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sentations (2, 2). The quantity RePOP
* depends upon

details of the vacuum expectation values of the Higgs
particles and upon their couplings to the muonic
leptons. Without perversely constraining these param-
eters, the quantity RePOP* is of order unity.
See especially Ref. 14, Sec. IV. As explained in
Ref. 14, Sec. I, the notion of superweaknessasusedhere
is in conformance with its initial introduction by
L. Wolfenstein [Phys. Rev. Lett. 13, 562 (1964)].

2'See especially Ref. 14, Sec. VII.
'For the definitions of o and p see Ref. 14, Eqs. (3.16)
and (3.17~.

'YRef. 14, Eq. (3.19).

Ref. 14, Eq. (7.24).
2'Ref. 14, Sec. VII. Other contributions to the ~ea/ mass

difference stem from the so-called box graphs, for
example (see Ref. 19).
For Dm„n, the set of graphs is as in Fig. 6, with
obvious changes in the particle labels.

3 Ref. 14, Eqs. (4.13), (4.14), {7.23).
At this point we make use of the fact that the (-,', 2)
scalar multiplets may be chosen to be real in the sense
defined in Ref. 14, Sec. II; see also Ref. 14, Sec. VII.
The reader will also verify that the presence of singly-
charged scalar fields in (2, 2)' does not modify the
m, proportionality of the dipole moments.
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%'e show that the existence of pointhke constituents within the nucleon makes it plausible that
scale-breaking effects due to higher-order electromagnetic corrections in deep-inelastic scattering will be
of order a ln'( —q'/p, ') in the region s, »1 (GeV) and large electron scattering angles. Additionally
we are led to conclude that, when the final electron energy is finite in the laboratory frame, the
difference of electron and positron deep-inelastic scattering is of order a in( —q2/p, ) rather than of
order a. We discuss the possible measurement of this difference and what we may learn from such a
measurement.

I. INTRODUCTION

Whatever the deeper reasons behind this fact,
deep-inelastic lepton-nucleon scattering at present
day accelerators' behaves as if the nucleon con-
tained pointlike constituents. ' We shall try to use
this feature of the data to make some very brief
comments on electromagnetic corrections to e-e
and deep-inelastic scattering and on the possible
difference between deep-inelastic electron and
positron scattering. The difference between e'+P
-e'+X and e +P- e +X was previously studied by
Kingsley using a "softened" parton model' as a
method of effecting the cutoff necessary to bring
Bjorken scaling into a field-theoretic picture. He
came to the conclusion that the ratio ~ between the
deep-inelastic electron and positron cross sections'
v and 0+ takes the form

us to be of compelling simplicity. We come to the
conclusion, based on the pointlike constituent idea,
that when 2m v- s„» rest masses squared of the
problem (which corresponds to large electron scat-
tering angles and finite values of the final electron
energy E'),

r = 1+0(n Ins(-qs/p')),

where p is a scale mass to be discussed (Sec. II),
which is plausibly of hadronic size. This is there-
fore a scale-breaking effect. On the other hand,
we expect a form like Eq. (1.1) in small momentum-
transfer experiments, r' or when -q'/s, -0.

The factor 1 (-n/qP') enhancesr andthereby
gives us an extra chance to test our ideas on quan-
tum electrodynamics and deep-inelastic scattering.
According to our reasoning, the over-all cross
sections behave as

up to possible factors involving logarithms of q'.
While we. are not so ambitious in the sense of study-
ing a definite model, the method we use seems to.

Qo'-, [la 0(u lns(-qs/p. s))],.

At presently available energies the logarithmic
factor is -5, which does not allow us to differen-
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II. DEEP-INELASTIC SCATTERING AND

DIFFERENCE OF 0 AND 0'

Figure 1(a) shows the O(u) and Figs. 1(b)—1(f)
show some of the O(o.2) contributions to the pro-
cess l+P - l'+X, where l and l' are the momenta

)x )x
P

(b)

(e}

PIG. l. O{e) and some relevant O{o.2) contributions to
deep-inelastic scattering e' +p e~ + X.

tiate r —1 from the over-all experimental error of
-5-10%. We argue below (Sec. III), however, that
we can reduce this experimental error in an ex-
periment designed to measure ~.

While it is of course desirable to test quantum
electrodynamics, an expression like Eg. (1.3) also
spells some trouble) for the interpretation of future
deep-inelastic experiments at larger values of -q',
in that it introduces a built-in scale-breaking effect,
whose removal will necessitate rather specific
dynamical assumptions. When -q'=O(20 GeV'),
Eq. (1.3) gives an O(10%) correction to the term
of primary interest.

Moreover, some of the a ln'q' enhancements we
refer to exist in all limits of large q' in both elec-
tron and positron deep-inelastic scattering (i.e.,
they do not contribute to x). These enhancements
are due to vertex corrections to the interaction of
the pointlike constituents with the exchanged photon.
While again their removal would be model-depen-
dent, their discovery would constitute further
evidence for pointlike constituents. Such an exper-
imental discovery would, however, be very diffi-
cult.

In Sec. II we review the source of the difference
between e and e' deep-inelastic scattering and
discuss the simple reasoning which leads usto Eq.
(1.2) and other conclusions. Section III contains a
discussion on experimental measurement of r and
what observation of nonzero (x—1) can tell us. In
an Appendix we show that the behavior (1.2) is a
natural prediction of the softened-field parton
model. '

P

FIG. 2. Forward lepton-nucleon scattering with three-
photon exchange. We find interference terms contribut-
ing to the difference of electron and positron deep-
inelastic scattering by taking the discontinuity of this
graph for fixed values of momentum transfers.

dq'dx (q')' s,„' q' (2.1)

(or some other scaling law) for large s, , q', and
v. We shall argue that this hope is not realized in
parton models.

We now consider a particular contribution to
x-l, namely, the interference of Fig. 1(a) with
Figs. 1(b) and 1(c). Figure 1(a) represents the
usual deep-inelastic amplitude. We therefore
concentrate on the two-photon —exchange term. To
estimate this amplitude, which we call M" (q), we
recall the experimental result that summing in-
elastic states in a deep-inelastic process is equiv-
alent to the elastic scattering of pointlike constit-
uents. We therefore approximate Figs. 1(b) and

1(c) by Fig. 3, in which the nucleon is treated as
a fixed-mass pointlike object" with no form fac-
tors at its vertices.

There are two relevant kinematic regimes which
we shall consider in turn. The first regime is the
limit q'/s, ~

- 0. Such graphs in this regime are by
now familiar from discussions of the eikonal" in
elastic fermion-fermion scattering at momentum
transfer q and large s,„.The sum of the two

of the initial and final leptons. Because electrons
and positrons couple to photons with opposite
signs, we get a nonzero difference from the inter-
ference of the two-photon —exchange graphs (b)
and (c) with the ordinary Born term (a) and from
the interference of graph (d) and (e) and (f).' Put
another way, the departure of ~ from 1 can be ex-
pressed as the connected part of the discontinuity
of the three-photon —exchange contribution to for-
ward elastic lepton-nucleon scattering (for certain
values of internal photon momenta) as in Fig. 2.

From Fig. 2 it is clear that to O(n') the lepton-
nucleon cross section requires more than the usu-
al two inelastic form factor~ Ii', (q, ~) and ~,(q, ~)-
In other words, the Rosenbluth form for the deep-
inelastic cross section, corresponding to single-
photon exchange, no longer holds. The cross sec-
tion may of course continue to scale up to neces-
sary kinematic factors, e.g.,
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graphs in Fig. 3 takes the form

M'( )= " d'f -'&'b
2m 2f

d2k 1 ~ ~-2
fkobx -24m', ,2 —, , e

(2g) k +p
&

(2.2)

where we have dropped factors associated with
spinors. In this equation m is a fermion mass and
p. &' is the photon "mass. " (The photon mass is,
as usual, interpreted as the experimental reso-
lution. ) The factor s appears both here and in the
expression for the Born term: It is a standard
kinematic factor. By introducing a Feynman pa-
rameter x it is straightforward to reduce (2.2) to
the form

N"(q) = dx
p, y'/q'+x(1-x) '

(2.3)

By assuming q )& p.&', we may approximate this
result by

S~p 1M~"(q)= " 2o. 'ii lnm'

accurate to O(ln(q'/p. &')). When we note that the
expression for Fig. 1(a), M~'~(q), takes the form

(2.4)

M'"(q) -is, (2.6)

FIG. 3. Two-photon-exchange graphs for the elastic
scattering of two pointlike fermions.

we see that although the two-photon —exchange
terms contribute in a logarithmically enhanced way,
they are 90' out of phase with the single-exchange
term and therefore do not interfere.

The second regime which we consider is
q' =O(s,p )» hadronic masses squared. While this
limit is not so familiar, it has become of increas-
ing interest" recently in hadronic scattering, par-
ticularly in inclusive scattering at the CERN inter-
secting storage rings. Simple intuitive techniques
(analogous to the eikonal) have not yet been de-
veloped for this limit. However, in 1953 Redhead"
worked out the full differential cross section for
e'e' and e'e scattering to O(u'). It is a simple

In this expression,

y= sin'(-,'8+) = -t/s, u =-,'in(s/p, '),

iv =-,'ln(-f/p, '), v =-,'in[(s+&)/p, 'j.
(2.7)

We see that each of the coefficients in Eq. (2.6)
represents a potential ln' term. We can distin-
guish two interesting limits:

(i) 8*-180'. Then g- 1 and v- const, while
u =iv = -,' in(q'/p. '). In this case

cog 3'
ln'(q'/p, ').dQ*;,f. 4gs (2.8)

In terms of the electron laboratory scattering
angle 0 and its initial and final energy E and E',
this limit corresponds to

Rmv = s„, sin'(-,'8)= —'x(, ), z' finite.

(ii) 6*$180 . Then iv, v, and u are all given to
leading order by —,

' ln(q'/p, ), and computation of
Eq. (2.6) shows that the ln' terms cancel for ar-
bitrary values of y.

We see that only in the limit (i) does the ln' en-
hancement remain.

Literal application of Redhead's result to elec-
tron-parton scattering would reveal the appro-
priate scale mass p, to be the reduced parton-
electron mass; we then adopt the point of view that
this scale mass is typically hadronic, i.e., p'
= O(iii p ) ~ Since the experimental resolution of the
relevant experiments is also hadronic, it does not
seem necessary or desirable to be more precise
on this point.

In order to check that the double logarithm of
Eq. (2.8) is not canceled by other contributions
[i.e., coming from Figs. 1(d), 1(e), and 1(f)j to the
discontinuity of the three-photon —exchange ampli-

matter to adapt his result to our situation; namely,
we are interested in electron-parton scattering,
and, in particular, with the interference between
single-photon and double-photon exchanges as
above.

The electron-parton energy is s=xs,„, with
momentum transfer I; = -q'. We give the result
(whose numerical coefficients have been indepen-
dently checked) directly in terms of the differen-
tial cross section for this particular interference
term, retaining only the leading behavior. We
find

do' u3 1
[2uK(4-2)(+)p}dQ* lnf W g S

+ 2vu (-4+ 6X-3g')

-(v'+u'+2zv') g(2-g)]. (2.6)
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FIG. 4. Vertex corrections of O(n) to the single-
photon-exchange deep-inelastic amplitude,

tude in this limit, we need only to work out the
other O(n') pieces in Redhead's work, omitting
those terms which correspond to form factor cor-
rections on the fermions. We find that the ln' be-
havior survives. Finally, we can check the full
O(o.') contribution to the cross section, and find
that the ln' behavior is not canceled.

One such ln'q' contribution, which does not

contribute to e'-e interference, comes from the
parton-vertex renormalization graph shown in Fig.
4. The off-shell form factor of a pointlike fermion
is known to have a lowest-order electromagnetic
correction of n ln'(q'/p') from previous studies of
the form factor in massive quantum electrody-
namics"; this is the source of part of this be-
havior in Redhead's work and hence in deep-in-
elastic scattering in parton models.

These results confirm Eq. (1.3) and indicate a
breakdown in the scaling behavior of Eq. (2.1).

III. FURTHER DISCUSSION

Our results emphasize the interest and impor-
tance of doing both e'P and e P experiments. A
nonzero difference has never been observed be-
tween any electron and positron process. ' This is
because in exclusive channels, where this search
has been concentrated, there may be experimental
difficulty in fixing the channel and because in such
channels the difference is only O(n). We would
argue that in deep-inelastic scattering at large
s =O(q') we have a better chance to observe any
difference. This is not only because of the squared
1ogarithmic enhancement of the difference, but
also because of the relative ease of the experiment,
given our present ability to measure deep-inelastic
scattering. Indeed one of the experimental dif-
ficulties of the usual deep-inelastic experiment is
not present in a measurement of x. This difficulty
lies in the extraction of radiative corrections from
the data. ' A major radiative correction is pre-
cisely that corresponding to Figs. 1(e) and 1(f).
But in a measurement of the difference between
electron and positron deep-inelastic scattering, we

certainly do not want to remove this correction,
thereby relieving ourselves of a great deal of the
experimental difficulty and uncertainty.

Let us return to the diagrams of Fig. 1 and ask
ourselves which of them may be predicted using
quantum electrodynamics and our present knowl-
edge of deep-inelastic scattering. Figures 1(e)
and 1(f) of course depend only on quantum elec-
trodynamics. Figure 1(d) can be directly computed
using the parton model. ' It is simply a crossed
version of the reaction y+P- X+l'f; in Fig. 1(d)
the lepton pair has spacelike mass —jq'( rather
than timelike mass

~
q'~ as in the pair-production

calculation. (This reaction cannot, however, be
studied using standard light-cone techniques. ")

The two-photon —exchange diagrams are the ones
which remain problematical, i.e., which cannot be
calculated using known models appropriate for
deep-inelastic scattering. To see why this is so,
let us ask how the large momentum transfer q is
carried in terms of the momenta carried by the
individual photons, q, and q, . Since q'= (q,+q, )',
we see that q' is large (compared to scale masses)
when either q,

' or q,
' is large, or when both q,

'
and q, ' are large, Direct calculation shows that
the case where q,

' and q, '=O(~q') is indeed sig-
nificant. In other words, the interaction does
not prefer to proceed only via a "hard" exchange
and then a "soft" exchange. Even if the case of
one hard and one soft exchange were dominant, we
would still have the problem of the soft exchange
going to a different parton, which is not calculable
from the data. Thus we cannot directly extract
the two-photon —exchange contribution using known
deep-inelastic data plus a calculable correction.

Even within the context of the single-photon—
exchange terms, vertex corrections such as those
in Fig. 4, contribute ln' factors. If such terms
could be observed, they would provide additional
strong evidence for pointlike structure. Unfor-
tunately the experimental difficulties of observing
this q' dependence in e (or e')P scattering, rather
than the departure of r from one, are formidable.

Thus we conclude that direct measurement of
o /o+ —.1, in addition to providing us with a way to
test our old ideas on quantum electrodynamics
and the parton model, gives us a way to measure
the new features afforded by the two-photon —ex-
change graphs. Moreover, this measurement may
be within reach of present experimental capability,
although the interesting region is not the previously
studied region of deep-inelastic scattering. If, for
illustrative purposes, we set -q'= s =10 Gev',
then ~ in'(-q'/p, ')= O(5%).

On the negative side, the fact that we cannot
compute the two-photon contribution in a model-
independent way means that the interpretation of
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future deep-inelastic scattering experiments at
larger values of -q' becomes more difficult, both
because of the breakdown of the Rosenbluth form
and because of the ln' scale-breaking. For ex-
ample, when -q'= 10' GeV', the correction term
of 0(o.') becomes 50% of the O(n') term. One
would then have to worry about the difficult theo-
retical problem of 0(o.~in'q') corrections.
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APPENMX

Here we show how these results are obtained in
the specific parton model of Landshoff, Polking-
horne, and Short. ' We have already seen' that in
this model dominant contributions to the two-pho-
ton —exchange terms come from the diagrams of
Figs. 5 and 6, where the lower bubbles represent
the connected part of a hadronic interaction, soft-
ened according to the usual ideas of the model. '
In the diagram of Fig. 6, it is simple to calculate
the asymptotic behavior of the terms involving the
k, integration, using scaling techniques" in the
Feynman parameterization of the loop integration.
Alternatively the results can be inserted from the
analysis of Redhead. ",Then we obtain, including
only terms from the two-photon —exchange diagram
of Fig. 6, with the single-photon —exchange term
and spin- & partons, in the large electron-scat-
tering-angle region,

d2o . 2+2
dE de-

~q ~

mZ

where Q, is the charge on theith parton, and
Q~'&', (v) is the contribution of the ith parton to the.
structure function &,(v). The sign is that appro-
priate for electron-proton scattering. The sum
rules of Brodsky, Gunion, and Jaffe" will then

apply to the coefficient of this n ln'~ q'
~

term.
We can also examine limits in which 2m v/s„
„-P for 0 &P&1. nln'q' behavior is then found

by these methods for each of the two diagrams
represented in Fig. 6, but the coefficient of this
term cancels between the two diagrams. The
transition from this result to the limit with P = 1
in which (Al) is valid is not smooth because of the
existence of jn(1-P) terms which are dropped in
evaluating the P&1 result. The transition to P=O,
in which q', 2m v&& s p is also nontrivial, but the
cancellation is still found, as is well known from
earlier work. "

The more complicated diagram of Fig. 5 is rep-
resented by Eq. (B15) of Ref. 4. In this equation
the k, integration is represented in terms of Su-
dakov variables x„y,', and E,. It turns out that
y,

' integration divides x, space into various re-
gions in which the y,

' contour can be wrapped
around different cuts of the hadronic amplitude.
The points x,=-I/tu and x,=0 are end points of
such integrations, and logarithmic divergences
occur in the x, integration at these points, arising
from the singularities in the photon-propagator
and electron-propagator terms, respectively.
However, no double logarithms occur because of
the softening in the other terms in the k, -integra-
tion loop, and so the connected diagram of Fig. 5

k&+q
I

ykz
I
I

1%4k(+k~hj, k~ ~ ka

kgb,
I

kI+k~

I

Pka

k&+ q

I

I

FIG. 5. The dominant two-photon-exchange inter-
ference term.

FIG. 6. The disconnected part of the previous dia-
gram, which contains an extra logarithmic enhancement
in certain limits.
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contributes only terms of order n ln ~q'~ to (1.2),
and is dominated by the o. ln'~ q'

~
behavior of

Fig. 6.
Redhead's work also shows that terms of order

o.' ln'~q'~ will occur in this model from the elec-
tromagnetic renormalization of both the electron

and the parton vertex as illustrated in Fig. 4.
Clearly these terms will occur with the same sign
in both the electron and positron scattering cross
sections, and the photon-parton vertex renormal-
ization part will involve model-dependent terms
such as Q, Q, 'E,'((u).
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