oiw)= 22 %ci(w)lnz(w/m), W/ M-~ o (1.3)

where 0;(«) is given by Eq. (1.1) and w is the pho-
ton energy in the rest frame of the target. As we
will see, this is not a very good estimate of the
total cross section for w values of practical inter-
est since the nonleading-logarithm corrections are
nonvanishing and hence important. [The correc-
tions to the brackets in (1.1) and (1.2) vanish like
(m?/s)xpowers of In(s/m?) and so are not vital
there; a similar remark applies to Eq. (1.4) be-
low. ]

For comparison with Reaction (iii), we note that
the Bethe-Heitler reaction

(iv) y+Z-Z+e"+e”
has the leading behavior'

a3
2Tm?

o (w)= 72 [ 841n(2w/m) -218],

w/m—. (1.4)

This does not have its scale set by s~!, and thus
is much larger than (1.3) for any energy regime of
interest. The philosophy is changed then insofar
as our interest in Reaction (iii) vis-a-vis Reaction
(iv) is concerned, since we cannot expect (iii) to be
dominant anywhere. Rather, we rely on the possi-
bility that a four-electron final state may furnish a
sufficiently unique signature under the appropriate
experimental conditions. Since the rates we find
for (iii) are fairly large, the hope is that this re-
action could be seen in the near future.

Continuing the search for virtual photon “beams,”
we can also examine the dominant contribution to

(v) ef+e"~ef+e +et+e +etre”

as another indirect test of Reaction (i). The elec-
tron currents are the virtual photon sources here,
and an asymptotic leading-logarithm expression
has been given by Serbo and by Lipatov and
Frolov'®:

g,(s)= %‘:—Zoi(oo)ln“(s/mz), s/m?~w, (1.5)

This is a rough estimate.’” Due to scale changes
in the yy—~ 4e kernel, vanishing phase-space fac-
tors, and electron statistics, we expect that the
O(In®s) corrections are large and negative. [ No-
tice the sign on the correction in Eq. (1.4).] A
similar remark applies to the O(lnw) correction
in Eq. (1.3).

We have the same point to make about Reaction
(v) in comparison with the lower-order process

(vi) e*+e " ~e*+e  +eTre”

that was made in comparing (iii) with (iv). As
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Landau and Lifshitz estimated long ago,!®

oy(s)= 28 of In¥(s/m?), s/m?—w (1.6)
vi 27 Trmz b ) *
which also has important corrections.!* Only at
absurdly large energies (where perturbation theory
is suspect anyway) does (v) dominate over (vi).

We have less interest in (v) than in (iii). This is
because the major part of the cross section de-
rives from small angles and the necessary mini-
mum angle cut away from the incoming electron
beam will change the m ~2 scale. This reduces the
rates tremendously and lessens its impact on ex-
periment. We discuss the change in scale later in
this paper.

Finally, with respect to the consideration (b)
mentioned earlier in this introduction, we are in-
terested in the attenuation of high-energy y rays
traversing the background radiation in the uni-
verse.!® As higher and higher energies become
relevant to cosmic-ray research, we expect Reac-
tion (i) to dominate according to the previous dis-
cussion. The region of overlap and the signifi-
cance of such absorption is another of our goals.

The organization of our discussion and work is
as follows: We present in Sec. II the basic ingre-
dients in calculating the dominant contributions to
the absorptive part of the yy forward scattering
amplitude for a given order in «. This includes
off-mass-shell effects (in particular, scale
changes) for virtual photons. Section III is direct-
ed toward a discussion of the viability of observing
Reaction (iii) experimentally. Results more accu-
rate than Eq. (1.3) are presented, as well as dis-
cussions about background and theoretical uncer-
tainties. In Sec. IV, we consider the reductions in
the cross section for (v) [and (vi) for comparison]
if energy and angle cuts are made. The absorp-
tions by Reactions (i) and (ii) are compared in Sec.
V insofar as cosmic rays are concerned. A brief
summary of all results comprises Sec. VI. There
is an appendix which contains some Feynman-
graph asymptotics.

II. OFF-MASS-SHELL CROSS SECTIONS FOR
yy—~>e'ee’e” AND yy—>e'e

We describe here an exact (albeit numerical)
calculation of the dominant high-energy contribu-
tion to the total cross section in Reaction (i). Re-
action (ii), which is rather simple, is also treated
in a parallel fashion, providing a comparison
which will prove useful later. Having the energy
and virtual-photon mass dependence of these cross
sections at our disposal illustrates the scale
changes of interest and also is necessary for later
developments discussed in the next sections.

k,a P,
L™ (K, 05 P, 1Py Py )=

q,p -

(a)

ap . =
M7 (k,q; P py)=

+0(a2)

(b)

FIG. 1. The general Feynman amplitudes for (a)
Reaction (i); (b) Reaction (ii).

The momentum and photon helicity assignments
for the two processes are given in Fig. 1, where
the general Feynman amplitudes are shown. For
Reaction (i), the amplitude L** of Fig. 1(a) is rep-
resented by 40 Feynman diagrams in lowest
(fourth) order. However, here we are interested
only in the dominant contribution to the total cross
section at high energy, s’> |k?|, |¢*|, m? where

s'=(k+qf =(py+Dy+bs +Ps)F
=square of the c.m. energy,
pi®=m?,
and
k<0, ¢g%<0.

The calculation of this contribution involves much
less work than might first be imagined; it is dis-
cussed most clearly in terms of absorptive parts
of the forward elastic yy amplitude which are re-
lated, of course, by the optical theorem to the
cross sections of interest.

As a result of the discussion relegated to the
Appendix, we find that the dominant absorptive
parts are represented by 16 cut graphs summa-
rized by Fig. 2(a).’® That is, the contribution of
the four-electron intermediate state, call it
A Bvap(k’ q); is

Aﬁvau(ka q):A‘é(;;;“(k, q)
x[1+(1/s’) x(powers of Ins’)]
(2.1)
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according to the arguments in the Appendix. (We
discuss briefly the nondominant contribution at the
end of this section.) Here A%™~s’ and leads to a
constant cross section. Exploiting the factorized
form by the identity

5"(2 b —k—q>= fd4r64(p1+p2—k—r)

X0 pg+p,+r —q), (2.2)

we have
om 1 d
AGauk, @)= WIFT(I)BOax(k;V)
XT(z)ou)\u(_y’ q) ’ (2'3)

with (p;,=E;)

m m
Tu)ﬁca)\(k,y)gz fE—dsp1 E—dspzaé(p1 +p2_k_7’)
1 2

spins

><M’§O(k, 75 Dy Do) M (R, 75 by, D)

(2.4)

The function T ® is obtained by the replacements
p1=~ b3y Dy~ D4 k- -7, and - q; thus, if the p;
integration regions are identical, the T® are the
same functions. In lowest order, the yy—~e*e”
amplitudes look like [see Fig. 1(b)]

Max(k: 75 px; pz)

=—iezﬂ(p1)<7a ifl—llé—mh +7 151_:,__ mm)l}(bz)-

(2.5)

The absorptive part (2.3) is the basis for all of
our four-electron calculations. Also, the absorp-
tive part of the two-electron intermediate state is

1
BBucxp(k, q):(zT)zT(l)Bvau(k’ q), (2.6)

which will be the basis for the parallel yy—~e‘*e”
discussion. This amplitude is also illustrated in
Fig. 2.

We are concerned in this section with “general-
ized” cross sections for Reaction (i),

- 1
Ui(s’; k2’ q2)= é-S—;A Byﬁu(k’ q), (2-7)

k,a | k,B

-py |
qsm | q.v

(b)

FIG. 2. (a) The dominant absorptive part at high energy
for the forward yy amplitude in order a!. (b) The a?
(lowest-order) absorptive part for the forward yy ampli-
tude. The blobs in both (a) and (b) correspond to the
order-a terms explicitly shown in Fig. 1(b).

and for Reaction (ii),

55", 4= 5 B,y ). (2.8)
These forms were chosen so as to display the
change of scale for k%, q®<0 and such that in the
limit k® =¢% =0 we obtain the corresponding physi-
cal cross sections for collinear unpolarized photon
beams. Accordingly, we included a relative-ve-
locity factor (3), a photon spin-average factor (%),
and the photon wave-function normalization factors

1]

1111
(2k° 2¢° 2w, 2wq>
evaluated at #*=¢2=0. For real collinear photon
beams, s’=4w,w,. In Eq. (2.7), the electron sta-
tistics factor 1/2!2! is understood to be included
in the definition of A 4,,,."°

In terms of kinematic singularity- and zero-free
invariant amplitudes,?

TP, 7) = (gon 72 =7 VR, 72, 8,) +[ 72k o ky =k -7k o vy +7 o ky) + (B 7R gorl t O3, 72, 5,)  (2.9)

and

TO% =7, )= (g 77 =702, 4%, 5,) L7200 =7 a0 00  + %) + - aP g NP0 2, 7, s,),

where s, =(k +7)* and s, = (-7 +q)°. Thus

(2.10)
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| oo

1
Adom 8o, q)z(zT)af 3 40D ey 2% 1200 - qP) 101D 472 282 420k 7]t 04D
+[rik-qP =202y gk vk q+r 2P @R +r2q2(k ¥ +2(k - ¥)? (r-q?l1tPt@}.
(2.11)

We note in passing that the invariant amplitude t(zl) is to be found in actual computation by the projection

1 1
(0,72, )= 5 [ sy T Lk 7 =2 T D2, 7) #8372k VP (b, 7)) (2.12)

after which we can determine ¢{ by
11
1002, 7%, 51) = 3 75 { T Pp0P 7, r) = [ 200 v P + 127 21102, 7%, ) (2.13)

By Bose symmetry, the ¢t® are found by the same equation upon the substitutions " = t?, 7W. 7® angd
k—gq, r— —r [since Eqs. (2.12) and (2.13) involve only scalar quantities, this means k?~ g2, »2-%2 k-¥
-=r-q (Sl-' 32)]-

Our procedure is to do analytically the p; integrations [see Eq. (2.4)] for fixed ». That is, 7® and 7@
enter into Egs. (2.12) and (2.13) in Lorentz scalar form only. We can therefore integrate these forms in
the k+¥=0 and -7 +§ =0 c.m. frames, respectively, where the integration limits are trivial. So, after
lengthy trace calculations and some simple polar-angle integrations, the T® contractions are

70, B9k, 7)= 247T<Sl —s4m2 1/2

1

{-8+4(r2+R2 =5, —2m2), —4(2m? +k*)(2m? +¥ )],
+4[(R? +72)(s, = m?) + m?(s, —4m?)] I} (2.14)
and

- 2
kokxT(l)BOBX(k,7)=€4"<L‘ s4m
1

)”2{ —4s, +4m3(r? =k* = s)[, - 2k%s,(2m? + k%),

+2k7 s, (B2 +72) +2m2(k? =¥ 2)] 1, }. (2.15)
The I; entering into the above are mining the integration region by the requlrement
1 tF—om? that the c.m. angle between the vectors P =k+F
I‘ZZIEHfMI ln(ti‘—m2>’ and k be real'® we fmd“;
d4y =T 1 2
I,=—% 2 2 = 2 ) (2.16) Lhysical 4 4 [(k- qf - k*q*]"® fd’i" d81d829(D),
(t 1—m )(t1 -m ) region (2.17)
[,=— 1 I where
3 1

r2 Rey y-.q
kv B kegq
‘q k-q q*

with tf=m? -k -r+2|k||B,| in terms of the k+¥ =0 (2.18)

frame quantities

Of course, s’'=>16m?2, s,>4m?, and s, >4m? Al-
1 2 2,.2]1/2 . . L
lk|= T [(k 7 —R2r2]V2, so, it should be evident by now that k2 +» and 7 - ¢
! are used interchangeably (as variables) with s, and
s,, respectively, in many of our expressions.
Although we found (2.17) adequate for our numer-
ical work, it is useful to specify the exact inte-

[B,]= (a8, = m?)"2.

The T® contractions are found quite simply
from those for T® provided, as mentioned ear- . o ; ) )
lier, the p, integration does not differ (as it might gration limits. To. this end, we introduce the vari-
for experimental reasons). Referring back to the able ¢ >0, ¢,>0via
substitutions described after Eq. (2.13), kg
7@, (-7, q) and ¢°¢* T®,,\"(-7, q) are obtained coshg = #q®)7%?
from (2.14) and (2.15), respectively, by the re-

placements %%~ ¢Z and s, ~ S,. cosh¢, = (];2%—-22)’—173 s (2.19)
At this point, it behooves us to specify the »-in-
tegration procedure. By performing a trivial azi- rY-q

cosh¢,= ~ 5575 -
muthal integration, changing variables, and deter- ¢z (r2q®)"®
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Then

D =-72k?q?[ cosh¢ - cosh(¢, +¢,)] [coshe —cosh(o, -

oo

0,)]. (2.20)

This leads to ¢ = ¢, + ¢, since cosh¢ > cosh¢; by energy conservation. So2°

m
f d 41’ = i
physical region sinh (1)

with
dm? -k* —y?2
cosh%fw,
ity ? g (2.22)
cosh¢,, = B L

In the event k* and/or g2 vanish, the ¢; are not
well defined, so we revert back to the use of Egs.
(2.17) and (2.18). Suppose k*=0 (the ¢2=0 case
follows trivially by symmetry):

max

r.2 s
T - 1
d“y:——f drzf ds
Lhysical region 4k - q r+2 am? !
slznax
ds,.  (2.23)
am2
From (2.18),
sprm—p2 BL 2 BT e (2.24)

Pl R

For a given physical value of 2, s, is maximum
when s =4m? Choosing the appropriate root by
energy conservation leads to

shax =y +T{r +q%—4m?

+[(r2+q2 - Am?)? - 4q% 2]V},
(2.25)
Finally, »? is restricted to those values for which

sP*>4m? We have

2=uk.qg+dm® k- q<1-—1—68i> s (2.26)

where 7 2
= q2 =0,

SI
spax ——72<—-——4m2_72 - 1) .

We can now get values for ¢; given in (2.7) by a
Gaussian quadrature integration routine. That is,
Egs. (2.7) and (2.11)-(2.18) are collected together
[the t‘,?) expressions follow by the aforesaid simple
substitutions], and the last three integrals are
done numerically with care taken in the placement
of points for small [»?|, s,, and s,. (Recall that
the seven integrations indicated at the outset—ne-

=y_% at s’=16m? as required. When %2

(2.27)

$-650 -9,
[72ar®0 - 010-0:0) [ Csinhondg, [ sinhgds,,
¢10 ‘/’zo

(2.21)

-
glecting a trivial azimuthal one—have been re-
duced to three by combining Lorentz invariance
and factorization.) The explicit limits discussed
above can be used to speed up the program and as
checks. Figure 3 displays the results for several
sets of k% and ¢ values.

It is seen in Fig. 3 that the asymptotic constant
cross sections for a given % and ¢? are reached
when s’z 1000 max{m?, k%, —~q2}. This is consis-
tent with the point at which ln®s’/s’ can be neglect-
ed [see Eq. (2.1)]. It is gratifying to note that we
recover the known 6.4-ub asymptotic limit (1.1) in
the k¥® =¢%=0 case; the energy dependence of this
case is a new and useful result of our calculation.
Notice that the general cross section scale in the
asymptotic limits is characterized crudely by*!

Lon? = 55)0n® - 12172,

a result of the fact that the photon masses change
the minimum value of the electron propagator de-
nominators over the region of s,, s,, and 72 where
the cross-section contribution is largest. This re-
gion is given by s,, s, near (but not at) their
threshold values 4m?, and for |7 2| near its mini-

|OO— T lIIHlI] T rrTThg T II|II"[ T llllll'ﬂ T 1T
a
(a) k?=q?=0
(b) k2=0,q2=-10m2or k2=-|Om2 q2=0
(c) k2=q2-—10m
(d) k2=0, q?=-100m? or kZ=-100m?,q2=0—

WL

10
6.45F-—=~--=-3

T T TTT

T

o.. in mb

ii
L1l

pb and
o

o, in

|

0.0l

|

IR R SRR TIT B R R T 21 Lol e

1074 1073 10”7 10
s in (Gev)?

FIG. 3. The “generalized” cross sections (2.7) and
(2.8) as a function of the square of the c.m. energy, s
for various‘(spacelike) photon mass values in units of
ub and mb, respectively.
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mum value. There the electron propagators con-
spire to peak at the same place with a decrease in
the size of this peaking with an increase in —&2,
—q2, and/or m?2.

It is interesting that as a result of gauge invari-
ance the photon propagator does not further en-
hance the peak contribution. This is seen analyti-
cally by the dominant term in (2.11), which is
7% + q) in the curly brackets, the »* numerator
canceling the »™* from the propagators. Physical-
ly, we have the electromagnetic interaction of two
systems, each with over-all zero charge, so the
lowest multipole moment of the interaction currents
must vanish.?> For this reason, any approximation

- 2ma® (s’ —4m?
Gu(s’, k%, q%)= *-s,—<-s—

+[(R2 +q2)(s’" = m2) +m?(s’ —4m?)]|1]}.

must be gauge-invariant.

The change in the thresholds for s, and s, from
4m? to some higher value, say s,, will also de-
crease the cross sections, but not as drastically
as one might expect. For k#%=¢2=0, we have found
numerically that the scale reads roughly (m?s,)~%/2
for s,= 1000/® rather than something like® s !,
This is because phase space vanishes as s; - 4m?
and the major cross-section contribution comes
from s; = 40m?>.

As an interesting contrast we turn to the single-
pair cross section (2.8). From Egs. (2.6) and
(2.14), we obtain

172
- ) {=2+(F2+q%=s'=2m>)] - (2m?* +k?)2m?2 +q3)I}

(2.28)

The quantities /] can be read from (2.16) after replacing » by ¢q. For real photons, (2.28) reduces to

éﬁ(s,, O) 0) =Uﬁ (S’)

_ 4ma? 2+8m2 16m* ) s’ 1/2_‘_
_, s/ ( s’ g'2 n[(4m2> (

in agreement with the textbook expressions.?* In
the limit s’ ~, (2.29) yields (1.2).

We have included the single-pair cross-section
curves in Fig. 3 for several k% and ¢2 values.
There are two points of interest which are evident
in tHese plots. For small s’ (~10m?), the scale of
the cross section is roughly®® [m? - 1(¢% +¢2)]™!
and the peaking of the electron propagators is re-
duced as —k® and —¢? increase. But in the regime
$'>100m?, the minimum momentum transfer
through the propagators has vanishing dependence
on k% and ¢2 as k%/s’, q%/s’~ 0. Thus the scale of
the logarithm in (1.2), m?, which arises from the
cosf, ==1 integration region, is unchanged for
large s’. Of course, the 1/s’ over-all factor is
also unchanged when s’ is much larger than any-
thing else. The curves show, as a result of all
this, that there is weak dependence on k? and ¢*
in the asymptotic region but strong scale changes
near threshold.

It is important to note here that we have been in-
terested in the %2 and g2 dependence of A 5,*” and
Bg,® rather than &, and 6;. (The arbitrariness in
these dependencies for the “generalized” cross
sections should be obvious.) The former are the
important subingredients in the reactions dis-
cussed later. Moreover, G; and G; are not posi--
tive definite; for large —%2 and —q¢? they decrease
below zero, and other terms [for example, involv-
ing (2.15)] which vanish at %2 = g% =0 must be kept
in any approximations to the reactions of interest

sl 1/2 4m2 4m2 1/2
————4m2_1> }-<1+ Y ><1-—s, ) } (2.29)

-
which contain these subgraphs in their dominant
contributions. We will return to this aspect in the
next section, but we merely remark here that the
appropriate virtual-photon cross sections involving
all contributions would be positive definite always.
While it has been easy to keep all terms in low-

T,
i
—
MC%}WW s

R

(c)

FIG. 4. The contributions to the cross section for
Y+v—e* +e” +e* +e” which vanish as s’ —«: (a) Inter-
ferences between even-C pair amplitudes; (b) squares of
and interferences between odd-C pair amplitudes; (c)
interferences between even-C and odd-C pairs.
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est order of o for y+y—e*+e”, Fig. 4 illustrates
the many cross-section terms neglected—for large
s’—in the cross section for y+y—e“+e" +e* +e".

It is seen that there are three classes of neglected
cut graphs: (a) interference between two even-C
pairs, (b) two odd-C pair squares and interference,
and (c) interference between two even-C pairs and
two odd-C pairs. The last is nonzero because the
over-all charge-conjugation parity is even for both
amplitudes. We have asked the reader to refer to
the Appendix for arguments to the effect that all of
these are down by a factor of s’ (aside from powers
of logarithms).

III. THE REACTIONS y+Z—>Z+e' +e +e'+e
AND y—=>Z—>Z+e* +e”

A. Dominant Contributions to the Cross Sections

According to the arguments in the Appendix (see
also the discussion in Secs. IIIC and IIID), the
dominant contribution for the cross section of Re-
action (iii) corresponds to the absorptive part of
the forward y + Z— y + Z amplitude depicted in Fig.
5(a). It is seen there that part of the graph is our
dominant photon-photon kernel Ag‘,’,’;“ (the notation
defined in Fig. 5 follows that of Sec. II). Here, of

R A G

PR ¢ SR —
©

[
|
I
i
|
|
[
|
|
I

(b)

FIG. 5. The y+Z—vy + Z forward absorptive parts
which are related to the dominant cross section for (a)
Reaction (iii) and (b) Reaction (iv) at high energy. The
absorptive parts in Figs. 2(a) and 2(b) are attached in
these two graphs to the absorptive part of the forward
virtual Compton-Born amplitude for the target, so the
shaded blobs are target form factors.

course, k*=0 and we define k°=w as the photon en-
ergy in the laboratory where the target with mass
M is at rest.

The multiperipheral character of the dominant
term allows us to again factorize phase space and
the absorptive amplitude by the identity

54<; by +p'—k—p> = fd“qé"('z by —k—q>

x 0%g+p'=-p)  (3.1)

as we did in Egs. (2.2) and (2.3). An over-all azi-
muthal integration is simple, the ¢° integral is
done easily due to the presence of an energy 6
function, and |§| and cosé, can be replaced in fa-
vor of the variables s’=(k +¢)? and ¢2. Since we
consider an unpolarized photon beam and target as
well as the inclusion of all final spin states,

2 ’
2% 1 “dg? max L dom g oy
Oiii = 167 (s = M2Y _[_2 q° _L;mn ds'Ag, wTF,
(3.2)

where the square of the c.m. energy in Reaction
(iii) has been denoted by s=(k +p)>=2Mw + M2. The
integration limits are given by?®

q,2=[ -b £(b% - 4ac)"/?]/2a, (3.3)
a=s/M?,
b=4w?-2s;, (1+w/M),
C=Stun®,

and by

Stin =16m?,

(3.4)

Shax =20 [q [ +¢%(1 +w/M),

[q]=(q*/4M? - q2)/2.
Here ¢_%<q,?<0, and when ¢%~¢,2, sl —Shn-
The target absorptive part in (3.2) reads

T =F*q*)2p-q)"(2p~-q)* (8.5)

for a spin-zero target with form factor F, or

T =G, (¢*)q*g"" - q"q")

GEZ(QZ) +7Gy
+
1+71

4 35— gy2p-q),

T=—q%/4M? (3.6a)

for a spin-3 target with electric (magnetic) form
factor G5 (G,). However, as is seen in actual
computation (and as is expected), our process
here is very coherent, with less than 5% of the
cross section coming from -g2z 1075 (GeV/c).
So, even for uranium, we can replace all electric
charge form factors by unity with completely neg-
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ligible error.?” Also for protons and heavier nu-
clei, M?>» —-q? or 7=0, so that upon contraction
with A" #, we could use T"" = (2p - ¢)"(2p - q)*
to excellent approximation. The case where our
target is an electron is of interest, however;
hence the general approximation (omitting ¢*, ¢*

terms by current conservation)

T"H = q2gVt +4p¥ pH (3.6b)

is extremely accurate for all of our cases of inter-
est.
As in Egs. (2.9) and (2.10), we can write

A" Bk, q)=(8ua® - 0,9,)Aq%, s") +[ ¢k Ry =R - q(R, q, +a, k) + (k- 98,1 B(g?, s"), (8.7)

so that the contraction in the integrand of (3.2) is

AR B T = q*(4M? +2q%)A(q? s') +[ 4q%(k - p)? - 4q%k - pk - q +4M*(k - g +2q%(k - q] B(¢?, "), (3.8)

where % +p and & - g are used interchangeably with
s and s’, respectively, as independent variables.
The point of all this is to use the fact that the in-
variant amplitudes

1 o
A(qz’ S’)=—kak“Adva Bu ,

1 (o) 3 2 om
B(q? s")= W[A%J" By & ,qq)zk"k“Agu Bp}

(3.9)

can be evaluated in any convenient Lorentz frame.
We have already found A §5™ #” in Sec. II [see Eq.

—

dom B _
kvkuAB(x’;m “_(211')8 1,4

The first T® term in (3.10) can be found via

1 d*
f 7 (72D -7Ptd] k”k“T(Z)x)‘,,“(—r, q)+7 Zt(;)k"kxk”k“T(Z)o,,M,(—y, ).

(2.11), etc.], and, since we specialize to the #%2=0
case, the explicit integration limits given by
(2.23)—(2.26) are useful here. The quantity
R'E*AG" P, is more painful to find, especially
since the work needed in its calculation is inverse-
ly proportional to its contribution to (3.2); this
projection always appears with ¢2 coefficients in
Eqgs. (3.8) and (3.9), so it does not contribute to
the leading cross-section contribution. Clarifica-
tion of this point is made in the discussion below,
but to check it we have actually calculated the pro-
jection.

We know from (2.3) and (2.9) that

(3.10)

T (=7, O =(80” = 0,010 %, 0% s2) [ a7y =7 a0 4y +0,7,) + 0 0P8, 100 %, % s)) . (3.11)

These t® are calculated simply by substituting #>~72, »2~¢?, and k¥~ —7 - q (s,~ s,) in our old ¢{" ex-
pressions (2.12)-(2.16). On the other hand, the presence of the extra factors of % in the second T® term
in (3.10) disallows such simple invariant-amplitude expansions. We consequently resort to a brute-force
calculation facilitated somewhat by the fact that #*=0. Using (2.4) and (2.5) with the appropriate replace-

ments (p,~ ps, Po—~ Py k— -7, ¥—q), spin-summing leads to

3 3
ERMNRAT® (=7, ) =8e* f %”—* ‘%’454( Dy +ba+7 = )k D)k -ps)[
3 4

This invariant integral is straightforwardly done
in the —F +d =0 frame with -T chosen as the z axis
and k chosen to lie in the x-z plane. After the d3p,
and d|p,| integrations are removed via the & func-
tion, ¢, occurs only in the numerator and so the
final 6,, integration is analytically simple but long.
The cumbersome details do not seem to warrant a
listing here.

The cross section for the companion Reaction
(iv) is dominated by the absorptive part of the for-
ward y +Z~ y + Z amplitude shown in Fig. 5(b).

k-(p,+7)
(ps+7P = m?®

k- (ps~aq) jlz
(Ps-CI)z‘mz )
(3.12)

.

(The relative unimportance of the Compton-type
contribution is discussed later and in the Appen-
dix.) Following the steps leading to Eq. (3.2), we
have

N A 1 q+2dq2 S max , 8 v;(/
o = Tor GoaEF | aT ), A BT
(3.13)

with the carryover of (3.3) and (3.4), except that
now sl; =4m?: It must be mentioned that this re-
action already has been well studied—the famous
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Bethe-Heitler pair production—but for comparison
purposes we also treat it here. The ease with
which its treatment goes through once the ma-
chinery for Reaction (iii) has been developed is
motivation enough.

Again, the coherent nature of the photoproduction
of small-mass particles allows the replacement of
Bg,”, T"" [see Eqgs. (2.6) and (2.9)] by the expres-
sion (3.8) if A and B are replaced by ¢ {V(k?
=0, ¢%,s’) and t P(k*=0, g2, s’). The evaluation of
these latter quantities follows by the appropriate
substitutions in Eqgs. (2.12)-(2.16).

It is useful in our numerical work to develop
positivity conditions on the invariant amplitudes
A and B. This is easily done by considering the
virtual-photon cross section for y(k) +y(q)—~ four
electrons, Reaction (i), where the first photon
beam % is real and unpolarized and the second
photon beam ¢ is spacelike and has helicity A,.
Averaging over the helicity of y(k) leads to the
positive definite

0i(s,a%2) ==X (@A ® e (0),

in which f denotes the off-mass-shell normaliza-
tion and relative velocity factors. Inthe k+§=0
c.m. frame, our choices for the transverse polar-
ization vectors are (A, =+1; see Ref. 28)

eta) =7 70, 7 +9)

(3.14)

(3.15)

and the longitudinal polarization vector is (A, =0)

1 > o
€§(4)=(_TZ)W(IQI,-%Z), (3.16)
with 2 =2. In this frame |§|=|k|=w.

It is simple to combine (3.14)~(3.16) with (3.7);
we find that

oi(s,! q2’ i]‘)Eo'uans =%f|:(k * q)zB +qu] ’

(3.17)
O'i(S’, qzy O)Eclong =% [_qu],

SO

(k-qPB=>-q*A=0. (3.18)

Thus for ¢g2<0, B=0and A =0.

We should relate these virtual-photon cross sec-
tions to the diagonal quantity 6; used in Sec. II.
From (2.7)—noting that 1/2s’ plays the role of f
there—and (3.7),

&i(s,, 0) qz)zi [2(k 'q)zB +3q2A]

2%(2Utrans _olong) . (3-19)

One sees why for sufficiently negative ¢> we can
have ¢; <0—as verified numerically. As ¢%-0,
all roads lead to the correct total cross section
G;(s’,0,0) =0yans =0 (s’). This discussion goes
through for &y mutatis mutandis—A(q?, s’) is re-
placed by t$(0, ¢2, s’), etc.

| co

B. Numerical Results for the Dominant Contributions

A fivefold Gaussian numerical integration routine
has been used to obtain values of o for different s
and for different targets (nuclear or electron).
Two integrals are specified in (3.2); since k% =0,
Eq. (2.23) is most convenient for the specification
of the other three. We remind the reader that the
initial ten integrations (disregarding a trivial
over-all azimuthal one) have been reduced to these
five by exploiting the factorized nature of our dom-
inant cut graphs. Similarly, a twofold numerical
integration has been performed in (3.13) for o, —
a reduction from four initial integrations.

The allocation of points in the computing pro-
grams is a delicate matter since the dominant re-
gime is at very small |¢2%| and s’ for Reaction (iv)
and at very small |r2|, s,, and s, for Reaction
(iii). The latter has somewhat larger average val-
ues for |¢?| and s’ than the former since the four-
electron kernel peaks at large s’. The peaking in
this small region of phase space can be stretched
out and the computer time shortened considerably
by changing to logarithmic variables. For exam-
ple, we have used x=1In(s,/4m?), etc. Also, criti-
cal cancellations in ¢,2% of (3.3) and 7,2 of (2.26)
can be circumvented by unrationalizing the radi-
cals into denominators. With all this in mind, a
run for (iii) at a given s took only a minute or so
on the CDC 6600, and a run for (iv) less than a
second. There were not so many points needed,
after all, since small q® squeezes the upper and
lower limits together in the inner integrals.

To get a feeling for the ¢ range of importance,
we have plotted histograms of percentages of cross
section in logarithmic intervals in Fig. 6 for both

T T T T T T T T T

30k DOUBLE PAIR B

20 b

0 J_

20 SINGLE PAIR

PERCENTAGE OF CROSS SECTION

L

o k
ic 10712 o7 010 |o-92 1078 1077 120-6 1075 1074 1073
| in (Gevre)

FIG. 6. The percentage of cross section for the dom-
inant contributions to Reactions (iii) and (iv) in logarithmic
| ¢2| intervals for proton targets at w =10 GeV. These
results are essentially independent of the target (be it
a nucleus or an electron).
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Reactions (iii) and (iv) at w =10 GeV and for proton
targets. (Electron targets and, aside from the
factor of Z2, all nuclear targets give the same re-
sult.) The first bit of information evident here is
the importance of extremely small |¢2| values
demonstrating the high degree of coherency. More
interesting is the emphasis on relatively smaller
values of |g?| in Reaction (iv). This is a result of
the peaking at small s’ for y+y—-e*+e” whereas
the four -electron mode stays constant once its
peak is reached as s’ increases. Hence in (iii)
there is a struggle between the decrease in the
product of the y+y—~e +e” +e*+e” kernel and 1/¢*
as |q?| grows and its increase (s’=~S/ux) 88 Shax
~2w|q?| grows. The leading logarithm comes
from large s’ in (iii), in contrast to (iv) where it
comes from small s’. It really makes little differ-
ence whether we are talking about electrons or
heavier targets since the energy transfer |q,|
=-q2%/2M < M even for M = m over most of the
important ¢? regime.

The total cross sections as a function of energy
are given in Fig. 7.2° It is seen there that the
cross section for Reaction (iv) quickly reaches the
high-energy Bethe-Heitler formula (1.4) which in-
cludes the nonvanishing corrections to the leading
logarithm. On the other hand, Reaction (iii) has a
cross section always substantially below (1.3)
which does not include the nonleading-logarithm
corrections. These corrections are necessarily
large and negative since the average s’ value is
not large enough for the asymptotic value of the
four-electron kernel to be a good approximation;
also, the fact that the relatively larger values of
q? are important leads to some suppression
through the scale change of the product of the ker-
nel and 7%, (3.8). The conclusion here is that a
careful numerical evaluation of the leading contri-
butions to (iii) is quite important even for an or-
der-of-magnitude estimate. In order to make our
results definite, we give numerical values at sev-
eral energies for the cross section of Reaction
(iii) in Table I.

C. Estimates of the Neglected Contributions

There are several contributions which have been
neglected in our estimate of the rate for Reaction
(iii). All of the amplitudes can be classified into
three broad categories (see Fig. 8): single, dou-
ble, and triple target electromagnetic couplings.
Let us consider first the reasons for neglecting
the double and triple couplings.

The coherent parts of the graphs in Figs. 8(b),
8(c), and 8(d), with Z dependences Z2, Z2, and
Z3, respectively, do not contribute to the cross
section in the limit M —«. The incoherent remain-
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FIG. 7. The energy dependence of the dominant con-
tributions to the cross sections for Reactions (iii) and
(iv). The curves (a) and (b) refer to proton and electron
targets, respectively. The asymptotic curve (c) is
found from Eq. (1.3). For Reaction (iv), electron and
proton targets give the same result which, in the energy
range displayed, is indistinguishable from the asymptotic
expression (1.4) which is more than a leading-logarithm
approximation. According to Ref. 11, the electron
curve for (iv) should be reduced by ~13%. This correc-
tion arising from the interference between exchange dia-
grams is not taken into account in our calculation.

ders in Figs. 8(c) and 8(d) do not contribute when
s—, while the incoherent part of Fig. 8(b) con-
tributes cross-section terms with the nucleon
mass as scale (and the odd-C pair is very soft).
For any energy regime, we conclude that the dou-
ble and triple target couplings correspond to
scales in the cross section much smaller than m 2
and can be neglected. This is true even for large
Z and for interference terms between these ampli-
tudes and the single-coupling amplitude.

The remaining cross-section terms which have
been disregarded comprise part of the square of
the single-coupling amplitude in Fig. 8(a). They
correspond to the nonmultiperipheral cut graphs
made up of the cut graphs in Fig. 4 tied onto a cut
target line [e.g., see Figs. 1(b) and 1(c) in Ref. 8];
we will denote them as NMP cut graphs. These
are more important here than the analogous graphs
(Fig. 4) in Reaction (i) were, since we now inte-
grate over s’. Indeed, as in single Bethe-Heitler
pairs, the small-s’ region gives rise to a very
large cross section and the NMP cut graphs can
have the m 2 scale too. According to the discus-
sion in the Appendix, however, they are down from
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TABLE I. Cross sections for Reactions (iii) and (iv) at photon energies of 10, 50, and 500
GeV. Aoy is the contribution of the A(g?,s’) amplitude which must be added to oy for the
complete dominant cross section. The superscript s denotes the effect of screening for Z=1.

w (GeV)  Z7%0y (ub)  Z7Aoy; (wb)  of (ub)  Acd (wb)  Z7l0, (mb)  of (mb)
10 0.28 0.04 0.27 0.04 14.4 9.3
50 0.53 0.06 0.50 0.06 17.3 9.3
500 1.10 0.07 0.91 0.07 21.5 9.3

the dominant part by a log factor.

An immediate guess then is that the NMP contri-
bution should be about 10% of our calculation based
on the cut graph in Fig. 5(a) [for w= 10 GeV, In(w/
m)= 10]. We have not performed a careful evalu-
ation of this portion (even a gauge-invariant sub-
portion requires an inordinate amount of work;
one needs more than just the leading logarithm for
accuracy). On the other hand, there are decent
reasons for believing that the first guess is close
to the right answer. First, note the resemblance
of this contribution to the single Bethe-Heitler
rate: Both get their large contributions from
small s’ peaking, both have the m ~2 scale, and
both have the single In(w/m) energy dependence.
Thus we can obtain an estimate of the neglected
NMP cut graphs by multiplying the cross section
in Eq. (1.4) by (a/7)?. [Each new ezfd3p(21r)'3 in
QED contributes « /7; indeed, the numerical
factors in the expressions in Egs. (1.1), (1.3), and
(1.5) are essentially (a/7)? times those in Egs.
(1.2), (1.4), and (1.6), respectively.] The ratio of
this estimate to the dominant contribution runs
about 25%-10% for w =10-500 GeV.

Corroboration of the above estimate can be found
in Table I. There one sees that the amplitude
A(g?,s’) (really, the ingredient K’ k* A" 8 ) adds

f ?

% ;}-%
(¢) (d)

FIG. 8. The amplitudes for Reaction (iii). Categories

(a), (b), (c), and (d) represent single, double, and triple
target electromagnetic couplings, respectively.

very little to the numerical answer. Since this
contribution is also down by a logarithm, its care-
ful evaluation may be a mirror of the neglected
terms. We are heartened by the fact that this adds
less than 15% at w =10 GeV, a percentage which
decreases in energy as a log-dominated contribu-
tion would.

There are other encouraging signs regarding
the NMP cut graphs (remember that these are the
only contributions which have a chance of changing
our result significantly). For instance, the Pauli
principle which manifests itself through negative
interference terms (all of which are in the NMP
graphs) should be a factor. We expect to find im-
portant cancellations among the odd-C pair ampli-
tudes whose contributions are peaked for small s’
values where the identical electrons are closer to-
gether. On the other hand, there is little impor-
tant overlap in phase space for our dominant
piece—see Sec. IIID—where the emphasis of
larger s’ corresponds to one hard and one soft
pair. The interference terms (in the NMP graphs)
between amplitudes whose squares make up the
dominant cut graphs effect a smaller cancellation
of these “squares.” This is correlated with the
fact that they are down by a logarithm. As an ex-
ample, the odd-C pair muon trident amplitude in
pr+Z-~ Z+p*+u*+u” has important cancellations
between exchange graphs. Cross-section measure-
ments®® on lead have verified this suppression by
concentrating on that part of phase space where
the identical muons have considerable overlap. A
different experiment which could look at both very-
high- and very-low-energy muons would get a
large unsuppressed contribution from the even-C
pair amplitude. Moreover, an interesting cancel-
lation among NMP graphs has been seen in a re-
cent calculation® pertaining to this experiment
which is certainly of interest to us.

Another important suppression of the NMP cut
graphs relative to the dominant contribution comes
from screening. Since smaller values of g2 and
s’ are important in the neglected graphs, the atom-
ic electron shielding is more effective there. In
this regard, see the discussion in Sec. IIID where
the analogy between the NMP and Bethe-Heitler
pairs should be kept in mind. Screening is rot im-
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portant for the A(g?, s’) contribution (see Table I)
due to the fact that its leading logarithm comes
from larger s’ (hence larger ¢?2).%2

After all that has been said here, we still cannot
guarantee that the corrections from the other
graphs will be small. The numerical coefficient
could be large, although we could find no examples
of this in the literature. (Recall that we are not
talking about the next corrections in a given cut
graph, which often have large numerical coeffi-
cients representing important phase-space, ex-
change, and scale reductions.) In addition, the
nonleading-logarithm corrections in the dominant
graphs have been shown to be substantially nega-
tive for lower energies; they will probably be less
pronounced in the NMP graphs. As for the over-
all sign of the neglected contribution, we guess
that it will probably be positive since many of the
interference terms vanish by charge-conjugation
symmetry [when tied to a cut nucleon line, Fig.
4(c) is a counterexample].

What happens if an electron is the target? Then
everything is still pretty much the same although
the amplitude in Fig. 8(b) then will also contribute
to the [In(w/m ]~ correction. Notice that the small
reduction in Eq. (1.4) for an electron'’ comes from
exchange effects and corroborates our assertion
that the exchange graphs in NMP contributions
should not reduce significantly our result. Both
get their dominant contribution from phase-space
regions where the identical electrons have little
overlap.

For targets with small Z, the atomic electrons
will contribute significantly since the produced
electrons are so light. One must combine the
electron and the proton cross sections together
for hydrogen targets.?® Besides screening, the
case for large Z brings up the question concerning
higher-order Za corrections. These multiphoton
exchange effects corresponding to the Coulomb
field that the final-state electrons see subtract
away 10% or so from the Bethe-Heitler cross sec-
tion for lead.3* The corrections may be somewhat
larger for our process in view of the presence of
an additional low-energy pair.

D. Effects of Screening and Energy Threshold Cuts

Considering the numbers given in Table I, we
hope that the photoreaction (iii) can be seen in the
near future, in which case it becomes worthwhile
to deal with experimental questions such as
screening and energy threshold cuts. Since we
have a bubble- or streamer-chamber experiment
in mind, angular restrictions will be less impor-
tant.

Screening of the nuclear charge due to atomic

electrons is of course important at large distances,
or, equivalently, small momentum transfers.
From Fig. 6, however, we find that, although this
serves to suppress the background coming from
photoproduction of single pairs where smaller |g?|
values are more important, it still leaves us a
considerable rate for double pairs produced in the
relatively larger |q?| region. To actually calcu-
late the effect of screening, we multiply the target
part T"* by the square of the atomic form factor®

1 -1
Fa=<1_%§> )

where a=(111/m)Z""® is the atomic radius. For
w=10 GeV and Z =1, the rate for Reaction (iii) is
reduced by about 4%, while Reaction (iv) suffers a
reduction of 35%. We conclude that screening will
not be a major factor in detecting double pairs.

More important is the effect of energy threshold
cuts. It is well known that in multiperipheral pro-
cesses the first pair (momenta p, and p,) absorb
most of the incoming energy. For a four-prong
signal to be visible we must require that the sec-
ond pair also carry at least ~100 MeV or so. We
have calculated the cross section for Reaction (iii)
by integrating over only that part of phase space
where this condition is satisfied. We note that for
fixed q2, s’, %, s, and s, (remember that integra-
tion over these variables is done numerically), the
minimum value of (p,,+p,,) iS obtained when the
vector T lies in the plane of k and §. The five in-
tegrations are now done subject to the condition
that (pgo +Pao)min P€ greater than 100 MeV. In this
case the reduction in oy ranges from 39% to 25%
for w between 10 and 50 GeV, and stays almost
constant at 25% for w =50 GeV. In determining
trigger requirements and background separation,
experimentalists must take into account such im-
portant reductions which extend into the high-en-
ergy regime.

The experimental problem of separating the four-
electron signal from multiple interaction events
has already been discussed®; we have little to add
at this stage. We will say that no problem arises
from hadron production (e.g., from subsequent 7°
— 4¢) since the scale for the complete rate must
be in terms of hadron masses. By far the biggest
problem is pure QED: One cm divided by a radia-
tion length in bubble chambers is of the same or-
der of magnitude as o /7.

(3.20)

IV. THE REACTIONS ef+e >efte +e'+e +e' +e
AND e*+e > +e +e* +e

Our study of Reactions (v) and (vi) is oriented
towards estimating the effect of kinematical cuts
on their rates. The two-photon intermediate state
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in the process

(vii) e*+e"—=e*+e” +T
has been studied in some detail®>'® in order to ex-
tract information about photon-photon interactions,
with particular attention paid to the case when I'
consists of hadronic states with even charge parity.
Reactions (v) and (vi) would then be regarded as a
background to such processes with their [see Eqgs.
(1.5) and (1.6)] considerably larger cross sections.
As discussed in the Introduction, there are impor-

J

oyy(s’, kz, q?)
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tant nonleading negative corrections to (1.5) and
(1.6). However, here we are interested in esti-
mating much more important corrections—the
drastic reductions (in the leading terms them-
selves) due to various experimental thresholds.
For this purpose we shall use an equivalent-photon
approximation which gives the leading term cor-
rectly.

When the momenta transferred to the colliding
beams are small, the differential cross section
for (vii) is effectively given by

do <g.‘l>2 E®+E!® E*+E[? 1

dE dELdkPdg®  \ 7 2F? 2E2  K°q°
1 2

where we have denoted the initial (final) energies
of the leptons by E (E;, E;). The quantity of inter-
est, 0,,, is of course the virtual-photon-photon
cross section yy— I'. For Reactions (v) and (vi),
oy, is obtained from (2.7) and (2.8), respectively.
In these cases Eq. (4.1) can be used to obtain only
the leading contribution (as E~ =) to the total
cross section, since it obviously neglects interfer-
ence of diagrams with the final leptons inter-
changed, etc. In the usual equivalent-photon ap-
proach one sets ¥*=¢®=0ino,,. However, we

1

4E2 E 22 max rE-
0(E, S{s Opmin) = J ds’f dwzf dsz dq
s s'/4E n2 2min

th min a

where we have used s’ =4w,w,, with w, =FE -E{ and
w, =E = E, the energies of the virtual photons. k%,
(P®max ) is given by
k*=2(m?® - EE! +pp} cosb,), (4.3)
with 6,=6_;. (6, =7 —6,). We shall consider the
symmetric situation where ¢2 ;, (g%n,.) is obtained
by using the same 6, (7 - 0,;,) for 6, in
q%=2(m?® - EE} +pp}cosb,). (4.4)
To the four integrations indicated in (4.2) we
must add three more needed to obtain ¢; when
computing 0,(E, S}, Omin). For our purpose in this
section, however, it is sufficient to approximate

the numerical results of Sec. I by a simple ana-
lytic expression:

2\Y
Oi(s',kz,qz)z<1__ 163131 >

m2

(=T (m? = L] >

(4.5)

T

. 1 do

(4.1)

s’ ’

r

have seen in Sec. II the important effect of the pho-
ton masses which regulate the scale of o; for
-k?, —q®2 m®. These last conditions were in fact
assumed in the derivation of (4.1), and it is pre-
cisely on such effects that we focus our attention.
We shall compute o(E, s}, 6,;,), which incorpo-
rates the effect of experimental cuts on the invari-
ant mass Vs’ of " and on the minimum angle for
the detection of leptons. With a suitable change in

the integration variables, we obtain

%0, dE|dEARPdq” (4.2)

r

where 0;()=6.45 ub from Eq. (1.1). It is seen
that with y= 6 the above expression is a very good
approximation to the curves displayed in Fig. 3.
We have used this expression for o,,(s’, k%, ¢?) in
(4.1), which when substituted into (4.2) yields
0v(E, Sths Omin)- The results are shown in Fig. 9.
For sy, > 16m? and 0, > m /E, we obtain

2 2 2
OV(E, s(h’emin);2<g'> o < ! 1 >

m) E®\ Sin}0mn  COSLOmn
4 2
xoi(oo)ln2<£,) , (4.6)
Sth

which shows that the scale of ¢, is now given by
(E sin30)™? rather than m ~2 [remember that o,(x)
~1/m?2].

We have distinguished between angular and ener-
gy threshold cuts because we believe these to be
experimentally more meaningful than a qualitative
description of such reductions collectively as
“threshold effects.” For comparison and follow-
ing the suggestion of Greco'? we have also drawn
on Fig. 9 the curve
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o, (8,5 = 5 () (T o)

m Sth

2 2\ 2
X <1n%§§— In Eg—%—) , (4.7)
which reduces to (1.5) for s{,=16m?2 [for simplicity
we have used the common variable s{, as in Eq.
(24) of Ref. 12]. Equation (4.7) is expected to de-
scribe experiments where no attempt is made to
detect the electrons or positrons which serve as
virtual-photon sources, while Eq. (4.6) is valid
when these leptons are “tagged.” This may be
necessary in future colliding-beam experiments

as discussed by Brodsky et al.® Inthis case the
above calculations show that the background from
Reaction (v) will be extremely small for 6, >1°.

The same procedure is repeated to obtain
0,i (E, Sk Omin). We substitute 5,(s’, k2, ¢?) as given
in (2.28) for 0, , in Eq. (4.1), which is then used in
(4.2), and a 4-dimensional numerical integration
using Gaussian quadratures yields o,; (E, S, 0min)-
This is plotted in Fig. 9 for E =1 GeV and different
values of O as a function of s .

We can now discuss our results for o ; in terms
of o0,,, which, as we shall see, determines the
essential features of the curves in Fig. 9.

(a) Dependence on 0 nmin. We see that
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FIG. 9. 0y (continuous lines) and 10~%o,; (dashed lines)
as a function of sy for different values of 6,. The dot-
dashed line is obtained from Eq. (4.7) and is to be com-
pared with o, at g, ;= 0°. Beam energy is 1 GeV.
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oy (E, s s Omn) depends strongly on 6,;,. This can
be traced to the fact that the scale of §; is roughly
(k2q®)"Y2 for |k?|, |q¢?| much larger than m?

(which is the case for 6,;,> m/E). On the other
hand, o,(E, Sth, Omin) has 2 much milder dependence
on 6,;,. This is because the scale changes in G
occur mainly in the small-s’ (10m?) region,

which we exclude, while for large enough s’ the
cross section depends weakly on k% and ¢? (see the
discussion at the end of Sec. II).

(b) Dependence on s{,. The roles are reversed
here. Since 6; peaks at small values of s’ and
vanishes like Ins’/s’ for large s’ (Fig. 3), a cut in
this parameter appreciably reduces o,;, which now
behaves roughly as 1/s},. However, as &; ~con-
stant for large s’, such a cut does not take away
any major portion of o, as long as s{, <4EZ?,

We emphasize that our aim in this section has
been to obtain the reductions which the leading
terms suffer because of some experimental condi-
tions. For the yy—e*e e*e” process such cuts
will make its observation extremely difficult. In
any case, numbers accurate enough to be com-
pared with any future experiments to detect (v) or
(vi) should include the nonleading terms, as simi-
lar experimental conditions will no longer allow an
equivalent-photon approximation when the cross
sections depend crucially on the masses of the
virtual photons.

V. ABSORPTION OF HIGH-ENERGY COSMIC ¥ RAYS

It has been recognized’that, due to single-pair
creation, cosmic y rays of sufficiently large ener-
gy w can undergo important absorption in the pres-
ence of the universal black-body radiation (possibly
a remnant of a violent “big-bang” early stage).'®
When w2 10™ eV one must take into account Reac-
tion (ii) where the target photon corresponds to a
black-body photon with energy e~107*~1073 eV
(~3°K) and for w =10'~10'7 eV the absorption
depth (mean free path) is on the order of 10?® cm.
Although the high-energy y rays may reappear'
through subsequent inverse Compton scattering,
the trajectories will have been diffused, at the
very least.

Since the cross section for single-pair creation
decreases with increasing w, one may be led to the
conclusion that photons with energies as high as
the most energetic protons observed (10%2-10% eV)
may have a mean free path as large as the universe
(the “Hubble radius” Ry;~10%% cm). This seems to
indicate that future considerations involving even
higher energies would be unaffected by such ab-
sorption and we could “see” highly energetic pho-
tons irrespective of the point of origin. We wish
to make the point here (backed up by the calcula-
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tions which follow) that because of the large con-
stant cross section for fwo-paiv production, Reac-
tion (i), we will never see extragalactic photons
from the edge of the universe.? Just when the sin-
gle-pair cross section is small enough to see out
to 10%¢ cm, the double-pair cross section adds a
constant (in energy) absorption probability per unit
path length ~1072¢/cm. No further increase in the
mean free path occurs.

To quantify and compare the effect of the single-
and double-pair annihilation channels, we follow
the calculation of Gould and Schréder,'® who con-
sidered the absorption due to process (ii) of y rays
passing through a photon gas. One is interested in
the absorption probability per unit length, dr/dx,
given by®”

% = 4% ffo(s)n(e)(l - cosf)dedS, (5.1)
where o(s) is the cross section for real photons
with c.m. energy Vs , and xn(¢) is the energy spec-
trum of the target (number of photons per unit vol-
ume and energy). For an incident photon of energy
w,

s=2€ew(l -cosh), (5.2)

where 0 is the angle between the incident and tar-
get photons. Changing variables using (5.2) we ob-
tain

dr 1 ° n(e) dew
T._— B4 ds; .
dx -8 fsomw = ELO so(s)ds; (5.3)
So=16m? and 4m? for processes (i) and (ii), re-
spectively. An integration by parts gives

dr 1 ° < s >
—=— V| =— ) so(s)ds, (5.4)
dx 8w S 4w
where
V(€)=f %ds. (5.5)
€

We shall limit ourselves to the black-body radi-
ation in the universe since this is the most impor-
tant medium for the absorption of y rays. In this
case,

1 €?
ne)= 5 cawr 7 (5.6)
hence
V(€)=—%1n(1 — e~y (5.7

For absorption through single-pair creation, we
substitute (2.29) for o(s) and (5.7) in (5.4). The
result, for T7=3°K, is shown in Fig. 10.

We use G;(s, 0, 0) as given in (2.7) for o(s) in
(5.4) to calculate the absorption due to double-pair

oo

0B _
T i
L
sls (b)
1527 4
| [ ! 1 |
|o|4 |olG |o|8 ‘020 |022
w in eV

FIG. 10. Absorption probability per unit length as a
function of y-ray energy w. The curves (a) and (b)
correspond to absorption through single and double
electron pair creation, respectively. The black-body
temperature is 3 °K.

creation. The result, after performing a 4-dimen-
sional numerical integration [3-dimensional for
5,(s,0,0)] is displayed in Fig. 10 for T=3°K. We
have checked that the parametrization used in the
previous section,

Gi(s,0,0)=(1-16m?/s)°0 (=), (5.8)

gives essentially the same results.

For fixed temperature 7, one can obtain simple
analytic results for dr/dx in the two asymptotic
limits w <s,/4kT and w>s,/4kT. For this pur-
pose (and also to compare with previous work) let
us define the function f(v) through

T

ar _aPm [ kT\®

7 () o, (5.9)
where v=s,/4wkT. Hence

Fw)==2 (22 [ soesg ntt - e

(5.10)
for a black-body target. We can use the following
asymptotic forms for the cross sections:

Single-paiv creation.

aues)=m(2) (-1 1405 - 1)),
g-1<1 (5.11a)

au(ts)=1(2) L9 -1+00/9),
£>1. (5.11b)

Double-paiv crveation.
0;(&s0)= (1= §)%,(»), E-1<1

0;(&s5)=0;(=), &>1,

(5.12a)
(5.12b)
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With the above expansions we obtain

FWy=@@)2e’[1+0(1/v)], v>1 (5.13a)

FW)=572v1n(0.47/v)[ 1 +O(v1nv)],

v<1 (5.13b)
for single-pair creation,® and

flv)= %(%) 610, (=) ?V——s[ 1+0(1/v)],
v>1 (5.14a)

70)=2(2Y e, 1 +001],
r<<1 (5.14b)

for double-pair creation, where ¢ is the Riemann
¢ function.

Our discussion at the beginning of this section
was of course based on Egs. (5.13b) and (5.14b).
High-energy (>10°!'-eV) y rays, while undergoing
little absorption through single-pair production,
are almost completely absorbed by double-pair
creation when they pass through more than ~10%¢
cm of black-body radiation. If such a radiation
does extend throughout the universe, then we can-
not expect to “see” any further than 10%® cm.

In passing, note that (5.14b) is valid for any an-
nihilation process y +y- anything as long as the
cross section stays constant in the high-energy
limit. However, since other (e.g., hadronic) final
states are produced at smaller rates, Reaction (i)
remains the most important mechanism for ab-
sorption of very-high-energy y rays. The total
hadron asymptotic cross section has been esti-
mated?®® to be about 0.3 ub—a factor of 20 smaller
than the four-electron limit. In particular, the
production cross section for a pair of point pions?
is everywhere below that for a muon pair (dis-
cussed below). The conclusion we draw is that it
would take unforeseen resonance structure in
specific hadron channels to seriously increase the
absorption already provided by (i). Also, remem-
ber that the effective c.m. energy ~4wkT should be
above threshold for any absorption process to be
significant.

As far as other yy reactions are concerned, they
all appear to be negligible: (a) From Eq. (5.13b),
yy— L. adds about 16% to d7/dx at the critical en-
ergy 7x10%° eV where the two curves intersect in
Fig. 10. The only change is in the mass, so that
the peak here is ~(m,/m, ) of the single-electron-
pair peak and the two approach each other only
when both are well below the double-electron-pair
curve. (b) The asymptotic cross sections for yy
- ppee and yy— uuuu are ~4 x107%;(~) (see Ref.
40) and (m,/m, fo, () ~2 x107%,(=), respectively.

Replacing the muon pairs by point pions leads to
even smaller cross sections.?! (c) yy— yy has a
cross section which vanishes as s—« in lowest
order (a*); its s™! scale is negligible compared
with m ~2.%2 (For s ~m?, this is buried along with
everything else under the single-pair peak.) (d)
Adding more leptons and/or photons or going to
higher order in, e.g., yy— vy can give rise to con-
stant (or even logarithmic-powered) cross sec-
tions, but this is at the expense of too many pow-
ers of a/7 relative to (i). (e) Weak interactions
(e.g., yy— v¥) have too many powers of @ and G to
be of interest at these energies.

We refer the reader to an earlier report® for
discussions about absorption competition from a
gas of radio-wave photon targets and the fate of
the pairs after they are produced. That report al-
so discusses the interesting cosmological point
concerning the decrease of the ratio of the four-
electron mean free path to the Hubble radius as we
go back in time.

VI. CONCLUDING REMARKS

We have calculated the dominant contribution to
the four-electron absorptive part of the forward
virtual-photon-photon Feynman graph. This yields
the mass and energy dependence of, for example,
the cross section for yy—two lepton pairs at high
energy. One can then see how the known asymptot-
ic limits are approached with increasing energy.
Beyond this, we have at our disposal a view of
roles for yy— eeee analogous to those for yy— ee
in various contexts. Although a direct measure-
ment of the four-electron cross section is not in
the immediate future, it enters indirectly into a
number of interesting possibilities.

The photoproduction rate yZ - Zeeee has been
estimated in our work. We believe the theoretical
uncertainties are under control and that the only
real problem is an experimental one. Moreover,
the energy dependence and screening differences
between this rate and the multiple interaction
background may be of help in background removal.
This is, after all, a very high-order check of QED
and may even serve as a probe of any anomalous
four-electron contact term.*

The important change of scale in the four-elec-
tron kernel, remarked upon in earlier papers,3'12:28
serves to suppress greatly the visible cross sec-
tion for ee— eeeeee since the forward-angle and
low-energy pairs escape unseen. We have seen
that the form of the scale change is not easy to
guess, and, even for an order-of-magnitude esti-
mate, calculations as detailed as ours must be
made.

The dominance of Reaction (i) over Reaction (ii)
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at high energy leads to an interesting change in
previous analyses concerning cosmic-photon ab-
sorption by residual photon gases in the universe.
At higher and higher energies, the increasing
mean free path for y rays eventually levels off to
a constant when (i) takes over [effectively, a scale
change in d7/dx due to (i)]. Such high-energy cos-
mic photons are a real possibility through, say,
the by-products of cosmic-proton interactions
(e.g., inverse Compton scattering off of the black-
body gas). This may also have been of increasing
importance in earlier stages of the universe where
the temperature of the black-body gas may have
been higher and the c.m. energies may have been
greater.
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APPENDIX: HIGH-ENERGY BEHAVIOR
OF RELEVANT GRAPHS

We present in this appendix some simple rules
that enable one to read off the high-energy behav-
ior s®(lns)? of the multiperipheral-type graphs
that are calculated in detail here. We know from
the work of Cheng and Wu** and Frolov, Gribov,
and Lipatov** that the graphs in QED that give the
leading logarithms and powers are the iteration of
photon-photon scattering units, the multiperipheral
graphs of Fig. 2(a).

The basic ingredient is to determine the order of
the rightmost pole in the J plane after the graph is
diagonalized across the two photon lines in the
crossed channel. The order of the fixed pole, #,
then determines the power of the logarithm y=n
—1. This diagonalization has been done approxi-
mately with Mellin transforms and exactly with
group-theoretical techniques for the multiperiph-
eral model in strong interactions, and is well
known in the literature. We will review the essen-
tial features in a heuristic way in this section.

Firstly, the position of the leading pole is at the
highest nonsense value of the angular momentum
for the state of maximum helicity flip in the
crossed channel that is obtained by cutting across
the two particles that are iterated. In particular
for this case J =[x, =X, |, —1, where X\, and A,
are the helicities of the two internal photons in the
t channel; it then follows that [x, = X,| . =2 and

max

the position of the leading pole is at J=1. This
statement fixes the power of s, 8=1, in the corre-
sponding high-energy behavior of the absorptive
part:

A(s, t)~s(lns) . (A1)

To determine y we need merely to compute the or-
der of the fixed pole in the J plane, and this is ob-
tained by the number of times the gauge-invariant
kernel for photon-photon scattering is iterated in
order (e*)".

Since the photon must be exchanged at least once
to give B=1, A(s,t)~s, the simplest graph having
this behavior is the graph corresponding to the ab-
sorptive part in Fig. 2. If the photon-photon scat-
tering is iterated n times, the Mellin transform of
the absorptive amplitude will have a structure of
the form

b, (1)

alJ, t)= To1r

(A2)

for all helicity components of the external photons
and b, () is a residue function that can be calcu-
lated from the explicit graphs and is given in the
work of Cheng and Wu.** We have simplified the
discussion of the helicity amplitudes by consider-
ing the Mellin transform which give the absorptive
part of the amplitude directly by the inverse trans-
form

Als, 1) = fdJ C-]_l—l),,b,, (t)s’

=s(lns)*" 1. (A3)

Graphs of order (e*)" with less than » iterations of
the photon-photon kernel are down by logarithms
and possibly even powers depending upon how many
times the iteration takes place.

Examples of graphs that are down by a whole
power with respect to those of Fig. 2(a) are those
of Fig. 3, which are not multiperipheral and do not
contain iterations of the photon-photon scattering
kernel at all. Similarly, in higher orders the lead-
ing logarithms will come from graphs with the
maximal number of iterations of the photon-photon
scattering kernel as stated above.

In the process y+Z—~ Z+e*+e” +e"+e”, the non-
multiperipheral graphs of Fig. 8(a) that are ob-
tained by inserting the absorptive-part contribution
of Fig. 4 into the square of the graph in Fig. 8(a)
are only down by a logarithm from the calculated
graphs of Fig. 5(a) and are perhaps the most dan-
gerous of the neglected contributions. They are
down by a logarithm because the graphs can be
split apart by cutting two photons (photon-photon
reducible once) only once as opposed to the multi-
peripheral graphs of Fig. 5(a) where two such pho-
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ton-photon reductions can be made. The numerical
sizes of such contributions are referred to in Sec.
III. Other graphs that are not reducible in the
same sense are the Compton graphs of Figs. 8(b),
8(c), and 8(d), and these are down by virtue of the
large target mass M.

Of course graphs involving photon couplings to
charged lines like those of Fig. 5 involve further

+e"+e”
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logarithmic enhancements due to integration over
small angular acceptances and give additional log-
arithms due to the presence of the photon propaga-
tor Dp(q?)==-i/q®. Contributions without the pres-
ence of the photon propagator will also be down by
one power of the logarithm. The presence of such
logarithms is well known in the literature? and will
not be dealt with in detail here.
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