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Quantum-number-exchange scattering is studied in the presence of a black-disk Pomeranchukon whose
radius grows like the log of the energy. We find that there is a range of momentum transfers for
which the Regge pole carrying the quantum numbers is completely absorbed and leaves the physical
sheet of the angular momentum plane. The high-energy behavior of the scattering amplitude is
controlled not by the Regge pole, but by a branch cut in the angular momentum plane.

I. INTRODUCTION
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f(t& l) =

~(t 1)~ —x 2t]3I2. (1.3)

If total cross sections rise with energy, as sug-
gested by CERN Intersecting Storage Rings (ISR}
data, "the Regge description of processes involv-
ing quantum-number exchange may have some
very peculiar features. These features arise if
the Pomeranchukon is absorptive and saturates
the Froissart bound at very high energies. For
such a Pomeranchukon the s-channel partial-wave
amplitude is

ap(s, b) =-,'e(r, y —b),

where the s channel is the high-energy channel,
y =ln(s/s, ), and the partial-wave series has been
replaced by the familiar integral over the impact
parameter b. The corresponding invariant ampli-
tude and t-channel partial-wave amplitude are

M(s, t) =4s db b40(bv-t)ap(s, b)
0

z,(r,y~t },2g f'pg S
1 0

This absorptive Pomeranchukon is consistent with
the meagre evidence currently available. On the
experimental side, the work of Yodh et al. ' sug-
gests that total cross sections rise like y' through
cosmic-ray energies, and on the theoretical side,
an absorptive Pomeranchukon is suggested by the
Regge-eikonal model, and by work on the asymp-
totic behavior of cross sections in electrodynam-
ics.

An aspect of the Regge model for quantum-num-
ber exchange is that an appropriate Regge pole is
exchanged, accompanied by Regge cuts involving
the exchange of the pole and the Pomeranchuk sin-
gularity. The cuts are important because they
lie to the right of the pole for t(0; it is through
the cuts that the character of the Pomeranchukon
influences quantum-number exchange. The sim-
plest recipe for calculating these cuts is the ab-
sorption model, ' and we shall follow this recipe
here. The absorption model has the virtues that
it presents a physically attractive picture in im-
pact-parameter space, and that the cuts it gen-
erates have the trajectories and threshold behavior
stipulated by Reggeon unitarity. It has also been
criticized, and is, undoubtedly, an approximation. '
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is the amplitude for the exchange of a single Regge
pole, and 8(b —r,y) =Ss(s, b).

The absorptive character of the Pomeranchukon
is evident in that the scattering amplitude a(s, b)
is zero inside the black disk of the Pomeranchukon.
The effects we explore in this paper arise from the
fact that the radius of this disk expands linearly
with y, that is, from the saturation of the Frois-
sart bound. Since the Regge-pole Gaussian has
a width that increases only as y' ', the Regge pole
is absorbed away at high energy, and no longer
contributes to the high-energy behavior of the
quantum-number-exchange amplitude. We shall
see in Sec. II that, in Regge language, this happens

-by having the Regge pole move to an unphysical

However, the conclusions we present are based
on a simple physical argument in impact-parame-
ter space, so it is possible their validity is more
general than that of the absorption model.

The absorption model states that the s-channel
partial-wave amplitude for quantum-number ex-
change is the product of a Regge pole amplitude
and the Pomeranchukon S matrix, Ss(s, b) =1
+2ia1,(.', b) T. he S matrix for the Pomeranchukon
enters here because we must include the possibility
of Regge-pole exchange without any diffractive
interaction between the incoming or outgoing parti-
cles. We take the Regge pole to lie on the linear
trajectory o.(t) = n+ n't, with constant residue y.
We then find that the full amplitude is

a(s, b) =as(s, b)S1,(s, b)

sa(s, b) = — dt J~(bv-t) f(t, I).8S q g
2'Pl S0

x (i —cot —,'wl) .

Define the double partial-wave amplitude a(l, b):
0

a(I, b) = dt Z, (b~t)f(t, I).
8S0

(1.6)

According to the absorption model, the partial-
wave amplitude corresponding to the exchange of
two t-channel singularities is a»(s, b) = 2ia, (s, b)
xa,(s, b). Using the double partial-wave amplitude
defined in Eq. (1.6), this leads to the following
equations:

sheet of the angular momentum plane for t& (r, /
2a')'. It is plausible that similar phenomena occur
whenever the Pomeranchukon is completely ab-
sorptive and has a radius that grows faster than

1/2

When r, is sufficiently large we will have m'
& (ro/2o. ')3, where m is the mass of some physical
particle lying on the Regge trajectory. This raises
the question whether particles disappear when their
Regge pole is on an unphysical sheet. We shall
see in Sec. II that such particles do not disappear
provided two technical deficiencies of Eq. (1.4)
are corrected. The t dependence of the Regge
pole signature factor must be included, since this
factor contains the particle poles. Likewise, the
signature factor for the Pomeranchukon must be
included; this amounts to giving a~(s, t) the real
part required by s-channel dispersion relations.

Signature factors can be included in our calcula-
tion by expressing the s-channel partial-wave am-
plitude in terms of the t-channel partial-wave am-
plitude. For even signature we have

c+ l~ dt dt s 11+ l2-2
a»(s, b) =2i 2'. , — (i —cot —', wl, )(i —cot-', wl, )a, (l» b)a, (tw, b),2wi sp

c+! dt dt r1+& 1- oo

M»(s, t) = is, 2'. , — (i —cot-,'w I,)(i —cot —,'wl, ) db Jb, (b ~t)a, ( „Ib) a(2l„)b,2wt so 0
(1.8)

f»(t, I) =Bso
2

. w '1 . , ' '. , db bJ', (bV-t)a, (l„b)a2(l, b) .dt,dl, cos-', w(t, + I,)
2w I+I Il i wtl S2ln2w 0

(1.9)

Equation (1.9) exhibits a Reggecutinthe I plane due
to a pinch involving the denominator (I+1 —l, —I,) '.
In calculating its discontinuity we set I, + I, = I+1
elsewhere in the integral, 2nd this produces a
factor cos-,'w(l+1) which vanishes at right signature
(even) integers. This factor is a consequence. of
our proper treatment of signature, and is another

reason Eq. (1.4) must be corrected. In the multi-
peripheral model, where signature is not properly
handled, moving cuts in the t plane persist at
right-signature integers, and the sign of the two-
Pomeranchukon cut is reversed. Equation (1.9)
forms the starting point of our calculation of the
quantum-number-exchange amplitude in Sec. II.
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II. QUANTUM-NUMBER EXCHANGE VfITH

ABSORPTION

In this section we discuss in detail the effect of
an absorptive Pomeranchukon on Regge-pole ex-
change. Our starting point is the double partial-
wave amplitude defined in Eq. (1.6). From Eqs.
(1.3) and (1.4) we see that

where Kp is the modified Bessel function of order
zero.

For simplicity let us begin by ignoring the sig-
nature factor of the Regge pole and approximating
that of the Pomeranchukon by i. One then recovers
Eqs. (1.1) and (1.4). In this approximation the t
channel partial-wave amplitude becomes

-(i-i) s/~8 0,(l, b)=2

y t l-n "'I
a„(l, b) = 4, K,

~

b

(2.1)

(2.2)

f(t, l) =fs(t, l) +f~~(t, l),
with

ySpf (t, l)= ()
and from Eq. (1.9),

(2.3)

(2.4)

(2.5)

The bars on f (t, I ) and f»(t, l) are to remind us of the approximations we have made with the signature
factors.

The contour of the l, integration in Eq. (2.5) runs to the left of the pole at l, = l+1- l, and to the right of
the pole at l, =1, so closing the l, contour in the right half plane gives

f (l 1) I l f bA J (b~t) (l
l
l ( ) (2.6)

The contour of the l, integration runs to the left of the pole at l, = l and to the right of the branch point at
We now wrap the l, contour around the branch cut which runs along the real axis from -~ to a.

Using the fact that K,(iz) -K,(-is) = -i', (s ) and writing x = -(l, —n) gives

oo e-(( n+)()()l-)0 & x x)'&)

f„(t, l) =-
y2 ', bdbz, (b~t) dx'
2Q p p l- a+x ' n'

The remaining integrals can now be evaluated:

(2.7)

dx &
- ( l -a+ x) b vgfop(t, l) =-, dv b db J~(b~t)2+ j /rp p p

dv bdb j (b)((-t)s-&'-"'»e-'«&'
1/rp p

ys()
" dv ((l —n) v+1/4a'v]

2n', t„, v ([(l-a)v+1/4a'v]'- t]'"

=-,~", I(-((-.—,"',
) (i ..."',)'-,. l "'). (2.8)

So, the full partial-wave amplitude is

J((, t)= * ' I(+((-a — ',) (t
—n+ ',)

j./2
—ro t (2.9)

The square root in Eq. (2.9) is positive when l is
large and positive. Clearly f(l, t) has square-root
branch points at l = n,' = n —ro'/4n' y r,~g, and a
p»e at l =n(t). The position of the branch cut is
shown in Fig. 1. For

~
t

~

& (ro/2n')~ the residue
of the pole is ys, as expectedbut ,for

~
t~& (r,/2n')'

the residue vanishes so there is no pole. %hat
happens is that the pole collides with the branch
point at l = n,' when t =(r,/2n')'. If t is decreased
below this value, the pole moves through the cut
onto the unphysical sheet. As t is decreased below
-(r,/2n')' the pole reenters the physical sheet
through the cut at the point l = n —r,m/4n'.

In this model for physical values of t the high-
energy behavior of the charge-exchange amplitude
M(s, t) is always controlled by the branch cut rath-
er than by the pole. This fact can be read off di-
rectly from Eqs. (1.2) and (1.4) since the maximum
value of a(s, b) for fixed s is'
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tt(s, t„b)=, (
—')

Notice that at t =0 the two branch points coalesce
into a simple pole at l = u —ro'/4u' with residue yso.

It is important to understand what happens to
physical particles on the Regge trajectory when
it leaves the physical sheet. In order to study this
problem it is necessary to take into account the
signature factor of the Regge trajectory since
the particle pole is contained in it. We again write
the t-channel partial-wave amplitude in the form

(0) t ) (ro/2a'}

ao=a-ro/4a +ro Jt

ac a

(b) t ( -(r, /Za')'

a,-'= a-ro'/4a'+ iroj:t

a+c a(t)

f (t, l) =f,(t, l) +f„(t, l), (2.10)

with fs(t, l) and f»(t, l) given by Eqs. (2.4) and
(1.9). For our present purposes we only need the
Pomeranchuk partial-wave amplitude in the vicini-
ty of l, =l, so we can replace the factor of sin —,'ml,
in Eq. (1.9) by its value at l, =1. The l, integration
can then be done as before, and we have

%r

a(t)

FIG. 1. The l -plane singularities of the partial-wave
amplitude f(t, l) for (a) t ) (rp//2n') and (b) t & —(xo//2n') .

f»(t, l) =,' cos-,'7((i+1) f bbbZ(h~t)~(b(, ) ) (2.11)

Using the identity

1 1 1 1 2~ ()"
l —l, sin —,'ml, l —i, sin 2vl 7(„~-„(l—2n)(12 —2n) '

(2.12)
we can rewrite Eq. (2.11) in the form

f»(t, l) =f»(t, l) ——sin —,'vl g I„(t, l), (2.12)
(-)"

for n ~ 0. It is convenient to take the Mellin trans-
form of Eq. (2.15):

', r, 'y Jo(r,y v t)—
where f~~(t, l) is again given by Eq. (2.6) and

t(tl) =,' f, ,(y', ,„2@i l2 —2n

x bdbJ, (h~t)K,
~

h (, ) )

= —
2

', r, 'y Jo(roy' t)e'"'-
-( -n+2n)

~ -(i-i,)o/, (2.14)

I„(t, l) = — o

2A

Oo -(r-fy, +x) s/~0
bdb Jo(bhl-t ) dx

".('h(—")";(
(2.15)

Clearly the behavior of the Regge trajectory is
unchanged by the inclusion of the signature factor.
It only remains to study the analyticity properties
of I„(t, l). For n) 0 the l contour runs to the left
of the poles at l, =2n and to the right of the branch
point at l, =a. For simplicity we take a(0. The
l, contour can again be wrapped around the cut,
and we obtain

', r, 'y Jo(roy') e'""

2$2
x —exp — (2n —u) v+

v 4''v i
(2.16)

Notice that the quantity [(2n —u)v+ro'y'/4a'v] has
a minimum at v„=roy/2u'm„, where m„ is the
mass of the nth particle on the Regge trajectory,
m„' =(2n —u)/a'. So, making use of the fact that

—exp —(2n —u) v+ 4', = 2'(roym„),J dv

0

(2,17)
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we see that for large values of y

1„(y, t) =—,'r, 'y J0(r0yv t)-e'"'K, (r,ym„)

0 r 2g (r y~t)e-(r0 /4n'-n) )t
Q 0 0

(2.18)

If r /02a'&m„, then the first term in Eq. (2.18)
dominates. For tW 0 one finds to leading order
in y that

&( [er0h)(tt/ t m„)e--tt-t/4 4, er02(- tt/ t m„-)e-ttt/4]

which corresponds to a pair of poles in the t-chan-
nel partial-wave amplitude at l = o.„'(t) =r0(+ )) t m„)—
+ 2n. From Eq. (2.13) we see that the only physical
particle on these trajectories is the one at t =m„'.
The residue of the pole in f(t, l) at l = n„' is

III. QUANTUM-NUMBER EXCHANGE AT ISR
ENERGIES: IS THE REGGE POLE VISIBLE?

We now estimate the effect of an absorptive
Pomeranchukon on quantum-number-exchange
amplitudes at NAL-ISR energies. Our motivation
is to see how much an amplitude differs from sim-
ple Regge-pole exchange. However, even to make
a qualitative statement we must modify the Pomer-
anchukon S matrix to fit the NAL-ISR data on the
energy dependence of the proton-proton total cross
section. Since cross sections are unequal at these
energies, and only starting to rise, both the opaci-
ty and radius of the Pomeranchukon deviate from
Eq. (1.1).

Perhaps it is correct to approximate the Pomer-
anchukon by a factorizing Gaussian, as is custom-
ary at lower energies. However, we are interested
primarily in studying the extreme absorptive limit
to see if the original Regge pole is still visible,
and not in making a realistic prediction of what
will be observed. We shall make the drastic as-
sumption that the Pomeranchukon is totally absorp-
tive, but change its radius:

a~(s, b) =
2 i 8(r0y +r, —b)

ys,r, sin 2v(r0&t —r,—m„)
2n'(m„v t)"' ,'tt(r, v t r,m—„)—(2.20)

1 1
+ —tncoth )r rrr —h)) .

2F 2r

so the physical partial-wave amplitude f(t, 2n) has
the required particle pole at t t =m„, with the
correct residue - sy/02 'om„. Notice, however,
that the nonleading powers of 1/y in the asymptotic
expansion of J0(r0y~t) and K0(r0ym„) give rise to
branch points which are also located at et„'(t).
Thus, except when l is an even integer, these new
Regge poles are not isolated, but instead form the
singular tips of branch cuts.

The second term in Eq. (2.18) corresponds to a
pair of square-root branch points in the l-plane
located at l = n,' = n —r02/4a' + r0&t. As we have
seen, these branch points are also present in

fR~(t l)
Finally, for negative values of n we return to

Eq. (2.14). The Regge residue function must have
zeros at even negative integers, so there really
is no pole at l, =2n. We therefore write

The real part can be computed by s-channel dis-
persion relations, or from the signature factor;
it damps out rapidly away from the edge of the
Pomeranchukon disk. We choose the parameters
so that a~ fits the proton-proton total cross sec-
tion at s =550 GeV' and 2790 GeV', where 0 =39.1
and 43.2 mb, respectively. '' We choose s, =1
QeV', and find rp=0. 125 GeV ', and r, =3.16
QeV '.

In treating the Regge-pole amplitude, we assume
n(0) is not near a right-signature integer, and
o.' =1 GeV '. With this choice the t dependence
of the signature factor is much less important
than the t dependence of (s/s, ) n('~, and the Regge-
pole amplitude can be approximated by a Gaussian,
as in Eq (1.4). A. ccording to the absorption model,
the quantum-number-exchange amplitude is now

f
/I/I(s, t) =ys""'- y, db bZ, (b~i)e20$ p

-(& -t2) ~lrp8

ySQro l- + 0 — ltr 2

r p (2.21)

so we again have the familiar branch points at l = e,'.

+, dbbJ, (b~t)e ' /'"'
2m'e g

xtncoth
2 )r —)t(),

Q

(3.2)

where g =rod +rg.
The angular distributions predicted by Eq. (3.2)

at s = 550 QeV' and 2790 QeV' are shown in Figs.



J. B. BRONZ AN AND R. L. SUGAR 8

IOD IO'

IO IO

IO IO

I

-30
clG

dt
dc)

dt 0

IO'
GG

dt
dQ

dt o I04

IO IO

IO IO

IO I

0.8
I

I.O
I

0.2
I I

0 0.4 0.6
-t [(GeV)'j

FIG. 2. The angular distribution predicted by Eq, (3.2)
at s = 550 GeV2, with so ——1 GeV2, n'=1, xo ——0.125 GeV ~,

and x&=3.16 GeV ~.
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FIG. 3. The angular distribution predicted by Eq. (3.2)
at s =2790 GeV, with so ——1 GeV, n' =1, F0=0.125 GeV ~,
and x& =3,16 GeV

2 and 3. The dips near ]=-0.2 GeV' are due to a
destructive interference between the first two
terms of Etl. (3.2). They are deep because the
imaginary part of M is small. For large values
of -i the real integral in Eq. (3.2) dominates.
This integral vanishes at t = -1.07 GeV' and t
=-0.95 GeV' at s=550 GeV' and s =2790 GeV',
respectively, leading to the second minimum visi-
ble in Fig. 2. It can be seen that w'hile the Pomer-
anchukon has a strong effect at large -t, a forward
peak associated with the Regge pole persists at
these energies. Of course, the results of Sec. II
show that the real integral in Etl. (3.2) exactly
cancels the Regge pole at infinitely high energy.

It should be noted that the secondary peaks are
much more prominent in Figs. 2 and 3 than they
are in the elastic angular distributions presented
in Ref. 9. This is due largely to the absorptive
Pomeranchukon we have used, which maximizes
the corrections to the Regge pole. The proper
way to obtain the corrections is to use a, Pomeran-
chukon that fits the elastic angular distributions.
Since the forward peak associated with Regge-pole
exchange is evident in the extreme case studied
here, we expect it to be a feature of the data.

IV. DISCUSSIDN

We have seen that a biack-disk Pomeranchukon
will completely absorb an ordinary Regge pole.
A pole with a linear trajectory will be forced off
the physical sheet, in the momentum transfer range

~
f ~& (r,/2n')'. The reason for this dramatic effect

is easy to see in impact-parameter space. The
Regge pole falls off significantly for impact param-
eters greater than 2e'y'~, whereas we have as-
sumed that the Pomeranchukon is perfectly absorb-
ing out to a radius of r,y. Although we have used
the absorption model in our detailed calculations,
we expect this basic effect to be quite general. It
appears to depend only on the fact that the Pomer-
anchukon is black out to a radius which grows
faster than y"'.

If there are no particles on the Regge trajectory
with masses less than r, /2n', then for negative
t the rightmost singularities in the l plane are the
branch points at n,' = n —ro'/4n' +iron, and they
control the large s behavior of the charge-exchange
amplitude M(s, t). On the other hand, if the first
N particles on the trajectory have masses less
than r, /2n', the asymptotic behavior of M(s, t) is
determined by the branch points at n„' =ro(aiv
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Q (Wu) =Q+EVS+Q u, (4.1)

and for definiteness take & & 0. We then find branch
points similar to e,' at l = a —(r, + e)'/4o. '+ r,Wu

—m„) +2M. In this case the particles that have
been knocked off the original Regge trajectory
form the singular tips of branch cuts for noninteger
values of t; however, the physical partial-wave
amplitudes f(t, 2n) still have the particle poles in

If one wishes to require that all particles in
nature lie on isolated Regge trajectories, then one
has an upper bound on the radius of the black disk:
ro&2z'„m, =.06 fermi for a. ', —1 GeV '. This
bound is indeed satisfied by the fit to the ISR data
in Sec. III.

The calculations that we have presented here can
be extended to baryon trajectories. We write the
trajectories of the positive- and negative-parity
MacDowell partners in the form

The negative-parity pole is on the physical sheet
of the l plane for v u& (ro+e)/2n', but not for v u
& (r, +e)/2n, ' or u& 0. For x, & e the positive-par-
ity pole is present only for v u & (r, —e)/2o. ', while
for r, & e it is always present. As in the case of
meson exchange, the /-plane structure of the am-
plitude is quite complicated. It seems that one is
more likely to gain physical insight by studying
the amplitude as a function of energy and impact
parameter. For example, the new features of
baryon exchange can all be traced to the fact that
the eWu term in the trajectory function makes the
Regge-pole amplitude appreciable out to impact
parameters of order cy.
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