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Using the model-independent amplitude for mn n.yy predicted by the theory of anomalies, we derive

unitarity bounds for the branching ratios I (K+ m+2')/1(K+ m+m') and

I (K m 2y)l/r(K,' ~+~-).

I. INTRODUCTION

M(tto-y(k, )+y(ks))=iF (kt, ks, (k, + ks) )

xeasvs ktksE[6sn B

and

iaaf(r(k) -tt'(p. ) + tt'(p, )+ tt (p,))

(1.2)

= -t F'"((po+Pt)', (p, +p, )',Po',P,',p.',

(P, +P, +P,) )Eanvse PoPfPs, (1.3)

where e is the photon polarization vector and the

The theory of anomalies in n'-2y decay' has so
far escaped any real experimental test. The basic
question of w'hether the m'-2y decay is suppressed
or not to order m„cannot be solved by examination
of this one decay rate. However, a low-energy
theorem, derived independently by Adler et pl. ,

'
Terentiev, ' and Wong relates the n -2y coupling
constant to the y-3tt amplitude (evaluated at un-
physical soft-pion limits). This relation, namely,

eF'"=F'f„',
where F", F", and f„are coupling constants
describing the y-3p amplitude, the z -2y ampli-
tude, and the n -p,v amplitude, respectively,
allows a new avenue of approach to the subject.
Indeed, if Eq. (1.1) is valid, then it allows one to
conclude that the n -2y decay proceeds through
the anomaly and renormalized perturbation theory
is true to any finite order. The importance of
this statement has been stressed by Aviv and Zee. '
In a separate paper Zee' examined several reac-
tions with the view of checking Eq. (1.1). Unfor-
tunately, the reactions he considered have back-
ground problems.

To see this in more detail we must examine the
definitions of the quantities involved. Let us
write the general amplitudes for z -2y and

77 '7p p as

external lines are off their physical mass shells.
The result in Eq. (1.1) relates F"=F'(0, 0, 0) to
F"=F'"(0,0, 0, 0, 0, 0, ). However, the usual
assumption of partial conservation of axial-vector
current (PCAC) tells us that the experimental
quantities F'(0, 0, m, ') and Fs"((Pc+p, )', (p, +p,)',
m „',m„', m, ', (P,+P,+P,)') can be replaced by F
and F" so long as (P,+P,)', (P,+P,)', and

(Po+P,+P,)' are small. It is the last restriction
which is difficult to satisfy. For instance, the
reaction e+e -y-3tt (Ref. 6) only measures F'"
where (Po+p, +p,)'&9m, '. Also, this amplitude is
allowed to proceed via co-meson exchange with a
much larger rate than that expected from the F"
contribution. Another reaction which directly
tests Eq. (1.1) is tt+8- 2tt+Z, ' but this reaction
is dominated by p-meson production.

Alternative ways of checking Eq. (1.1) use the
fact that the 2y- m'm w' and 2y- w'm'z' amplitudes
contain the amplitude E". In fact, the most gen-
eral amplitude for 2y-3x, when expanded up to
second order in the momenta, is completely de-
termined by gauge invariance, current algebra,
and PCAC, and the fact that the electromagnetic
current commutes with the neutral axial charge
at equal times. Hence the amplitude depends upon
I' '" and one other parameter describing the nature
of the chiral symmetry breaking. Possible re-
actions for checking Eq. (1.1) can now be extended
to e+e - e+e 3tt (via two-photon exchange") and
y+Z- 3m+Z. ' Unfortunately, the cross sections
are so low that experimental detection is not pos-
sible at the present time. There are also back-
ground problems due to q-meson production
(2y —q) followed by the decay q —3tt.

We have therefore tried to find a check of Eq.
(1.1) by more indirect means. The decays
K'-7t'yy (see Refs. 10-12) and Ks- tt'yy (see
Ref. 13) are possible candidates. At the present
time these decay modes have not been observed.
Theoretical estimates are usually based on pole-
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model calculations or current-algebra models. "
Rigorous unitarity bounds for these amplitudes
based on real intermediate states would be very
useful. Possible real intermediate states contain
two pions or three pions. Sehgal" recently ex-
amined a model with a three-pion intermediate
state for the imaginary part of the decay ampli-
tude describing K~-7t'yy, i.e., K~- n'7t'w -m'yy,
where the two charged pions annihilate each other
and produce two real photons. The bound then
depends upon a model for the reaction m'p -yy,
and Sehgal used perturbation theory. However,
the bound he derived is only rigorous in a small
portion of the Dalitz plot. Sehgal also considered
the decay K'- m'yy, assuming the parity-con-
serving decay K - m'z+m is constant and two of
the final pions interact to produce two real
photons. Again, this bound is model-dependent
and is only rigorous in a small part of the Dalitz
plot.

The bounds we derive for the decay modes are
model-indePendent to the extent that the low-en-
ergy theorem given in Eq. (1.1) is satisfied. We
use two pion dominance of the unitarity conditions
for K+-m'yy and K~-m'yy, i.e., the decays pro-
ceed in the chain K- mm -7t yy. The coupling con-
stants for the parity violating transitions K- zz
are well-known. In fact, if we compute the
branching ratios I'(K'- n'yy)/I'(K'- w' ~') and
I'(&z- w yy)/I'(Z~ —s'~ ), these coupling con-
stants cancel. The amplitude for zm-zyy is com-
pletely determined via the relation (1.1) and we
obtain a model-independent unitarity limit cal-
culated from the absorptive part of the K- myy

amplitude. Unfortunately, we cannot give any
reliable estimate for the contribution from the
real part of the K- m yy amplitude. We are well
aware that the. real part could be large. If ex-
periments are performed to push the present
branching ratios down and they find the decay
modes at a level significantly above our bound,
then relation (1.1) is not being tested. On the
other hand, if the decays are not seen and the
unitarity limit is violated, then Eq. (1.1) could be
in trouble. %'e would like to add that the soft-pion
extrapolation required in our calculation is rea-
sonable. The pions are on their physical mass
shells and the values of the other invariants are
bounded by Dalitz plat limits and the mass of the
kaon. Both decay modes have background prob-
lems from the decays K'-m+z and K~- moro,

where a real n' decays immediately into two pho-
tons. However, for K'- g'g' this gives a sharp
spike in the decay m+ momentum spectrum at 205
MeV/c and we are forced to stay away from this
particular pole. In reality, this is advantageous
because the chiral-symmetry-breaking parameter

occurs only in the g' pole term in the gg- myy

amplitude. This term is small away from the
pole so we lose nothing by dropping it. Therefore
the bound only depends on the value of I '".

In Sec. II we discuss in detail our model for the
amplitude describing the K'- m'yy decay and
derive the analytic expression for the bound.
Section III has a corresponding discussion for the
decay K ~

- m yy. In Sec. IV we summarize our
conclusions. Some of the integrals required in
the calculation are given in the Appendix.

II. UNITARITY BOUND FOR THE DECAY E+~ m'y7

y(k, )

y(k, )

Wo(p k, )

y(k, )

m+(p )

y(k))

y(k ) (p2
y(kp)

y(k))

y(k2)

FIG. 1. Feynman diagrams describing the amplitude
(~+8 [ m[ w+yy).

The decay K'- z+yy has an imaginary part
given by the sequence K'- z'z'- z'yy which in-
volves the parity violating K'- p'm' amplitude.
Another contribution to the imaginary part comes
from K'- w'm'7t - z'yy and this involves the par-
ity conserving transition K'- g+g+g . We con-
centrate here on the two pion intermediate state
because we can derive a rigorous bound using
this contribution. The 3z state is suppressed by
lack of phase space. The remaining part of the
decay amplitude then involves the transition
m+m' - n+yy. There are five terms which contrib-
ute to this transition amplitude. They are de-
picted in Fig. j.. The "seagull" term is necessary
to maintain gauge invariance. The other four
terms involve bremsstrahlung radiation from the
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mm —ny amplitude. Note that there should be no

infrared divergence in our answer for the K- gjy
amplitude because angular momentum conserva-
tion forces the amplitude for A- my to vanish iden-
tically. Hence, w'e expect the K- myy amplitude
to be finite as the energy of each photon
tends independently to zero (i.e. , in two corners
of the Dalitz plot). There will also be terms of
higher order in the photon energy which vanish
in these corners. Generally speaking, these
terms are two orders of magnitude smaller than
the finite ones.

Fig. 1 does not contain all the possible diagrams

one can write down. For instance, there is the
diagram in Fig. 2. However, it makes a large
contribution only in the region where the m is on
mass shell and that-region must be excluded be-
cause of background from the real decay
K'-m+7)'-z'2y, The diagram in Fig. 2 is model-
dependent because it depends upon a chiral-sym-
metry-breaking parameter. Its inclusion (with
some appropriate cut to avoid the wo pole) would
make essentially no difference to the bound we
are about to derive.

The amplitude for w'0), ) + w'{P,) - w+(P, ) +y(k, )
+y(k, ) can therefore be written in the form

(w'w'[M~w'yy) =eF"e a, ' ' k,"c,(P, +k, )~P,' — ' ' k,"e,P)(&&),-k,)'+ ' ' k, e, (P, + k) )
P,
'

3 2 1 I 3

-' k,"e,P,"{p,—k,)'+ (k,—k, ) e, e~)'(P, + k„+ k,-P,)'
1 1

(2.1)

where F"=E'"(M', (P,-P,)', m, ', m„', m „', (t),+P,—P,)') . The invariants are constrained to be in the phys-
ical region of the Dalitz plot for the decay, so the extrapolation to the amplitude F' (0, 0, 0, 0, 0, 0) is as
reasonable as any of the other extrapolations made in applying soft-pion theorems to K decays. We are
thus justified in using Eq. (1.1) to give the value for eE '. Note that the amplitude is gauge-invariant. in
both photons. The rest of the calculation is straightforward. The unitarity condition for the K'(P)-w'2y
amplitude'6 gives

(2.2)

The K-ww amplitude (w'w'~M[K') is a constant, so
we remove it from the integral and call it A.. The
decay rate for K -p+g is therefore given by
(P'= 1-4m „'/M')

T -2PP k,'=Pe, '

T -2PP k,I2=

(2 2)

The evaluation of the integrations in Eq. (2.2) can
be done in the c.m. frame. However, we prefer
to have results which are explicitly covariant (and
of course gauge-invariant) so we use the integrals
tabulated in the Appendix. After some algebra we
find

Abs(K ~M[w'yy) =
XeI' '"

x K krak, e$e, I,kgb, e~&P—

T = sj1 —2m„~V,

v=&n( ),
and s=P =M . The equation is still explicitly
gauge-invariant. However, it is also divergent
as the photon momenta tend to zero. The diver-
gence comes from the terms in T/P k, and T/P. k,
in I, and I» respectively. Also, it does not have
the correct structure. In general, there are two
amplitudes which contribute to the parity-violating

(2.4) y(k))

where we have used the following notation:
y(k, )

FIG. 2. The wo pole term in the amplitude (w+wo~M~ w+yy).
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transition K'- g+yy. These amplitudes must be
gauge-invariant in both photons, i.e.,

v (k, )

& K (P)!',

+ BC ~ s g [ki E' i (P ' k2Eg -P '
E2 k) )P

+ k,"~,'(P k,~f P-~,kf)P'J,

(2.5)

X g

pro

+(p&)

where A and B are functions of the Dalitz-plot
variables. Both amplitudes have absorptive parts
and Eq. (2.4) cannot be written in this form. Ob-
viously we must add some other contributions to
Eq. (2.4) to cancel the infrared divergence and
make our final answer compatible with Eq. (2.5).

The extra diagrams we have to consider must
contain the Kpn coupling constant and E'". Hence,
they can only have the decay K-z~ followed by
mn -my, and are shown in Fig. 3. We include
bremsstrahlung radiation from the Kgg vertex
and, for completeness, two structure-dependent
terms corresponding to electric and magnetic
radiation. These diagrams only have absorptive
parts for (P,+P,)'=(P k)'»4m-„', where k is
either k, or k, . In the Dalitz-plot variables this
means that the energies of the photons satisfy the
inequalities ~, ( (18'-4m, ')/2M and ~,
~ (M'-4m„')/2M. If we write the matrix element

+ (k,-4)
FIG. 3. Feynman diagrams describing the absorptive

part of the amplitude for E+ z+yy in the sequence

for K'(P)-]]'(P,)+]]'(P,)+y(k, ) as

(z !~~'~oy& = e~

then g and 3gare dimensionless electric and mag-
netic structure terms with phases given by the
an -scattering phase shifts. Hence

Abs &ff'pl~'yy& = —
l6

—
2

'
2&

' 5'(P P, P.) &ff. "I-MI~-'~'y& &~'~'IW~'y& * (2.7)

If we now substitute Eq. (2.6) into Eq. (2.7) and take both photons into account, then we can use the inte-
grals listed in the Appendix. During this calcu1.ation we drop the term containing gg because it contrib-
utes to the opposite parity transition K'-7]'yy (from the product of two e terms). The answer is

3r
Abs(K'!M[w'yy& = — q„z]]] + k,"k, efe, , (P e—,k( Pk,e[)k,"e,-P

P' k2)

3

+ —4
— P. kz+P. k2 kz k2e e2 + P'c, k -P'kg@ k2 c~P

+]J' eh~ Pk, ~, k, e-"P]']
)

. , , (2.8)

In the soft-photon regions, the infrared-divergent
terms in this equation exactly cancel the infrared-
divergent terms in Eq. (2.4) so that the amplitude
is finite as co, and m, tend to zero. The additional
terms arising from the electric multipole ampli-
tude are higher order in the photon momenta.
They vanish in the limit when v, and u, tend to
zero, and only make a small contribution when

&u, and v, are large. If we now use Eq. (2.8) over
the whole Dalitz plot, we can add the two results

SP kg'
3M'

SP k2p'
3M

(2.9)

to write the absorptive part as in Eq. (2.4) and
with new values for K, I» and I» namely,

T T P'g(P k,+P k,)
P k, P. k2 3M



3060 J. SMITH AND Z. E. S. UY

This answer can be rewritten in the form of Eq.
(2.5). Although we are only allowed to add the
answers in the region of the Dalitz plot where
a&, & (M'-4m„')/2M and (4), ~ (M'-4m „')/2M, Eq.
(2.8) gives a very small contribution if we simply
extend it outside that region. Remember that the
maximum values of the photon energies are coy or
a&, = (M'-m „')/2M. When the photon energy is
large, the powers of k in the denominator make
the terms independent of 8 very small. Experi-
mentally, nothing is known about the parameter
g. A recent experiment by Abrams et al." found
evidence for a structure-dependent term in the
decay K'- z'z'y which was compatible with mag-

M XeF "
(2.10)

where J is the dimensionless double integral:

netic rather than electric radiation. If we assume
that 8= 1, then the h term makes a 2% correction
to decay rate calculated from the XF'" term alone.
We are therefore quite justified in dropping the
term containing g (and also the term in 5g which
contributes to the opposite-parity amplitude in
the decay).

If we now square the amplitude and calculate
the decay rate from the absorptive part alone, we
find

whf-m~

J=
Vp

ds 2t'K' 4twKI, 4-twKI, ~-2t(2sw ts) (~-+—') lI+Bs'I, ' 4(sts ls)-I, I,+2w'I-, '

-st(2uw -ts) —', + (2.11)

and we have introduced the following definitions:

u=P k,

=Mao, ,

Ã=P ~ k2

=M(d2
~

k, ~ ka,

y =JI/I-F ~
1.0 I I I

suit in Eq. (2.8) to the Dalitz-plot regions where
(4) 2 and c &, ~ (M'-4m „')/2M, then the infrared-di-
vergent peak is canceled and the convergent part
remains essentially unchanged. The pion spec-
trum for the final answer tends to zero at both
ends of its range. Numerically we find that J
=0.14, so the final answer for the branching ratio

= (dg+(d2,

(M2-m K2)
&o

X = 2 ((2)2-(d2) I

We now assume the standard values of the cou-
pling constants, namely, F"=4)./0. 65)rm„, f,
= 0.68m „and calculate the double integral numer-
ically. It. is convenient to first divide by the rate
for K'-p'g' to eliminate the coupling constant X,
z.e.,

(2.12)

-I
IO

tO

C

-2
IO

C3

CL
U

r~
IO

K+-~'~' Decay =

Unfortunately, the large factor (M/m„)' is more
than compensated for by the factors of w in the
denominator, so the numerical value of the co-
efficient is very small. We find that C=4.45x10 '.
If we now use Eq. (2.4) to calculate J, then the
answer is infrared divergent in the photon ener-
gies. The pion spectrum is plotted in Fig. 4,
where we see clearly the structure-dependent
terms [i.e. , the terms in Eq. (2.4) which are fi-
nite as v, or v, tends to zero] sitting on top of the
infrared-divergent terms. If we now add our re-

IO I t I I

40 80 l20 l60 200 220 240

p in MeV/c

FIG. 4. The charged-pion spectrum in the decay
K+ 7(+yy calculated from the absorptive part of the
amplitude with a x+m intermediate state. The dashed
curve is the inner bremsstrahlung contribution which is
canceled by the contribution from the vr+x y state.
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r(K -~yy)
r(K'- w'~') (2.13)

m+(p))

It is unfortunate that this bound is so low. The
numerical factors of n and m already eut the
branching ratio down to the 10 ' level and there
is no enhancement in the absorptive part of the
matrix element. The bound is probably only of
theoretical interest because one expects the real
part of the amplitude (coming from pole terms)
to give a large contribution. It would be very sur-
prising if the real part turned out to be as small
as the imaginary part. Our bound should be con-
sidered independently from the bound given by
Sehgal because they are rigorous in different re-
gions of the Dalitz plot. His is valid for (P P,)'-
=(k,+k,)'~ 4m, ', so E, ~ (M3-4m, 3)/2M, while
the physically allowed range for F., is m ~E„
~ (M'+m, ')/2M. In other words, his bound is for
low-energy pions (or high-energy photons), while
our bound is valid over the whole Dalitz plot.

vr- (p&)
y(k))

k))

0(p&)

k, )

no(pq)

y(k2)

m+(p() y(kp)

(ki)

FIG. 5. Feynman diagrams describing the amplitude
&K'K ~M[ 3'yy&.

III. UNITARITY BOUND FOR THE DECAY Eso ~ n o

We now repeat the analysis of See. II for the decay Kz - m'yy, under the assumption that CP is conserved
(so Ko3 -=K',). There are now two different intermediate states, namely, m+w and m'm'. When we neglect
all contributions from 7t' pole terms, then only the 7t'z state is possible. The five Feynman diagrams
which contribute to the amplitude for m+m -w'yy are shown in Fig. 5, and they give

&~'~ Ww'Yy& =ep"e„' ' k'e&(P, -k, )XP,'- ' 3 k~~8P~(P k)'+ k' ~ k~es(P k, )vP,'
1 1

~ k~g P'l(P k )~+ (k k )~gsgP)~
2 1

(3.1)

Straightforward application of the projection operator leads to an absorptive part almost identical to that
for K'-~'yy, i.e.,

-X P "
Abs(KsjSS[s yy) = ( kk

s sys Kk, k t , -sks, s,ysyP yk,"s syP sy, ' k,"s,kfP-'
32r 1

+I'P k2 e2 k, PntI)
1

(3.2)

where K=I,+I, and I, and I, are the same as in Sec. II. The main difference between Eqs. (2.4) and (3.2)
is the factor of 32m rather than 64+ in the denominator. In Eq. (3.2) A. denotes the K3-w'n decay coupling
constant. The rest of the analysis parallels that in Sec. II and we get an infrared divergence unless we
add the additional graphs coming from the sequence K~ -z+p y -p yy. As in Sec. II these additional graphs
can be calculated and yield

3'
Ab &K fssl yy) s= (s- 'ss sys + k" k. s[s (P's kt P'k s0k

), (P e, Jg-P k,e$)kP e,P

3

(3 3)
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One sees that the infrared-divergent terms now
cancel those in Eq. (3.2) and, if we apply Eq. (3.3)
over the whole of the Dalitz plot, then we can
write our final answer in the form of Eq. (2.4)
with

but many of them are already eliminated by the
latest experimental results.
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APPENDIX

gpP k2
6M'

and a factor of 32m rather than 64m. Using the
absorptive part alone, we can square the ampli-
tude and write the formula for the branching ratio
as

r(K', —~oyy) M' I "
1(K -v+v ) Sm P 32mf

(3.5)

IV. CONCLUSIONS

We have derived a rigorous unitarity bound for
the branching ratios 1'(K'- w'yy)/I'(K'- m'n ) and
I'(Ks-n yy)/I'(Kos-n'r ). The bound for the
charged decay is the more interesting of the two.
Our input consists of experimental data on the
K-mg rates and the model-independent prediction
of the m7t -7t yy amplitude from the theory of PCAC
anomalies. This bound is a crucial test of Eq.
(1.1) and, if it is violated, it may have serious
theoretical consequences. One would first have
to examine other possible real intermediate states
to see if they could produce large cancellations.
The various pole-model calculations (which have
real amplitudes) all predict higher decay rates,

where J is the same integral defined in Eq. (2.11)
but with values of K, I„and I, as given by Eq.
(3.4). The numerical value of the branching ratio
is 4.6x10 ' when we set 8 =0 and do the integra-
tions over the Dalitz-plot regions correctly [i.e.,
use Eq. (3.3) only in the region &u, ~ (M'-4m„')/2M,
m, & (M'-4m„')/2M]. The final pion spectrum is
almost identical to the structure-dependent part
of the spectrum in Fig. 4.

For the convenience of the reader we list the
integrals required in deriving the unitarity bound.
If we call the "projection operator"

d'P, 5(P' 2P g,-)5(P,' m') e(P-„)9(p, P„)=l-l,

then

ill = p, flp, „= (-,' p)p„,

ll „=b(k,), lip, p,'=g'g '+B'p "p',
1 1

(7)k) ,
'k+ p(k,)p',

~1 1

&~'~' =W(k,)g"'+a(k, )(P "k', +P'k,")
1 1

+D(k,)P "P +E(k,)k,"k, ,

where

1 1+P 1

1

W'=- —,', p(s-4m'), a = ,' p(s ~')-,

P s(V-2P)
P( I) P k y

'g( y)

2m'V-sP -T
4Pk 4Pk1 1

sP-2w' V T
4(P k,)' 4(P k,)'

D(k )
P (k )

s(s V+ 2m V-3Ps)
2Pk ' ' 4(P k}'
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We present some general considerations on computations of electric dipole moments (D) of leptons and of
hadrons in gauge theories which incorporate CP violation. Technical aspects of the isolation of the C P-
violating parts of the corresponding graphs are described. We emphasize the distinction (already familiar

from g-2 constraints) between "mixed chirality" and "pure chirality" couplings. In the mixed-chirality case,
D s can potentially appear to third order in the semiweak-coupling constant; in the pure-chirality case D is

at least of fifth order. Estimates are given for prototypes of two classes of gauge models: (1) C P violation is

implemented via the introduction of a small parameter. For the example considered, a model due to
Mohapatra, D„„„„„andD„„,„are both of fifth order. (2) The violation is "maximal, " as exemplified in the

C(4) and Q{4))(U(1)models, Here D „,„appears to third order in the (mixed-chirality) O(4) case. All other
D's in the "maximal" examples are of fifth order. For the "maximal" model our estimates are below but

may not be very far from the present experimental bounds. For the small-parameter model they are quite

considerably smaller.

I. INTRODUCTION AND RESULTS

The experimental discovery' of CP violation in

K~ decay implies the violation of T invariance if
one accepts the CPT theorem. In addition, the
K complex provides direct experimental tests of
T invariance. ' 4 In fact, it is not necessary to
assume CPT invariance at the outset in the ex-
perimental analysis of these decays since they
may serve to test independently T invariance and
CPT invariance. ' Such tests have been performed'
with the result that T violation has been estab-
lished with 10 standard deviations, while there
is no evidence (here or anywhere else) for CPT
violation. '

As is well known, experimental attempts to
observe T-violating effects outside the K complex
have all turned out negative so far. This is par-
ticularly true in regard to searches for electric
dipole moments (D) of nucleons and leptons. We
recall that a nonvanishing D can only occur if
both T and P violation are present, and that. the
possibility of the existence of D's for elementary

particles and nuclei was first raised by Purcell
and Ramsey' well before the discovery even of
P violation. For spin--,' particles, the presence
of a D implies the existence of an effective in-
teraction of the form

i F~(q')g(p, )y,o„„g(p,)F~, ,

where F„, is the electromagnetic field and q'
= (P,-P,)'. D is defined by D =Fv(0). Note that
the possibility that Fv(0)= 0 (though perhaps not
natural) cannot be discarded out of hand. ' That
is to say, even in the presence of P and T vio-
lation the static quantity FD(0) could be zero.

It is the purpose of this paper to discuss the
question of electric dipole moments for fermions
in the context of the general strategy embodied
in the gauge theories of weak and electromagnetic
interactions. ' In such theories currents appear
which are associated with the generators of a
compact Lie group. Like all relativistic local
Lagrangian field theories, such theories are
inherently CP T-invariant. They are P -violating
by construction, since the particle states with


