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Differential cross sections near 6., = 90° are calculated using an incoherent sum of direct-
channel resonances with exponentially increasing density. Good agreement with the data is
obtained for the 7*p, K™p, andpp elastic cross sections. Two-body inelastic processes and
the exotic pp and K'p elastic cross sections near 90° are discussed.

INTRODUCTION

Many two-body reactions show very similar en-
ergy dependence at or near 90° in the ¢.m. coor-
dinate system for Ecm.>2 GeV. More remarkably,
for a large number of such hadron-hadron reac-
tions the cross sections are even similar in ab-
solute value. This includes the s-channel nonexotic
reactions 7*p, m7p, K™p, and pp elastic scattering
(see Refs. 1, 2, 3, and 4, respectively), as well
as m7p charge exchange,®° K% —7*A° and K%
-7*Z°%°8 The variation in absolute value of the
cross sections is, within the experimental accu-
racy, not more than a factor of 2 or 3. Photopro-
duction of pions also shows similar energy depen-
dence.” Since the similarity persists down into the
discrete resonance region we examine the possi-
bility that a superposition of resonances, domi-
nantly incoherent in the central region near 90° in
the c.m. system, can explain this behavior. Since
there are presumably more and more resonances
as we go to higher energies in such a picture, we
shall invoke statistical considerations to describe
the density of hadronic states at high excitation as
well as the widths of these states.

Appropriate formulas for incoherent resonance
superposition cross sections have been discussed
recently.®® These cross sections are character-
istically essentially symmetric with respect to 90°
and decrease exponentially with center-of-mass
total energy. This is in contrast to the forward-
and backward-peaked coherent two-body differen-
tial cross sections which fall as a power of the
energy in the forward and backward directions (ex-
cept for forward diffractive processes which are
constant to within logarithms of the energy) and
which then behave in a manner characteristic of
the reaction as the angle increases, eventually
falling into the central region under discussion
here.

There has been much discussion using {-channel
pictures!® of how an exponential in momentum
transfer squared, which crudely represents the
small-angle behavior of many reactions, converts

into an exponential behavior in momentum transfer
as one goes from small to large momentum trans-
fer. This corresponds to a transition from expo-
nential falloff in c.m. energy squared to exponen-
tial falloff in c.m. energy at fixed angle as one ap-
proaches the central region. The explanation of
this transition in {-channel language usually in-
volves a small-angle assumption. We are inter-
ested here in large angles. At any rate we do not
examine any possible connection between this ¢-
channel description and the statistical s-channel
considerations described in this paper.

Returning to statistical considerations, Fast
et all' some time ago considered the possibility
that p-p scattering near 90° is statistical in na-
ture. Although we are mainly concerned in this
paper with nonexotic s-channel situations, we will
discuss the exotic case to some extent below.

Parton models have been studied extensively for
predictions of large-angle scattering and charac-
teristically yield behavior at fixed angle falling as
a high inverse power of c.m. energy.!? This be-
havior results from a power-law behavior in ¢ for
the electromagnetic form factors. In both our
treatment and in parton models Regge-type con-
tributions are negligible owing to the small dis-
tances involved. The specific method of treating
the remaining contributions is different here from
that used in parton models; partons are assumed
to be exchanged in models of the latter type. Ul-
timately experiments at high enough energy will
answer the question of whether inverse-power or
exponential decrease prevails. It is of course pos-
sible that there may be a region of energies where
exponential behavior prevails and another region
where inverse-power behavior takes over.

STATISTICAL CROSS SECTIONS FROM
RESONANCE SUPERPOSITION

We propose here to describe differential cross
sections near 90° in terms of an incoherent super-
position of a large number of resonant amplitudes.
The interference terms are assumed to vanish
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near 90° because of the large number of reso-
nances of many angular momenta. Related studies
have been made recently and appear in the litera-
ture.®?

Consider the two-body process

a+b-~c+d. 1)

We can write the differential cross sections for
this reaction as

do 1 (s, m? m?)
das " 64r%s A, m? ml:,z) 1T aica(s, DI, @)

where the masses of the particles a, b, ¢, andd
are m,, m,, m,, and m,, respectively, s is the
total center-of-mass energy squared,  represents
center-of-mass scattering angles for particle c,

T 4p;cq 18 the invariant amplitude, and

(s, m2 my?) = (s% +m,t +m,t —2m,%s
- 2my?%s = 2m2my? )2 .

We ignore spins here, and if for the moment we

also ignore orbital angular momentum then ac-

cording to the incoherence assumption we write

- ()2 (rdy)?
’Tab:cdl "Z {— 2, 1 2
Vs —m;)P+3T,

i

(3)

Here m; is the mass of the ith resonance, whose
total width is I';, and the couplings to the incoming
and outgoing channels are »%, and »},, respectively.
We now assume a high density of resonances so
that we can approximate the sum in (3) by an inte-
gral. Assuming the integral to be peaked at the
maximum in the Breit-Wigner component we find

2102 0/s )y (/s Jp (/s )
r'(¥s)

Here the widths and couplings are mean values
taken at the peak in the Breit-Wigner component
of the integral.

We then have for the incoherent contribution to
the differential cross section

4o 1 v,205 W 205 Jo(Vs ) A(s,m?2, m?)
dQ  327s TWs) r(s, m2, m,2)

4)

ITab;cdlz"!

(5)

This cross section is spherically symmetric ob~
viously since we have ignored angular momentum.
We can modify this formula approximately to in-
clude angular factors by multiplying by ®

DR (21 +1)%P,*(cos8)
YRE@21+1) ’

where R is the hadronic radius and 6 is the c.m.
scattering angle. A more detailed treatment of
angular momentum requires information on the J
dependence of the density of states and of the cou-

£(s,0)= (6)

plings. However, (6) is only weakly dependent on
angle and is of order unity near 90°,

The formulas (5) and (6) will yield a detailed pre-
diction of statistical cross sections given the total
width T and the couplings v,, and 7,,. For elastic
scattering y,,=v,, of course. We can get expres-
sions for the couplings y,, and vy,, at high enough
energies using the statistical bootstrap model 314
This model yields the following equation for the
total density of hadronic states'*:

0 V -1 1 k
p<m>=kz=jz&2?)]' s L[ ap,amp(m)

X6(m-) E)* (D)),
(7)

where V is the hadronic volume taken to be a
sphere with radius 1 to 1.4 F. The integration is
over all particle and resonance masses that con-
serve energy. E,; and p,; are the energy and mo-
mentum of the particle of mass m, with E;
- (mzz +z>’2)1/2 .

The solution of this equation for m large enough
is 14,15

p(m) =(a/m?)e™7,

where a and T depend on the value of V. One finds
values for T in the range 140 to 170 MeV.!® Since
the above solution holds for m—«, one corrects it
for small m to read'®

a 1/2
p(m) = (—ﬂ—,gem” , ®)

m+m )"
where m =~ 500 MeV.!®* We will come back to the
question of values for these constants below.

The coupling vy,, is clearly related to the partial
width in channel ab. The total width is given in
terms of partial widths at high enough energies
through the equation

r(m)=3 ,%,fl [ 5t ampom)on-3 )
B=2 =

XGE;'(E ﬁl)‘r(lham].y .. "pk !mk) .

©)

The sum is over k-body states, where £>2. The
choice of form for I'(p,,m,, ..., p,,m,) is moti-
vated by the bootstrap equation (7). Clearly (9)
and (7) are satisfied if

F(Pl;mp ---,Pk,mk)

[ VP I5=1QE ) T(m)
- [(ZN)‘:I p(m) - 10



8 STATISTICAL APPROACH TO DIFFERENTIAL CROSS. .. 2873

We then have at high enough energy

vV T(m) [m“ - (m,? —mf)z]
@m)* p(m) m* )

T, (mm,,m,)=

11)

It is readily verified that in order for (3) to cor-
respond to Breit-Wigner amplitudes with the cor-
rect strength at high energy, we must have

yubz = 81Trab . (12)

The last factor on the right side of (11) is the ratio
of invariant to noninvariant phase space and re-
sults from the fact that the statistical bootstrap
equation (8) involves noninvariant phase space.
We assume now that the expression for y,, that re-
sults from (11) and (12) can be used in the energy
region of interest to obtain the two-body differen-
tial cross section near 90° for reaction (1).

Using (5), (6), (11), and (12) we find then

do [ %4 T As,m?2m?) T (s) 2

aq " |@n?| X6,mz2, m?) pWs) s
[t o= b =) J6,0),
(13)

where £(s, 0) is given by Eq. (6). For energies
sufficiently above threshold this cross section then
falls with energy according to

do _sT(s)
= s s

DATA ANALYSIS

We will apply formula (13) to fit 7*p, K ~p, and
pp elastic scattering data at 90° for s =4 GeV? as-
suming that the total width T is constant, V
=47R3, where R is the hadronic matter radius,
and p(Vs ) is given by Eq. (8). The resulting fits
are given for temperatures T =140 and 160 MeV
in Figs. 1-4, The corresponding values for
T'V?/a are given in Table I, and those for a, as-
suming I' =200 MeV, in Table II. The radii
R=1.1 and 1.3 F correspond to those for which
the statistical bootstrap yields temperatures
T =160 and 140 MeV, respectively.!> The most
extensive data are for 77p scattering, which seems
to prefer a temperature near 160 MeV, corre-
sponding to a hadronic interaction radius of 1.1 F.
The density of all hadronic states as determined
by Hagedorn and Ranft!® (see Table II) yields a
value of a~1.5%X10% MeV? (for T =147.5 MeV).

The values in Table II are about three orders of
magnitude less. This is quite reasonable since one
is only able to excite states of a particular charge
and with one or two values of the z component of

angular momentum. In Hagedorn’s fits the isotopic
and angular momentum multiplicity due to magnet-
ic degeneracy is included. Also other quantum
numbers must be conserved. It is to be noted, al-
though this is rather unimportant, that since the z
component of angular momentum is severely lim-
ited it would be more correct to have added an-
other half power to the 1/m?® term in the expres-
sion (8) for p(m), i.e., the density would perhaps
better be written p(m)~am="2e™ T, Finally, we
find that baryon resonances are two or three

times more plentiful than boson resonances. We
do not know whether this apparent difference is
significant. Further, strange baryon resonances
are determined here to be as plentiful as non-
strange baryon resonances.

Although we do not analyze inelastic reactions
here, we point out again that in the few-GeV re-
gion near 90° they behave in a manner very simi-
lar to elastic scattering,®” both in energy depen-
dence and absolute value. This can be understood
very well in the picture described above. For ex-
ample the reaction 7~p — 7% will have a differen-
tial cross section near 90° given by

docg 1 (dog-, +d0$,'+,,>
Qe 2\de aa ’

(15)
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FIG. 1. n*p elastic scattering data from Ref. 1 and
theoretical predictions with temperatures T =140 MeV
(solid line) and 160 MeV (dashed line), using formulas
(8) and (13).
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TABLE I. The factor V2I'/a determined by fitting
elastic scattering data taking the hadronic temperature
T =140 and 160 MeV corresponding to hadronic radii
R =1.3 and 1.1 F, respectively.

VeI'/a (mb/MeV®)

T (MeV) R (F) 19 T P K

160 1.1 1.3x107% 1,3x107% 3.8x107% 1.3x 1078
140 1.3 2.0x1077 2,0x1077 3.8x1077 2.0x 1077

where we have invoked the incoherence assump-
tion to eliminate the interference term between

7m7p and 7*p elastic scattering. Other reactions
similarly related to elastic scattering by symmetry
considerations can be expected to behave like the
corresponding elastic amplitudes near 90°.

REMARKS ON EXOTIC CASES

Proton-proton elastic scattering involves an
exotic s-channel situation. Provided exotic reso-
nances exist, the considerations discussed above
would be valid. It is interesting to note that the
measured 90° p-p cross section is many times
that for the nonexotic cases described above.
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FIG. 2. 7 p elastic scattering data from Ref. 2 and
theoretical predictions with temperatures T =140 MeV
(solid line) and 160 MeV (dashed line) using formulas (8)
and (13).

TABLE II. The level-density parameter a for elastic
scattering processes determined from the data. I'=200
MeV.

a (MeV?)
T (MeV) R(F) 1p T*p bp K
160 1.1 2.9x10° 2.9x10® 1,0x10° 2.9x103
140 1.3 5.4x10° 5.4x10° 2.8x10° 5.4x10?

K*p scattering is also somewhat larger than K~p
scattering near 90°.}" This could indicate a lower
density of exotic resonances according to formula
(14). However, there is no clear evidence for
exotic resonances. Further, there is no evidence
for statistical fluctuation effects in p-p scattering.
Alternatively we may look at Eq. (14) again with
a view to interpreting its significance and possibly
generalizing our considerations to exotic cases,
assuming there are no exotic resonances. The
dominant feature of (14) is its inverse dependence
on the density of resonances (or, to use the lan-
guage of statistical theories, fireballs). Indeed,
the widths I'/s ) have a behavior with energy
which is not really known, but the s dependence is
presumably weak, given the agreement with ex-
periment found here under this assumption.
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FIG. 3. K7p elastic scattering data from Ref. 3 and
theoretical predictions with temperatures T =140 MeV
(solid line) and 160 MeV (dashed line) using formulas
(8) and (13). ‘
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Provided there are no exotic resonances, proton-
proton scattering could still be statistical in nature
near 90° if it involved the formation of two or more
heavy fireballs at rest or nearly so, followed by
their decay. If in fact the density of two-fireball
states governs the 90° cross section we will then
get a larger cross section for exotic situations if
the density of two-fireball states at a given mass
is less than for one-fireball states. This in fact
seems to be the case, as can be established using

J

p(Z)(M) 25a Jl-zuolM dv
(]
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formulas (7) and (8). From these formulas it fol-
lows that the ratio of two-fireball to one-fireball
densities at rest is

pDM) 1 fug o(M)o(M = M")aM’
pM (M) 2 p(M) ’

(16)

where M, is the lowest possible mass of the fire-
balls. Using the form (8) for the density p(M) we
find

PO 1) "M” =y
_4a 2(1 —2M, /M) 3(1 -2M,/M) 3, (M=M
_Mz{[(4M0/M)(1 —M,/MT " @, /M)t ~M,/30) *21“< M, )} ' an

This expression is slowly varying and has the val-
ue a/2M,? as M approaches infinity. Using the re-
sults of Table II we find that the ratio (17) is
roughly 1073 at M =4 GeV. On the other hand, us-
ing the total hadronic density of states (@a~1.5

X10% MeV?) yields a value for (17) of the order of
unity. The value of the normalization constant a

to be used in the present discussion depends on dy-
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FIG. 4. pp elastic scattering data from Ref. 4 and
theoretical predictions with temperatures T =140 MeV
(solid line) and 160 MeV (dashed line) using formulas (8)
and (13).

namics to some extent. At any rate, it should not
be nearly so large as that for the total density of
hadronic states. It is therefore reasonable from
these considerations that p -p scattering should be
larger than p-p at 90°. Similarly we expect K*p
scattering to be larger than K~p scattering near
90°. The data indicate that this is so.!”

Since the density of hadronic states or fireballs
is intimately connected with the number of chan-
nels available,®* we can perhaps look at the
exotic -vs-nonexotic situation as being determined
by the number of these channels. Competition
from a larger number of channels tends to make
the 90° cross sections smaller in nonexotic s-
channel reactions.

It is to be noted, however, that p-p 90° elastic
scattering data !® show a break in slope near s= 20
GeV?, followed by a somewhat less steep decrease
with increasing energy. We present no explanation
of this phenomenon.

CONCLUSIONS

We have presented a statistical model of differ-
ential two-body cross sections which allows us to
explain in detail the energy dependence near 90°
for nonexotic cases. The angular distributions
should be relatively flat in this region and roughly
symmetric with respect to 90°. One can expect
fluctuations to some extent with respect to the
statistical cross-section formulas presented here.
Indeed at low enough energies where there are not
too many resonances, coherent effects may be
dominant at 90°. The main characteristic of the
statistical model is an exponential decrease with
c.m. energy of the differential cross section. This
in essence is the result of competition from other
channels. The large number of results explained
by the statistical model is particularly encourag-
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ing. It can be expected from the above study that
a statistical picture is extremely relevant for cen-
tral collisions. It will be interesting to see
whether this is so at higher energies or whether
some other mechanism becomes dominant. It is
worth noting that parton models?!? usually predict

do o
Qe

feo

with # of the order of 10, while we have here

gﬁc w°~s exp(-Vs /T).

It is difficult with the present data to distinguish
between these two predicted behaviors. Further-
more, a different n for pp —~pp and 77p -77p is
predicted in parton models,'? while a similar be-
havior for both processes is predicted here.

*Work supported in part by the National Research
Council of Canada and the Quebec Department of
Education.
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