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Various authors have found solutions to consistency equations based on duality for meson-meson and
meson-baryon scattering amplitudes. It is pointed out that there are three simple solutions for the
baryon spectrum and interactions that accommodate the observed lightest baryons. The differences in
these solutions are discussed. Experimental data involving the third and fourth quark-model levels can
be used to test which, if any, of these solutions is approximately correct.

I. INTRODUCTION

In the past several years two complimentary ap-
proaches have been used to predict the spectrum of
of hadrons and hadron resonances, and their prin-
cipal decay amplitudes. In the first, bootstrap
conditions based on duality are applied to meson-
meson and meson-baryon scattering amplitudes.
In the second, a quark model is constructed in
such a way as to satisfy certain consistency con-
ditions.

Both approaches lead to the prediction of a
quark-model spectrum, with hadron-hadron-had-
ron interactions corresponding approximately to
the symmetry SU(G)W®O(2)L£ .! (The symbol L de-
notes the total quark-model internal orbital angu-
lar momentum.) However, different solutions to
the various consistency conditions differ in the
baryon representations expected to exist, and in
many of the baryon-baryon-meson interactions.

If the only baryons considered are those of the
two lightest supermultiplets, the (56,1) and (70, 3)
of SU(6)®0(3), it is impossible to distinguish be-
tween some of the solutions, because the symme-
try determines all the interaction ratios. For-
tunately, data concerning heavier baryon reso-

nances are beginning to accumulate now. The
purpose of this paper is to show that such data can
distinguish between solutions to the consistency
conditions. We point out some measurements that
may be crucial.

The consistency conditions and solutions are
discussed in Sec. II. Although different authors
have used slightly different sets of conditions,
most sets have in common the same three simple
solutions that fit the lightest hadrons. The ex-
perimental ways of distinguishing these three solu-
tions are discussed in Sec. III.

II. THE DUALITY CONDITIONS AND SOLUTIONS

We consider a hadron-hadron scattering ampli-
tude in the channel of the Mandelstam variable s,
identifying the forward and backward directions
as the regions of small ¢ and u, respectively. The
duality condition is that an appreciable energy
region exists where both the Regge and resonance
representations are valid for the imaginary part
of the amplitude 7. Thus,

(ImTRe) = (ImT}™), (1a)
(ImTRee) =(Im T , (1b)
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where ( ) denotes some suitable average over the
dynamical variables, res denotes resonances,
Regge refers to all trajectories other than the
Pomeranchukon, and f and b denote angles near or
at the forward and backward directions. Many
authors have used these conditions only when no
resonances exist in the s channel.?>>> We call these
the “exotic duality conditions”. We use the term
“full conditions” to refer to application to ampli-
tudes both with and without s-channel resonances.
We do not assume that the s channel corresponds
to any particular baryon number. Every two-had-
ron-two-hadron amplitude may be associated with
the s channel, so no limitation is implied by the
association of the resonances with the s channel

in the above definitions.

One attempts to assume as little as possible
about the quantum numbers of the resonances and
trajectories, and to obtain as much as possible
from the consistency conditions. We limit atten-
tion to solutions in which resonances correspond
to a finite number of sets of internal quantum num-
bers, since this type of solution is suggested by
present experimental evidence.*

In M B (meson-baryon) scattering, the trajecto-
ries in the channel of baryon-number zero are
mesonic trajectories, coupled to mesons at one
vertex and baryons at the other. Thus, the solu -
tions depend on the MMM couplings. For this rea-
son, we consider first the duality conditions for
MM scattering. There is only one solution to the
full duality conditions for MM scattering. The me-
sons of both parities correspond to the singlet and
regular representations of an SU(x) group, with
SU(n),, interaction symmetry.® The solution corre-
sponds to the quark model, in agreement with ex-
periment, We now proceed to M B scattering,
taking the MMM vertices from this quark-model
solution.

If only the exotic duality conditions are assumed,
a symmetry of the SU(x) type for baryon interac-
tions is not predicted, but must be assumed. Sev-
eral authors have listed the solutions correspond-
ing to SU(3) or SU(6).3:° We will consider first
SU(3) symmetry and use the notation of Ref. 6. If
the external baryons considered belong to the octet
and decuplet, there are only three solutions in-
volving as few as four baryon-trajectory multi-
plets.’ We list these below; the appropriateness
of the names will become clear later:

(a) The “opposite-symmetry solution”. The
baryons of one parity correspond to the represen-
tation 8 + 10 and those of the other to 8+1. One
F/D ratio is arbitrary; if it is a fixed constant,
the ratios of residues must be independent of mo-
mentum transfer.

There are two solutions in which the baryons of

|

each parity correspond to the representation
8+10. They are:

(b) The “same-symmelry solution”. One F/D
ratio is arbitrary; if it is a fixed constant, the
ratios of residues must be independent of momen-
tum transfer.

(c) The “harmonic-oscillator solution”. The
ratios of residues need not be independent of mo-
mentum transfer, but all F/D ratios are fixed (at
the value -3).

These solutions may be generalized to SU(6)
symmetry, in which case the multiplets corre-
sponding to the 10, 8, and 1 of SU(3) are the 56,
70, and 20. The external baryons in these solu-
tions may be placed on Regge trajectories, if the
symmetry of the baryon states is generalized to
SU(n)W®O(2)Lz .

The full duality conditions are more restrictive,
of course. When one applies them to a complete
set of amplitudes, every MB- M B amplitude oc-
curs in both the s and # channels. Thus, the re-
sults depend on the relation between the residues
of the trajectories in the Regge and resonance re-
gions. One may obtain simple results by assum-
ing that the ratios of residues of degenerate tra-
jectories are independent of momentum transfer,
and that the ratio of the contributions of two such
trajectories in the u channel is the same as the
ratio of their contributions to (Im7;*) of the
crossed amplitude.

When this proportionality assumption is made,
the full duality conditions require that the baryons
correspond to representations of the same SU(x)
group that applies to the mesons.” It is shown in
Ref. 7 that only two types of solutions are possible.
In the first, the baryons of opposite parities cor-
respond to the same representations, and the
vertices of mesons with baryons of opposite pari-
ties are proportional to the corresponding vertices
with baryons of the same parities. The baryon
representation must be the direct product of a
single “active” quark and some passive represen-
tation; the interactions depend only on the active
quark. If the passive representation is the sym-
metric two-quark representation, the solution is
a special case of the “same-symmetry solution”
mentioned above. All interaction ratios and F/D
values are fixed.®

In the other solution, the baryons interact as
composites of two active quarks and some passive
representation. The baryons of opposite parities
correspond to states of opposite symmetry in the
two quarks. If the passive representation is a
single quark, this solution corresponds to the “op-
posite-symmetry solution”, with all interaction
ratios and F/D values fixed.

Experimentally, the lightest baryons of even
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and odd parities correspond to the SU(6) repre-
sentations 56 and 70, respectively. Hence neither
the same-symmetry nor opposite-symmetry solu-
tion can be exactly right, since each predicts two
representations for the states of each parity. On
the other hand, Mandelstam® and Rosner'® have
shown that if the residue ratios are not indepen-
dent of momentum transfer, a special solution to
the exotic duality conditions may be obtained in-
volving the multiplets 56, 70*, 567, and 707,
where the superscript is thé—parit_y. The solution
is constructed so that the residue of the 70" tra-
jectory vanishes when the total quark orbital angu-
lar momentum L is zero, and that of the 56 van-
ishes when L=1. This solution is a special case
of the “harmonic oscillator solution” mentioned
above, and is so called because the predicted
spectrum is similar to that of the quark model
with harmonic-oscillator forces.

Since this solution fits (by construction) the ob-
served L=0 and 1 states for baryons, many people
assume it is the correct solution to the duality
conditions. We believe that this conclusion is
premature. One defect of the harmonic-oscillator
solution is the lack of proportionality of the resi-
dues, for this proportionality is suggested by the
full duality conditions, provided that the leading
trajectories dominate the (Im7TRee*) in Egs. (1a)
and (1b). If we take these trajectories to be de-
generate and associate the £ channel with baryon-
number 0, then the leading u-channel Regge terms
for any amplitude are of the form

T,I‘(egge = B(u)f(s’ u){l + nexp[ —iﬂa(u) - %] }
[a(u) =n/2]
x (i) ; @)

So

where s, is a constant, # is an odd integer, «(u)
is the trajectory, n==1 is the signature, f(s, u)
is a simple kinematic factor that is the same for
all amplitudes of the same spin and helicity struc-
ture, and B(u) is the residue. We consider the
ratio of the imaginary parts of two amplitudes of
even parity and the same spin structure corre-
sponding to the SU(6) representations 70 and 56.
In the harmonic-oscillator solution, such a ratio
vanishes at the energy of the L=0 levels, but does
not vanish at the energy of the L =2 levels. This
violates Eq. (1b), if the s dependence of the Regge
terms is that of Eq. (2). A similar argument ap-
plies to the £-channel trajectories. Clearly, the
full duality conditions are not satisfied exactly,

no matter what solution is most accurate.

It is pointed out in Ref. 7 that in the opposite-
symmetry solution, the 70* and 20~ multiplets are
coupled relatively weakly by the mesonic interac-
tions to the 56" and 70~ multiplets. Therefore, a

small perturbation on the solution might cause the
lowest quark-model levels of the 70" and 20~ tra-
jectories to be pushed to higher mass or to vanish.
This solution cannot be discarded on the basis of
present evidence. On the other hand, we neglect
the same-symmetry solution, since the prediction
that baryons of opposite parities have the same
symmetry properties is in striking disagreement
with experiment.

I1I. EXPERIMENTAL COMPARISON OF HARMONIC-
OSCILLATOR AND OPPOSITE-SYMMETRY
SOLUTIONS

We will consider only the leading SU(6) states,
defined as the states of a particular quark-model
level in which the total quark angular momentum
L is a maximum. These states are expected to
dominate the duality conditions. Particularly im-
portant are the leading SU(3) multiplets, defined
as the SU(3) multiplets of maximum total angular
momentum for the quark-model level. These
SU(3) multiplets correspond to quark-spin . With-
in the SU(6) multiplets 56, 70, and 20, the leading
SU(3) multiplets are the 10, 8, and 1, respective-
ly. With any SU(6) solution of the duality condi-
tions, the leading SU(3) multiplets correspond to
the analogous SU(3) solution.

The full duality conditions have not been applied
to external baryons of high spins, so we will make
little use of the full conditions. In the harmonic-
oscillator (HO) solution, we take the parameter
left arbitrary by the exotic conditions to corre-~
spond to the quark-model prescription of Rosner,
discussed in Sec. II.*° In the opposite-symmetry
(0S) solution, we take the one arbitrary F/D
ratio from the full-duality solution of Ref. 7.

The leading, L=2 and L=3, SU(6) states pre-
dicted by the two solutions are "+%:

for the OS case:

L=2 (all even L), 56 and 70

(3)
L=3 (all odd L), 70 and 20

for the HO case:
L=2, 56and’0

(4)
L=3, 70, 56, and 20 .

Experimental evidence exists now for the L=2,
70 state. The strongest evidence is the identifica-
tion of two particular j¥ (spin-parity) Z* states,
the N(1990) and the A(2020).}2 These states can-
not belong to an L=2, 56 multiplet. The L=2, 70
is predicted by both the OS and HO solutions, and
so its discovery is evidence for the validity of
duality.

The obvious way to distinguish between the two
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solutions is to look for the L=3, 56. However,
since data on the L =3 level are scarce, we ex-
amine the differences in predictions concerning
the decays of L=2 states, both into L=0and L=1
baryons. We compare only decays involving the
same J} B orbital angular momentum [, although
the SU(6),®0(2), symmetry of the solutions pre-
dicts certain relations between partial waves.!
For each [, a partial width I'; of the B—~ M B decay
labeled by 7 is related to the interaction constant
g; by the formula

()

where p and M are the decay momentum and the
mass of the decaying baryon resonance. We do
not give any calculations in this section, but only
results. Those results that concern the leading
SU(3) multiplets in the HO solution may be ob-
tained from Ref. 10. The other results given here
may be obtained by using the method outlined in
the Appendix. )

We consider first the decays B(L=2)-~MB,
where the final baryon is a member of the nucleon
octet. The only ratio of such decays that does not
follow from the SU(6),90(2) symmetry is that re-
lating 56 and 70, L=2 states. In order to avoid
the uncertainties of configuration mixing of quark-
model states, we consider decays of j£=L" bary-
ons, which must correspond to quark-spin . A
convenient comparison ratio is R =g?[ N(1990)

-~ mN]/g?[ A(1950)~ 7N], since the N(1990) and
A(1950) are members of the 70 and 56, L =2 mul-
tiplets, respectively. The HO and OS solutions
predict values of R of + and &, respectively. If
we take the 7N partial width of the A(1950) to be
100 MeV, and use the phase-space factor of Eq.
(5) for these f-wave decays, the predicted 7N
partial widths of the N(1990) are 15 and 7.5 MeV
in the two solutions. Experimentally, the total
width of the N(1990) is about 225 MeV, and two
preliminary values of the 7N branching fraction
are 0.09 and 0.15.'* This data supports the har-
monic-oscillator solution better, but this ratio is
not a good way of distinguishing the two solutions,
since they both predict small N(1990)—- 7N partial
widths.

In both solutions the F/D ratio of the decays of
the Z* octet into the nucleon octet is given by the
SU(B),, symmetry to be —3.'* This leads to pre-
dicted values of zero for the A(2020)—~ KN partial
width, and 3 for the ratio g2%[ A(2020)~ 73]/

g%[ N(1990)~ 7N]. These partial widths of the
A(2020) are not yet measured.

Finally, we consider decays into L =1 baryon
states. Decays of the type T0(L=2)-"T0(L =1)+M
are not predicted by the SU(6), symmetry, since

TABLE I. F /D ratios for 70 (L =2)—170 (L =1) +M
transitions involving octets.

Quark spins and HO (0]
parities solution solution
£y -4
§ -y -4 o
e ~4 -
Ve

there are two 70-70-35 interactions allowed. The
predicted linear combination of these interactions
is quite different in the HO and OS solutions. The
resulting SU(3), F/D ratios corresponding to ini-
tial- and final-octet baryons are given in Table I.
The symbols 3* and 3* refer to states of quark-
spins § and 3 and parities +. The F/D ratio is de-
fined in the usual way, such that the NN7 interac-
tion is proportional to F+D.

The leading SU(3) multiplets (those of j©=1* for
L=2and §~ for L=1) correspond to quark-spin 3,
while configuration mixing may be present for
lower values of j. However, it is seen from Ta-
ble I that in the harmonic-oscillator solution, the
F/D ratio is — 3 if at least one of the baryons is a
quark-spin $ state. This solution predicts zero
rates for the decays A(2020)- KN corresponding
to all N states inthe L=0 and 1 levels.

The decay ratios of the OS solution shown in
Table I are quite different. The A(2020)-decay
branching ratio 72(L=1)/KN(L =1), uncorrected
for phase space, is predicted to be zero for a
quark-spin £~ } transition and £ for a quark-spin
£~ £ transition.

The relative rates of decay of the 56 and 70, L
=2 states into leading L =1 states are also Eite
different in the two solutions. We illustrate this
by considering decays into the state 7N(1670),
since this N is of j¥=£". The predicted relative
coupling rates (g2 ratio) of the Z* particles
N(1990) and A(1950) into this state are & and 1 in
the HO and OS solutions.

Thus, the decays of L =2 baryons into L =1 bary-
ons are quite different in the harmonic-oscillator
and opposite-symmetry solutions. Even after the
L =3 spectrum is measured and compared with
Eqgs. (3) and (4), these decays should be measured
in order to test the duality predictions.

ACKNOWLEDGMENT

The author would like to thank Dr. David Faiman
for pointing out an error in the original manu -
script.



| oo

APPENDIX: CALCULATION OF SOME
INTERACTION RATIOS

When SU(6),20(2) 1, Symmetry is applied, the
component of quark orbital angular momentum
along the z axis (direction of the interaction) is
conserved.! Thus, we need consider only the
quark spin and internal quantum numbers of the
various baryon states.! Each baryon state may be
considered to be a composite of three quarks,
labeled A, B, C. The subscripts 1, 3, and 5 de-
note the quark states of spin up corresponding to
the proton, neutron, and A quarks, while 2, 4,
and 6 denote the corresponding spin-down states.
Thus, A, is the quark A in the spin-down state of
the proton quark.

In the opposite-symmetry solution, the baryon
states of even and odd parity are symmetric and
antisymmetric, respectively, with respect to the
active quarks A and B.” It is straightforward to
use raising and lowering operators to construct
the various states. To illustrate the results, we
list below the spin-up proton states of quark-spin
3 in the various representations:

¢(P)56+ = ('115)1/2[2‘413104
+(1+@ ,5)(24,B,C, - A,B,C,
- AZB3CI - AsBxcz)] ’

y (1)
(P(P)m* = ('1!5) 2[ZAlB1C«;

+(1+ (PAB)(—A1B401 - A, B,Cy
+ 2AZB3cl - AgB],CZ)] ’
(A2)
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P(Phro-=E)/2(1= @ 4 5)(4,B,C, — A, B,Cy
+A3B,C,) (A3)

B(Ploo-= @) /2(1- @ 4 5)(A,B,C,+ A, B,C,
+A,B,C,). (A4)

Here y(p);: is the wave function corresponding to
the SU(6) representation 7 and parity =, and @ AB
is the operator that transposes A and B.

In the opposite-symmetry solution, the interac-
tion y, -~ 7%); is proportional to the matrix element
(¥;10°)|y,;), where'

o) =afa, - afa,—ala, +ala,. (AB)

The operators a] and a; are creation and annihila-
tion operators for the quark A in the state i. Both
A and B are active quarks, but the symmetry al-
lows the interaction to be written in terms of A
alone.”

The F/D ratios may be computed from the fact
that the interaction ratio p—p +7°/5" ~ 5~ +7°
(where the p and =~ are in spin-up states) is equal
to (D+ F)/(D - F).

The F/D ratios corresponding to the harmonic-
oscillator solution in Table I are the same as the
corresponding F/D ratios of the same-symmetry
solution. These may be obtained from the sym-
metric wave functions, such as those of Eqs. (A1)
and (A2), by regarding C as the active quark. The
operator O(7°) is given by Eq. (A5), if the annihila-
tion and creation operators are replaced by those
corresponding to the quark C.
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Motivated by the gas-liquid analog, a critical-point theory for charged multiplicities is generalized to
describe the production of more than one type of final-state particle. The distribution in the total
number is independent of the number of types created. As a specific application, a theory for charged
and neutral particles results. It is found that the theory accounts for the observed linear rise of the
mean number of neutrals E {ngn ,} versus the number of charged particles n . An extension to
neutral-K production is given and it is found that E {n¥|n ,}/E {nn .} is independent of n

I. INTRODUCTION

Recently a phenomenological theory was proposed
for the number distribution of charged particles
in very-high-energy collisions.!'? Contained in
this theory is the new idea that charged particles
behave in a manner analogous to a 1-dimensional
fluid at the critical point. For such a fluid the
relative fluctuation of the number density

D _ ((e=(m)H*
(n) (n)

decreases more slowly than the usual (#)~*2, in
agreement with recent experimental evidence.?
Encouraged by the qualitative success of this idea
applied to charged-particle distributions, we sug-
gest in this paper that the idea can be applied more
generally to all of the produced particles. At the
critical point not only will the number distribution
for each particle type be characterized by large
number density fluctuations, but also there will
be strong correlations between different types of
particles. As an illustration of this, we work out
a no-parameter theory for the correlations be-
tween the average number of neutral particles
produced as a function of the number of produced
charged particles. This theory accounts in a novel
way for the observed qualitative linear correlation?
In Sec. II a specific theory is proposed for the
asymptotic joint number distribution of & types of
produced particles, £=1,2,.... For k=1, the

theory of Ref. 1 is obtained; for k=2, a theory

for charged- and neutral-pion production is ob-
tained; with the proper choice of % and appropriate
subsidiary assumptions, a theory for 7, K, 7, etc.
production can also be obtained. In Sec. III the
theory of charged- and neutral-pion production is
detailed and compared with the trend of recent
data. Additional experimental checks are suggest-
ed. In Sec. IV other possible applications are dis-
cussed.

II. CRITICAL-POINT THEORY FOR MIXTURES

The theory for producing » particles in the final
state in which there are »; particles of type ; is
to be constructed as in Ref. 1, by writing a simple
ansatz (motivated by the gas-liquid analog) for the
partial cross sections which allows for a critical
point. The parameters of the theory are subse-
quently fixed according to certain reasonable phys-
ical assumptions.

The ansatz which we start with is, with n=n,
ooy,

Y n, = 00(V)Qp ...p, (V) (2.1)

S
"1 n
=0,(Y) f‘l— By — et
1 ]
n<Y/b
=0, n>Y/b
(2.2)



