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The rates for muon capture in deuterium from the doublet and quartet states are calculated by the
use of the elementary-particle treatment. The matrix elements of the vector and axial-vector currents are
each constructed in terms of two independent form factors. The form factors describing the matrix
element of the vector current are obtained in the spacelike region from electrodisintegration and
photodisintegration data by the use of the conserved-vector-current hypothesis. The form factors
describing the matrix element of the axial-vector current are obtained in the spacelike region by the use
of the hypothesis of partial conservation of axial-vector current and arguments based on the impulse
approximation. The capture rates are found to be sensitive to the behavior of the form factors near

q = —m „.The capture rates from the doublet and quartet states are found to be F'„= 374 + 18
sec ' and I'~ = 6.07 + 0.04 sec '. It is shown that 25.6% of the contribution to I d comes from the
timelike region and that an analytic continuation of the dipole fit for the form factors to the timelike
region from the spacelike region is consistent with experimental data.

I. INTRODUCTION

In the past few years a number of papers'
treating muon capture in various nuclei by means
of an elementary-particle-model approach' have
been published. The processes treated have all
been of the form p. -+i -f+ p„, where i and f,
the initial and final nuclei, are single particles.
A process of this kind takes place at a fixed,
spacelike value of q~ where

q„=(Pr-P; )„

is the momentum transfer. The hadronic part
of the matrix element for this type of process is
proportional to (f~ J t(0) )i) . This matrix ele-
ment is in turn described by form factors which
are scalar functions of q~.

In the elementary-particle approach, the form
factors describing the matrix element of the weak
vector current are obtained from the electro-
magnetic form factors via the conserved-vector-
current (CVC) hypothesis The ax. ial-vector-
current form factors are usually obtained from
beta-decay data by making use of the hypothesis
of partial conservation of the axial-vector current
(PCAC) and a result derived via the impulse ap-
proximation.

The advantage of the elementary-particle ap-
proach over the conventional impulse-approxima-
tion treatment for this type of problem is that the
elementary-particle approach avoids the use of
nuclear wave functions. The cross sections cal-
culated by means of an impulse-approximation
treatment sometimes depend sensitively on these
wave functions which are, in general, not well

known.
In this paper we calculate, using an elementary-

particle approach, the rates for muon capture'
in deuterium, p. + d n+n+ v„, from the doublet
and quartet states. This process differs from the
one we have just mentioned because two hadrons
are contained in the final state instead of one
hadron. This fact leads to a number of complica-
tions which wi11 be discussed below.

A study of muon capture in deuterium is im-
portant for a number of reasons. Since the deu-
teron (J'~ = l') is the complex nucleus with the
smallest nucleon number, it is important that
theoretical calculations and experimental results
be in agreement for this case. Information about
the n-n scattering length can be extracted from
this reaction. In addition, calculation of the cap-
ture rate for this process involves values of q'
in the timelike region, so the behavior of the form
factors in this region may be studied.

In Sec. II of this paper we obtain the general
form for the matrix elements of the vector and
axial-vector currents by the use of the Lehma. nn-
Symanzik-Zimmermann (LSZ) formalism. General
properties of the form factors are also discussed.
In Sec. III we obtain an expression for the matrix
element of the vector current. The form factors
are determined in the spacelike region from elec-
trodisintegration and photodisintegration data via
the CVC hypothesis. In Sec. IV we obtain an ex-
pression for the matrix element of the axial-vec-
tor current. The form factors are obtained in the
spacelike region by the use of results based on
the impulse approximation and by the use of the
PCAC hypothesis. In Sec. V we obtain the muon-
capture rates from the doublet and quartet states,
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I'„and I „respectively. In Sec. VI we compare
these results with experimentally determined
values and discuss the analytic continuation of the
form factors to the timelike region from the space-
like region.

II. GENERAL FORMULATION

The transition matrix element for the process
p. +d-n+ n+ v&, may be written as follows:

M = [ (2)' 'G] cos Gc & nn IJzt (0) I d )u „(1—y, ) y "u „

(2)

to the lowest order in G (= 1.02x 10'/m~'), the weak
coupling constant, where 8~ is the Cabibbo angle
(cosec = 0.98},

J),(x) = V~(x) -A), (x)

is the hadronic part of the weak current, V„(x)
and A„(x) are the vector and axial-vector parts
of J~(x), and m~ is the proton mass. We shall
be primarily eoneerned with the matrix element

& nn I J,' (o) I d) =
& nn I V,' (o) I d& -&nn IA,' (0) I d) .

This matrix element is constructed in terms of
the quantities N and Nr„where N stands for the
vectors Q„, P„, $ „, and d„, the Dirac matrices
y& and 0», the totally antisymmetric tensor

p & etc ., where p» and p» are the four -momen-
ta of the two neutrons, d„ is the deuteron four-
momentum, $ „ is the deuteron polarization vec-
tor, and

Q~,-pq~+p2~ P~--—p, » pm', -qp —Q~ -d~.

Letting J t stand for either V~ or A~& (or J~&), we
use the LSZ formalism4 to obtain

&n,n, I J'~~(0) I d) =gu„(p„s,)us(p„s, )

x( C„"(p„p, d) }„$„(d), (4)

where q = [nP/(E, E )J
' ' (2w) ' ' (2d, )

' ' E
and d, are the energies of the two neutrons and
the deuteron, respectively, s, and s, are the spins
of the two neutrons, and m is the nucleon mass.
The matrix (C'„(p„p„d)) 8 is a four-by-four
matrix (o., P run from 0 to 8) with the following
property:

(C"„(p„p,d}) 8 =-(C&(p,p„d)) 8„. (5)

Equation (5) expresses the fact that there are two
identical fermions (two neutrons) in the final state.
Because of the property of C"„expressed by Eq.
(5), it is convenient in constructing it to make use
of the set of Dirac matrices

C~ r5C~ rI C~ rt rsC& 0»C

(in place of the standard set 1,y„y„,y, , e „„),
where

C —&y(2) &(0)

is the charge-conjugation matrix. ' The members
of the set given by Eq. (6) are either symmetric
or antisymmetric under the interchange of their
matrix indices (o, , P), with (y„C)„eand (o „„C)„8
being symmetric, and C„s, (y,C)„8, and (y„y,C) 8
being antisymmetric.

We use the following relations' to rewrite Eq.
(4).

(Cy')„Bu s (p, s) = v„(p, s) e"~ ' ', (8)

(Cy')„~ v~8 (p, s) =u„(p, s) e' (9)

The phase factor e' (~') in the above relations
will always appear linearly in the matrix elements
considered here and will disappear in the calcu-
lation of any cross section, capture rate, etc.
Hence we shall ignore it.

Using Eqs. (8) and (9), we rewrite Eq. (4) as
follows:

&n,n, I J~t (0) I d )

=qua(pa~ sx)u8 (pn, sa) ( C'p (pi, p2, d)) ~8)v

=rahu„(P„s, )us(P„s,)(M"„(P„P„d)C)„a]„(d)
—'g u~(pgg sg)Mp (p] g pgy d} v 8(pled s2) gp-uM p 'v)o y

where

(C"„(p„p„d))„8=(M„"(p„p„d)C) e.
We shall generally find it convenient to write the
current matrix elements in the form given by
Eq. (10). In the following sections we shall deter-
mine the matrix M&.

We close this section by observing that three
independent scalar variables (instead of one, q',
in the case of the process i + p. -f + v„) are
needed to construct the form factors which de-
scribe M&. The three variables which we choose
are q, Q, andP'd.

The scalars Q' and q' are symmetric under the
interchange of p, „and p», the neutron momenta,
but P d is antisymmetric. Thus, if a form fac-
tor describing M„ is to be antisymmetric, it must
be of the form

F(Q', q', P d) =, G,(Q', q')
d+, G, (Q', q') +~, (12)
(P d)'

where we have constructed dimensionless coef-
ficients of P d (i.e., G„G„etc.) by dividing by
powers of Md, the deuteron mass, which is a mass
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characteristic of this calculation. The quantity
P d/M~' is small:

under a parity transformation (denoting the parity
operator by tP), we have

P. d (E, —E2)M„P d
M~ M„ M„

p, 2 -p22 -p i d
Mq

(13)

( n, , p„.n„p, [ V, (0) [ d, d )

=(n„p„n„p, i (P '(PV,~(0) 6' '(P
i d, d )

= -(n„-p„.n, -p, i Vt(0) i d, —d ), j =1, 2, 3

(16)

since p„p„and d are nonrelativistic (i.e., i P, i /
E,«1, etc.). We shall assume that the form fac-
tors are smoothly varying functions and that form
factors of the type given by Eq. (12) will be suf-
ficiently small in the region of interest to us to
be ignored. Thus all form factors used to describe
M'„will be symmetric under the interchange of
P p

and p2p.

III. THE MATRIX ELEMENT OF THE
VECTOR CURRENT

In this section we construct the matrix element
of the vector current (nn i V~~(0) i d ) . Because
each neutron has two possible helieity states, the
deuteron has three possible helicity states, and
the vector current has four components, in gen-
eral a maximum of 2x2x4xs =48 independent
amplitudes (i.e., form factors) are necessary to
construct (nn i

V~ (0) i d ) . Arguments based on
parity can be used to reduce this number to 24.
[Exactly the same arguments may be used in the
axial-vector-current case so that a maximum of
24 form factors are needed to describe
(nni At„(0) i d) .]

From the assumption' that V„ is conserved (in
fact, that it is the conserved isotopic-spin cur-
rent), i.e.,

a „V"(x) =0 (14)

(hereafter called the CVC hypothesis), we obtain
the equation

(nni a„V~'(x) i d) i, =0 (15)

Since B&V~(x) is a scalar under rotations, Eq.
(15) corresponds to 2x2x 1x 3 =12 conditions.
Arguments ba, sed on parity again halve this num-
ber, leaving 6 conditions. Thus a maximal num-
ber' of 18 form factors is needed to construct
(nn[ Vt(0) [d) .

However, an impulse-approximation calcula-
tion of (nn i Vt(0) i d) requires only two form fac-
tors and the impulse approximation is accurate'
to within 10% (if accurate wave functions are
available). We shall, therefore, construct the
matrix element (nni Vt(0) i d ) in terms of two
form factors.

From the behavior of the vector current V~~(x)

( n j) P] P n2t P2 VJ(0) i d, cf)

= (n„p„n„p, i (P '(PVto(0)(P '(Pi d, d )

=( n„-p„n„-p, i V, (0) i d, -d) .

Writing (nni V~0(0) i d ) in the form given by Eq.
(10):

(nin2 i Vt (0)i d) =qu(p, )M &Q„P2, d)v(P2)g, (d),

(17)

we obtain from Eq. (16) that

M,'(P»P»d) =yoM& (-P» —P2, -d)y, ,

M (Pi~p2~d)=-y. g(-pg, -P„- )y„
o(», p. , ) =-y.M0(-p&, -p., -d)y. ,

o(px p2 d) =yoMo( p| -p2 d)yo.

(18)

iq "u (P„s,) M(p„p„d) v(p„s, ) ],(d) =0. (20)

In addition M„'C must satisfy Eq. (5).
The matrix M „' is constructed from terms of the

form Gm„', where G is a form factor and m'„has
exactly the same properties as M„'. Using the meth-
od of exhaustion, we list in Table I the set of ma-
trices Gm„' which at first sight might be indepen-
dent and which might be of order lower than p'/m',
where p is the magnitude of the nucleon 3-momen-
tum and m is the nucleon mass. (We expect" all
form factors to be of the same order of magnitude
when normalized by the insertion of powers of suit-
able masses, but we do not know which masses are
the correct ones to use. However, we normalize
using the nucleon mass and ignore all terms Gm'„
where ium& vi is of order p'/m' or higher This.
procedure yields a current which agrees in form
to the lowest order with that obtained by use of the
impulse approximation. )

The spinor identities

u(p, ) (P„+io„,Q") v(p, ) =0,
(19)

2mu (p, ) y~y, v (p2) =u(p|) (Q&+i(r&„P")y, v(p2)

are used to eliminate terms G», G», G,4, G»,
and G„(we identify terms in Table I by the form
factors associated with them, i.e., term Gy is
G, )„). The CVC condition Eq. (15) together with
Eq. (17) implies that
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TABLE I. List of matrices out of which the matrix element of the vector current is constructed. The matrices are
listed in rows adjoining the terms by which they are multiplied {or contracted).

QV

Q )d'gV

QPpV
Q P~ y)V

u+pvV

6((~

(Gp/Mg )&""P (qgp d~
(64/M~)( P
(6,/M, ) ~»&'~ pq,
(G9/Mg )d~( P

(6,/M, ')Q„(.Q

(6,/M, ) ~~P,
(6 /M ) ~PP xg

(Gip/M&2) q'4.
(6„/M ') &~P"QP

(6,/M„2)d„( Q

{6/M 3)e"P~~( Q d Q

(Ggg/M~) $&d PP
(6«/M„2)P" ( Q

(6«/M~2)P„( P

(Ge/ )e" ( Qpd~d"
(6 /M 2) ~

P @vPx

(6,",/M")Q P (

x~(p~, s~}

=TrIiq~(P'" 'M (t'- }~ ] (d).
2m " 2m

(21)

This relation with the choices of A given above
(where we make use of the free index X when

A =y~y, by eontraeting it successively with P,
d~, and ("), together with arguments based on

We contract the remaining 12 terms in Table I
with q„and list the result in Table II.

We wish to extract all the information provided
by the CVC condition [Eq. (15)]. To do this, we

multiply Eq. (20) by v(P„s,}Au(P„s,), where A
is a Dirac matrix which we shall choose to be
&, y„or y),y, . We ean then sum over the spins
s, and s, to obtain a trace relation:

0 = P i q "u (P„s,)M'„v(P„s,) $„(d)v(P„s,)
1 2

magnitude ean be used to eliminate all terms ex-
cept G„G„and G„and to show that G, = —G, .
We, therefore, obtain

(nnl qee(D)l d) =nn(P)( .
' ee„e ("q)ed

F2 p 0
psv(pa} p

d

(22)

where the form factors have been relabeled by
setting G, =F, and G, =E,.

To check the form of this matrix element, we
compare it with that obtained from an impulse-
approximation treatment. We require that the
form of Eq. (22) agree with the impulse-approxi-
mation treatment in the nonrelativistic limit. The
impulse approximation for the matrix element of
the vector current in the absence of final-state
interactions is written" as

(nnlqee(i))(d)= q„„g P'e(q';n P)ei 'i+i i'Jnq" —"q—(q'; —P) e ' e'e''
q ), (23)

where F„(q';n —p) and F„(q';n —p) are the weak vector and the weak magnetic form factors for the nu-

cleon case, respectively, g„„ is the wave function of the outgoing neutrons, and g~ is the deuteron wave

function. The two forms for (nn ~

V~ (0) [ d), Eqs. (22) and (23), are most easily compared by considering

specific cases which lead to lowest-order contributions. Thus for the case (nn;$=0, $,=0[ V&'&t(0)
~
d S =1,

S,=l), one finds from Eq. (22) that

F -F ) q&'~
(nn $=0 $ =0(V't'&~(0)~d $=1 $ =1) =

g M &2
(24)

and from Eq. (23) that

(nn;S=0, $, =0~ V&'~t)d;S =1, S,=l) =2R(q) [F„(q';n —p)+F„(q;n —p)jq~'~/2m, (25)

TABLE G. List of the remaining matrices in Table I contracted with q&. These are the ma-
trices from which the matrix element of the divergence of the vector ca|rent is constructed.

No. Term No. Term

Gg( 'Q
{62/M,2)(Q2-Q') & Q
(63/M, ')(Q d-d')( Q
(64/M, ) (-4)&

~P
(65/M~)$(-P d)
(66/Mg) yqw5&" 8~(~d gQ)

7
8
9

10
11
12

(G,/M„) y„q, & t" "»g ~d,Q,
(68/Mg') 1'pvg~" ~(~d SQy(Q' -Q 'd )

(Gs/M~ )ypys~~~8 (ada@y(Q -Q'd)

(Gyp/Mg ~a»Q"d" & P
(6«/m, 2) o„,d~ ~"P d
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where R (q) is a function defined by

R(q) -= (26)

The integration in Eq. (26) is over the nucleon
space variables in relative coordinates. We shall
not be concerned with the exact form of R(q). Val-
ues for it may be found by using specific forms"
for p„„and g, . Other cases are listed in Table
III. Thus, in the nonrelativistic limit Eqs. (22)
and (23) have the same form.

The form factors F, and F, can be related to
the electromagnetic form factors by application
of the relations of the CVC hypothesis. '

[ I,d'„" (o) ]=[I,& '„(o)1

= vt (0), (27)

where 4'„ is the electromagnetic current density,
J(„') is the isovector part of J„, and I is the
isospin-lowering operator. Taking the matrix ele-
ment of Eq. (27) between I d& and I nn &, we see
that

+ Y svp~p$ tI )St(I2) 7
v p a

& nn I Vt (0) I d &
=&2 (np I Z'„(0) I d&, (26)

where we have used the fact that the deuteron is
an isoscalar and that I nn) is in an isospin state
I =1, I, = —1 ((nnI I =v 2 (np I ). In Eq. (28) the
state I np& is an I =1, I,=0 state.

The matrix element ( nP I J'„~(0) I d& may be writ-
ten from Eqs. (28) and (22) as

(uplift, (0)I d) =qu(P, )( ', e„.p.pq«

F; (q 2, Q', P d):F(Q', P —d) f, (q '),
i =1, 2, a, b, A, P (32)

where F(Q', P d) is analogous to R(q) in Eq. (31).
We can now use photodisintegration data to obtain
F(Q', P d) since photodisintegration takes place
at q'=0 and f, (q'=0) is just a constant. Electro-
disintegration data can then be used to determine
f; (q')

The matrix element squared for photodisintegra-
tion, averaged over the spins of the initial parti-
cles and summed over the spins of the final par-
ticles, is

e' k'
I M I' =——(F, —F~ )', (33

which yields the following differential cross sec-
tion:

few experiments have been performed. However,
we note that in the impulse approximation [ see,
for example, Eq. (25)] the form factors factorize,
1.e.)

F' = F(q', n —P)R (q),

where the superscript I denotes the impulse ap-
proximation. The result Eq. (31) is true for the
axial-vector form factors as well (which can be
seen from Table III) because to the lowest order,
the integrations which occur in the axial-vector
case are the same as those which occur in the
vector case. Thus R(q) again appears as a, factor
and the result Eq. (31) holds for the axial-vector
case. We shall, therefore, assume that the form
factors F„F„F„andF, (and the axial-vector
form factors F„and F~ which will be defined in
Sec. IV) factorize similarly, i.e.,

so that
(29)

do P,joe

dQ ' 24(2w)'M '
W2 F, = F, and v 2 F~ = F, . (30)

Ideally, F, and F, would be determined from elec-
tron scattering, but in the region of our interest
I
q'

I
~ m„', where m„ is the muon mass, only a

P~ke
24(2,)M,

F (Q P d)

(34)

TABLE III. The matrix elements (n&n2, S=0, S~=OIV (0)Id; S= 1, S, = I) and (n&nz, S= 0, S, =-OIA„(0)Id; S= I) are
tabulated for i = 1,2, 3. The superscripts I and EPT stand for impulse approximation and elementary particle treatment,
respectively. The q2 dependence of the form factors has been suppressed.

(nn I
V «&0) Id)'

2R (q)q (,) (+v++N~

- . (,)I(Fv+Fn)—2R (q)iq(3)

2R(q)i(q&') -~&'))
' I(+v+&u~

(nn I
A~t(0)

I
d )I

-2R(q)F~(n P)

ZIR(q) &„(-n—p)

(nn I V ' t(0)
I d )

(&0-&6~ i (,)

(s', —s', ) q')
M~ v2

(
(&) - (0)-x(z, -z, ) z

(nn I
A~ t(0) Id )E+r

I" ~(d nn)
~2

S'„(d —nn)
~2
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where k is the magnitude of the photon momentum,

p, is the magnitude of the proton momentum, and
8 is the angle which the proton makes with the
incident photon. All variables are in the c.m.
frame. In calculating Eqs. (33) and (34) we have
also assumed that I, and E, are relatively real
as is true in the impulse approximation.

The electromagnetic processes involving the
breakup of the deuteron, y+d n-+p (photodisin-
tegration) and e+d-n+ p+ e (electrodisintegra-
tion), involve the I=0, I, =0 state of ) pn) as
well as the I =1, I, =0 which we need. However,
in the case of photodisintegration at the energies
we shall use to obtain F(Q', P d), i.e., k-20 to
50 MeV, the 'S and 'P states which are I = 1,
I, =0 predominate. " The situation for electro-
disintegration will be discussed shortly.

From photodisintegration data' we find that
F'(Q', P d) can be fitted to the following phenom-
enological form:

F'(8) =Z(8)a(2 )v' M, '/(p k )e2,

where K(8) is given by"

(35)

f, =6.4,
f2=6 4[1-f,/(fr+f4)l,

K(8) -=[f, +f,(1 —cos8)+f,sin'8cos8+ f, sin'8],

(36)

with

x (f.(q') -f, (q'))', (38)

where m, is the electron mass, p, „and p» are
the initial and final momenta of the electrons,
E& is the initial energy of the electrons, and e
is the angle that the direction of the outgoing elec-
tron makes with q =p; -p&, the momentum trans-
fer. Using experimental data" for the cross sec-
tion do'/dQ, dE&, we obtain values for f, (q')

situation of a real photon colliding with a deuteron
is analogous to that of the virtual photon colliding
with the deuteron; the only difference is that for
a virtual photon, there is no relation between its
space momentum q and its fourth component of
momentum q, . Thus we do not know where to iden-
tify (q ( with k and where to identify q, with k. In
order to obtain reasonable values for f, (q'=0)-f, (q'=0) (smoothly decreasing as —q' in-
creases), however, we find that we must set ~q)
=k in K(8) and q, =k in the denominator of Eq.
(35).

The matrix element square for electrodisinte-
gration summed over the spins of the final parti-
cles and averaged over the spins of the initial
particles is given by

2 4
in'e) F'(Q

Sm, lgq q

0.6988 x 10 4

(k/M, —0.01495)'+0.507x 10-' '

839.5
1+1.27x 10'(k/M„)' '

a =2.57x 10-'/MeV'

(37)

In the above equations we have chosen a normal-
ization for the form factors such that f, (q'=0)
-fs(q'=o) =1.

Because in photodisintegration there ale two
bodies in the initial and final state and because
the photon is real, i.e., it has four-momentum
(k„k) with ( k (=k, =—k, only the variables k and
6 are needed to describe the differential cross
section for this process. In electrodisintegration
(and muon capture) the exchanged quanta are not
on the mass shell, and in addition there are three
particles in the final state. To generalize Eq.
(36) to the more complicated cases of electro-
disintegration and muon capture, we note that
F(Q', P d) is a scalar quantity and hence can be
evaluated in any convenient frame. We choose the
center-of-mass frame of the exchanged quantum
and the deuteron (see Fig. 1). In this frame the

virtual
photon

FIG. 1. Diagram showing the analogy between photo-
distintegration of the deuteron in the c.m. frame (a), and
electrodisintegration of the deuteron in the center-of-
mass frame of the deuteron and the virtual photon (b).
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-f~ (q2) in the -4000 ~ q2 ~ —18 000 MeV~ range.
These results are shown in Fig. 2. We use a
standard dipole fit to express the form factors
and find a best fit to the data with

If. (q') -f~ (q') I =1/(I —q'IM')',

M =224+ 25 Me&, q2 ~0.
(39)

As has been noted, electrodisintegration involves
the I =0, I, =0 state of Ipn) as well as the I =1,
I~ =0 state which we need. However, in the da, ta
used here, the electron is scattered through 180'
and it is known" for this ca,se that the dominant
state of the two nucleons is a '5 state which is an
I =1 state.

Thus we have determined F(Q', P d) and the
quantity f, (q') —f~ (q2) in the spacelike region,
—q' &m„'. Fortunately, in muon capture only
the combination f,(q') -f,(q') occurs (to the order
in which we are working), so that we have effec-
tively obtained ( nn I

V~ (0) I d), the matrix element
of the vector current.

02

-~000
I 'L

-10000 -~5000

'7 (gev )
FIG. 2. Plot of the form factor f (q )-f&(q ) as a func-

tion of q2 in the spacelike region.

IV. THE MATRIX ELEMENT OF THE AXIAL-VECTOR CURRENT

We noted (in Sec. II) that a maximal number of 24 form factors was needed to describe (nn IAt (0) I d & .
However, in the impulse approximation only two form factors are required to describe (nn I A. „(0)Id ).
We shall, therefore, construct (nn IAt (0) I

d
& in terms of two independent amplitudes. The axial current

is not conserved so that arguments analogous to those used to obtain (nn I Vt (0) I
d & are not possible for

the axial case; instead we shalt, use arguments based on dispersion relations, orders of magnitude, and
the impulse approximation to obtain the matrix element of the axial-vector current.

We consider the crossed process p. -+ v&-d +n+ n and use dispersion relations" to obtain the well-
known form

(n~», 2 IA'(0) I 0& I 2„-(»~»,ZIA'(o) I o& I, 2 (,=
( ) g,

( )~p, Q &'(P, „+Pa„+2„-Pi„)

x(n n, Ij;t(0)I i) (i IA„(0) I 0),
(40)

where p, „ is the momentum of the intermediate state I i), 2, is the energy of the antideuteron, j~ (0) is the
deuteron source, and e is an infinitesimal. We note that states contributing to the sum in Eq. (40) must be
J"=0 or J =1+ states. We shall approximate the contributions of these sta, tes to the right-hand side of
Eq. (40) by considering the contribution of the pion state (J'~=0 ) and a state I o, &

(J'~ =1+), which we shall
treat as a single-particle state. " It will be shown that the contribution of these two states to Eq. (40) can
be described in terms of two form factors. Thus we need to determine (n,n, I j ~

t (0) I i ) and (iI At (0) I 0)
for I i ) equal to I m& and I o. & . The contributions of the above-mentioned states to Eq. (40) will help to
determine the form of (nnI At (0) I d).

We first note that under a parity transformation, one finds

( n&, p&', n&, p, I A~& (0) I d, d ) = (n„p„n„p2 I N '(pAt (0}(p-'6
I d, d )

=(n„-P„n„-P, I A', (0) I d, - d ), z =1, 2, 3
41

Pi'n, pal Ao (o) I d, d &
= (n„p„n„p, I (P '6'A't(0)6'-'O'

I d, d )

=-(ni -pi;n', -P. IA'. (o) I d, -d&.
Unde» Parity transformation, the left-hand side of Eq. (40) transforms I~e (nn I

At (0) I d ) [(nnI A~(0}Id)
transfo rms exactly like (n»~ I A„(0) I 0)] which places a constraint on (i I

A~ (0) I 0& and (n,n, I j," t (0) I i) .
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We shall make use of Eq. (41) in what follows.
The lowest-mass intermediate state which contributes to the right-hand side of Eq. (40) is the pion state

[ i ) =[ w). The matrix element( w [At(0) [0& may be written as

( w
~ A&~(0) [ 0& =ip„qm, o.,/[(2w)' '(2(u„)' '], (42)

where n„(=0.94+0.01) is the pion decay constant andm, is the pion mass. The matrix element
(n,n, j jP (0) ( w) may be written as

m ~~2 m ~~2

(n,n, [ j,"~ (0) ~ w) = iu(p, )y,v(p, )M"— (43)

where M" is to be determined. With these choices, the w contribution to Eq. (40) is

m '~' m '~'
(2w) ]„(d)M"6(q' -m, ')m„n uy, vq„—

2

where q„=P»+P»+Z&.
To obtain an expression for I"we note that under a parity transformation one finds

(44)

&u„p„u., p. ~ jV(0}Iw, p.&=&u„p.;u., p. I+-'+iV(0)+ '+I w, p-, &

=-(n„-p„n„-p, l j„'t(0)) w, -p„), i =1, 2, 3

&u,p„.u. , P. l jV(o) ~ wp„&=&u„p„u., p. l + '+jP+ -'+(0}I w-, p, &

(45)

=&u„-p„u., -P. l jl'(0) I w, —P, &.

From Eqs. (43) a.nd (45) we see that

(Pi~ P2~ P~) = — (-Pz~ P2~ -P~) ~

M (p„p, p, ) =M'(-p„-p, —p, ) .

j=12 3

(46)

( n,n, lA~(0) ) d) = y„„Q [y~„"F„(q',n —p)

+ q„FI,(q';n —p}]

y(" ~-('i e'y, T e Y'd

In addition to the constraint placed on M" by Eq.
(46), the quantity M' must be chosen such that
Eq. (41) is satisfied and such that y,Cq„M" satis-
fies Eq. (5). [The latter requirement stems from
a general one that the matrix elements of both
the axial and vector currents must satisfy. See
Eq. (4).] The simplest choice for M" which satis-
fies these conditions is F~Q, where F~ is a form
factor and Q" p,"+p,' is a four-vector (defined
earlier) .

It can be shown by standard dispersion-theoretic
arguments" that E~ has a pion pole. The form we
have derived for the pion contributions to Eq.
(40) [i.e., Eq. (44)] suggests that we choose

lt is seen that Eq. (49) contains a term propor-
tional to q„. Furthermore F~(q'; n —p) is known
to have a pion pole" so that the expression Eq.
(47) corresponds to the term proportional io
F~(q';n —p) in the impulse approximation.

We next consider the contribution to Eq. (40)
from a state"

( e& with J'~ =1'. For this state we
write [in analogy with Eqs. (42) and (43)]

( n( At (0) ( 0)= —iv 2$ „(n)a„/[2&v„(2w)']'~'

(49a)

F (q', Q', P d)u(p, )y,v(p, )q&] Q/M
' (47)

(nzyg2 [ j&~(0) ( o &
= f(m/E )~~2(m/E )~&~(2w)-9&2

as one of the two terms of (n,n2 [A t (0}( d ); a fac-
tor of M~' has been inserted in the above expres-
sion to make the form factor dimensionless.

Writing down(n, n, ~At(0) ( d) in the impulse
approximation we find

x g (u)N "u(P,)y,v(P ), (49b)

where g „(n) is the polarization vector for the
state ( n&, a is the decay constant of ( n&, u~ is
the energy of ( n ), and N~" is to be determined.
Under a parity transformation we find
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(n„p„n„p, l j&'(0)In, p, ) =&n„p„n„p, l(P '(Pj&'(0)(P '6'I o., p )
= (n„-p„.n„—pm I j ~~

t (0) I n, -p„), i = 1, 2, 3

& n„p„n„p, I j~ (0) I n, p ) =
& n„p„n„p, I (P ')Pj ~t(0)(P 'O'

I n, p &

=-&n» -pi;n. , -P. l jl'(0) I ~, -p. ) .

(50)

From the form of (n,n, I jp(0) I n) given by Eq.
(49b) and. the requirement that Eq. (50) be satis-
fied, one finds the following conditions on Ã~':

If we choose N p'=g p', Eq. (51) can be satisfied
since

('(-p. ) = 5'(p. ),

$'(- P.) = —5'(P. ) .
j=1,2, 3

(52)

With this choice for iV~' the contribution to Eq.
(40) from the I o ) state is

5 (q2 -m~ )uy, v (m~ &2a„mf«„~ $ p(d)

Qq pv 2a~ of~„„~], (53)

where m„ is the I o ) mass and f„„„„is the o, -neu-
tron-neutron-deuteron coupling constant. The
term in Eq. (53) which is proportional to ($ Q)q„
can be included in the term Eq. (47). Because
there is a term in the expression Eq. (53) pro-
portional to $„(d), we include a term proportional
to („(d) in the matrix element (nn IAt(0) I d ), i.e.,

5 p( Pn)N ( Ply P2) Pa) 5 p(Pa)N (Ply P2y P(y) )

(51)

&,(-p. )N "(-p„-p. , -p. ) = - (,(p. )N"(p„p., p. )

f~(q') fi(q') -f.(q')
f~(0) f&(0) -f.(o)

' (58)

From line 1 of Table III the following expression
is obtained:

note that there is no direct information about
F„(0,Q, P ~ d) since the deuteron does not undergo
P decay. Thus we shall use impulse-approxima-
tion-based results to obtain F„at all necessary
values of q'. Prom Table III we see that

-2R(q)F„'(q') =NF„(q', q', P d)/W~

=NF(Q, P d)f„(q')/v 2, (56)

where the superscript I refers to the impulse
approximation and where we have made use of
Eq. (32) to factorize F„(q', Q', P d). A theorem'
based on the impulse approximation relates
f„(q')/f„(0) to F„(q')/F„(0), where F„is the weak
magnetism form factor. From Table III we have
that

Fv (q';n-P) + Fs(q';n -P) "f,(q'),
but this is the only relation available which con-
nects F„with f, and f2. We, therefore, cannot
determine which linear combination of f, and f,
corresponds to F„. Therefore, we make a weaker
assumption, 20 that the q' dependence of f„(q'),
f„(q')/f„(0) is given by

F.(q', V', P d}.-(p,b, (p.)~„(d). (54) 2R (q) [Fv(q';n p)+F„(q';n —p)]

This term satisfies Eqs. (5) and (41). Thus we
write for the matrix element of the axial-vector
current

(n n, i A„(0)Id) =qn(y)(F„(v +F, )yv(y ).
d

(55)

A comparison of Eq. (55) with Eq. (48), the im-
pulse approximation form of (n,n, I At (0) I d),
shows that in both cases to the lowest order, the
F~ term does not contribute. A comparison of
the cases which yield lowest order contributions
[for example, (n„n„8=0, S,=OIA. „(0)I d; S=1,
S,= 1)] indicates that Eq. (55) and Eq. (48) agree
to the lowest order as expected. The results are
shown in Table III.

The form factors F„(q2, QI, P d) and
F~(q', Q, P d) can now be determined. We first

=
~2 [f (q') -f,(q')] F(Q', P d) .

(59)

f„(q') = F„(q')W2/[F)y(0, n p)+F)I(0, n p)],
(61)

where" F„(0,n —p) =1.00 and F„(0,n —p) =3.70.
Writing

F„(0)[F~ (q )/F„(0)]W2
[Fv(0, n —p)+F„(0,n—p)]

' (62}

Setting q' =0 and solving for 2' (q)/N, we find

i W2F(Q', ~ d) (60)
)(2 [Fv(0;n —P) + F„(0;n—P)]

'

Substituting this expression in Eq. (56}and solving
for f„,we find
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we have that

f (q )/f (0) = F (q )/F (0) . (63)
(nq, l q "At(x)(q)I, = qq(q)( 'q~q ()+ P, q'q q)

(64)

Using Eq. (58) and the fact that [from E(ls. (30),
(32), and (39)]

f ( 2) f ( 2) fl(q') -f2(q'
f,(o) -f.(o)

X y 2)(P ) . (66)

The hypothesis of partially conserved axial-vector
current (PCAC), particularly an argument due to
Nambu, "is used to obtain

we find

E'(0) [f.(q') -f (q')]~2
Ev (0, n —P ) + E„(0,n —P) ' (65)

E, = -M,2E„/(q2-m, 2)

from E(l. (66). Thus the matrix element of the
axial current is

(67)

but E~(0) =1.23+0.01, so f„(q') is completely
determined.

We next consider F~(q2, Q2, P ~ d). Taking the
matrix element of the axial-current divergence,
we obtain

(nnIAt(0) I d ) =qF„(q', Q2, P d)u(P, )

q2&'9
x«~) -(q2 ~ 2) y32)(P2)

(68)

V. THE DOUBLET AND QUARTET MUON-CAPTURE RATES IN DEUTERIUM

We now have determined M, the transition matrix element [E(l. (2)] . Since the muon and deuteron may be
assumed to interact at rest in muon capture, the doublet and quartet spin states of the muon-deuteron sys-
tem may be projected out by inserting into Eq. (2) the following projection operators:

P j( 6ns) )c'(j S ns) 2 (6nt) + l&kg Sns)
Q 3 ij (69)

with &""= 2i[y", y"] and S "„~=g;gqs -gsg", , and where d stands for doublet and q for quartet. We obtain the
following results for the doublet and quartet transition matrix elements squared:

Sn ' 2E 3

( 70a)

(70b)

where E„ is the neutrino energy.
There is still one remaining problem. We know

the form factors only in spacelike region. The
phase-space integration necessary to obtain the
capture rates I'„and I', involves values of q' in
the timelike region as well (in particular m„2~ q'),
Thus some assumption must be made about the
behavior of f, (q') —f, (q') in the timelike region.
The simplest assumption that can be made is to
assume that in this timelike region the form fac-
tors may be analytically continued from the space-
like region so that we continue to have [ see Eq.
(39)]

If. (q') -f&(q') I =1/(1 —q'/M')',

M=224+25 MeV, q ~ 0 ~

' (Vl)

Using E(l. (71) to represent f, (q') -f, (q') in the
timelike region and using a computer to perform
numerically the phase-space integrations, we ob-
tain the following values for the doublet and quartet
muon-capture rates, I'„and 1"„respectively:

I'„=3'74 + 18 sec-',

I', =6.07+ 0.04 sec-'.
( V2a)

(72b)

1 q, +2.76 MeV

q, (q, +4.98 MeV)2
(73a)

to yield the values of I'~, I', in E(ls. (V2a), (72b).
If another less good but possible fit is used, for
example,

1 1

q (q 2+20 25 MeV2)&/2 q (V3b)

We note that 1~ and F, are very sensitive" to
the behavior of E„(q2, Q2, P d) near q2= -m„2.
For this value of q', we have q, =0. From Eqs.
(32), (35), (68), (70a), and (VOb), as well as the
discussion preceding E(l. (38), we see that E„,
and hence IMI32 and IMI,', go to infinity at this
value. Using electrodisintegration data near
threshold" to obtain a good fit for F' (9) [see
E(ls.(35)-(37) et seq. ] near q2=-m ', we replaced
the factor I/l3 =1/q, in E(I. (35) by
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a value of I'„=490 sec-' results. Thus, the re-
sults are very sensitive to the behavior of the
f'orm factors (particularly E„)at q' = -m„'.

I"'"~=365+91 sec '

I „'"~ = 451 + 70 sec ',
(74a)

(74b)

where the superscript exp stands for experimen-
tal. Thus our result, Eq. (72a), is seen to be con-
sistent with experiment.

Moreover, if we set the form factors equal to
zero for q'~Q, we find a value for I'„of

VI. CONCLUSION

The doublet muon-capture rate in deuterium has
been determined experimentally by two groups. '4

Their results are given below:

In conclusion we note that if more accurate and
complete electrodisintegration data were available
in the accessible region (0& q'&-m„'), particular-
ly if dv/dQ, dQ~ (where the subscript p stands for
proton) were measured at a number of proton
angles, it would be possible to obtain the form
factors I, and I, free from any errors inherent
in using impulse-approximation based results.
If, in addition, more accurate measurements of
the muon-capture rates were available, it would
be possible to obtain much more accurate infor-
mation about the form factors in the timelike
region. We are currently continuing this work by
calculating the cross section for the process
v„+d-p+p+p. , using the form factors we have
obtained from studying muon-capture in deuteri-
um.

I"„=272 sec-', q' 0 ( 75) ACKNOWLEDGMENTS
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A model of the X pm' decay amplitude is constructed using finite dispersion relations. The
predicted decay width and energy dependence of the Dalitz plot are consistent with the latest data.

I. INTRODUCTION

Our understanding of scattering amplitudes has
been greatly extended over the past few years
through the application of Cauchy's theorem over
(either effectively or explicitly) finite contours.
In particular, finite-energy sum rules (FESR)
have led to interesting relations between the high-
energy (Regge) and low-energy (resonance) forms
of scattering amplitudes. " In addition, the utility
of finite dispersion relations (FDR), as a means
of exploiting a knowledge of the Regge and reso-
nance parts of an amplitude to determine its low-
energy behavior, has come to be recognized. '

One of the most promising applications of FDR
is to three-body decays, where the decay ampli-
tude is related by crossing to the corresponding
two-body scattering amplitude. This approach was
used by Aviv and Nussinov' to describe the decay
w» 2my, with encouraging results. Later applica-
tions of FDR to )7-rr'yy (Ref. 4) and )I- wry (Ref.
5) have yielded results in good agreement with

exper iment.
In view of the above successes, we were led to

apply FDR to the decay X'(957)- q)(7(, where the
X' is assumed to have @~=0 . Whereas previous
attempts ' "to describe X'- gem could predict
only the width or the slope of the decay distribu-
tion, we have attempted to predict both the width
and the slope. Our results are consistent with the
latest data.

In Sec. II we give the details of our model for the
X'-gem decay amplitude. Our results are pre-
sented in Sec. III, where they are compared with
the experimental data. Section IV contains a dis-
cussion of our predictions in which comparison is
made with other theoretical work on X'- gem.

II. DETERMINATION OF THE AMPLITUDE

We begin by considering the two-body scattering
process

X(p) +m(-q, )-ri(k)+s (q, ) (2.l)
(see Fig. I). The respective momenta of the parti-


