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part of the action 1=fd4 x(S f [A~&]—) is invariant under
gauge transformations of the first kind, then from
QI= 0 we can define the Noether current 8&j"' =(M/6A&)
x QA~&~. Here 6A&~ = e'~~Ac& =A& . If we add, say, a
fermion field coupling and the corresponding sources g,
g, we have

8 j&' = A'~ +—iT'y-=iT'y6I " 6I, 6I,

transformation in the fields in Eq. (28). Since the
measure is invariant and a change of variables cannot
change the value of the integral, we can set the variation
with respect to u' (x) equal to zero and finally obtain

1 a — 68——
Bq f [dAq] [d(t] [d()], exp(iS)

g 5A~~

+f [dA'j [dt] [dt(] A~~ +i T g i=-T'g exp(is)
5I™ . 5I' . BI'

f [—dA&] [dg] [dPj (J~~A~&~ + i q T' (i —i gT' P) exp(iS) = 0 .

The first term is equal to zero. Substituting our ex-
pression for 8&(j&' + Pt"'), we obtain the desired Ward
identity:

f [dA'„] [d(tl [d([] ()„(jt" + 8&') exp(iS)

6I' bI'. DI' . 6i lndA~ +—~T'y-= iT'y+
u gy gy gA~& P ~

where I' = I -i lnA[A&]. But since A[A&] is gauge-
im ariant we can always write the last term as a
divergence: B&g&'. A Ward identity for this "total
current" is now easily derived by performing a gauge

f [dA~] [dttj [dy] (JPaA~n + i gT'y

—s gT g) exp(aS) = 0.

~Similarly in the case of the gravitational field there are
no ghost loops in the analogous "gauge" g&3 = 5&3.
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A reasonable generalization of Hamiltonian theory to 3m-dimensional phase space suggests a geometrical

structure giving the proper characteristic vector field, This structure, however, has only a single integral

invariant, and implies no sensible generalization of either Poisson-bracket formalism, or Hamilton-Jacobi

theory. Associated statistical mechanics and quantization are unlikely. The algebraic source of the difficulty

is the lack of understanding of canonical expressions and classes of closed 3-forms.

I. INTRODUCTION

In an imaginative and suggestive paper, Nambu'
has proposed generalization of classical Hamilto-
nian dynamics to 8m-dimensionalphase space. We
have recently restudied Hamiltonian mechanics
from the unifying geometric standpoint of modern
differential geometry, in terms of which several
quite deep insights are achieved. ' We also had
investigated possible generalization to 3m-dimen-
sional phase space, but for several reasons, con-
nected with the insights into the geometrical
structures involved, had been discouraged from
pursuing the matter further. In the following we
summarize the chief features of the geometrical

approach, and then indicate the difficulties that
must be met on generalization.

II. HAMILTONIAN STRUCTURES

We deal at first with structures related to a
given vector field V in an even-dimensional mani-
fold of n dimensions. When a holonomic dynamical
system is said to havem degrees of freedom, its
equations of motion are of second degree inm
dependent variables and one independent variable,
time. If the time variable enters autonomously,
m auxiliary variables can be introduced so as to
write the equations as a set of n = 2m first-order
expressions that, geometrically, are the compo-
nents of a vector field whose trajectories are the
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dynamical paths. If the time enters more gener-
ally or there is a nonholonomic constraint, both
an auxiliary autonomous variable and a consistent
equation of constraint can be introduced, so as
again to achieve an autonomous set —vector com-
ponents —in an even-dimensional spa, ce [n
= 2g + 1)]P'

All classical integration and Hamiltonian tech-
niques use scalars, vectors, and differential
forms invariant with respect to the given field 7.4
First consider invariant scalars, fields y, such
that

By=0,

For scalars, vanishing of the Lie derivative is
just the contraction V~ dy = 0: These are co-mov-
ing coordinates, or classical first integrals (inte-
gral functions). Explicit solution for an indepen-
dent set (y', i = 1, . . . , n —I) would completely
integrate the given problem expressed by V.

A closed 2-form of maximum class invariant
with respect to V can be constructed from a com-
plete set of y' and one more, independent, scalar
field s chosen with constant normalization Voids
= l. We denote the last one of the invariant scalars
y" ' as H and set

so

Q= dy' Ady'+ dy' Ady~ + ~ ~ ~ + dy" ' Ady"

+dH~ds, (2)

P =—VDdp = -H
q'-=V~dq'=H, .

(5)

This construction makes clear that there is
nothing mathematically very distinctive about the
Hamiltonian H. To any first integra/ may be as-
sociated a "symplectic" 2-form P, generating its
associated sets of canonical scalar fields p„q',
and so leading to all consequent forrnal results of

V&Q= -dH, dP= 0, 8Q= 0.
V

The first of these is Hamilton's equations of rno-
tion in differential geometric terminology. It
determines the field V as the characteristics of
the set of forms P, dH (the Hamiltonian structure').

Now the theorems of Pfaff and Darboux tell us
that any closed, maximum-class 2-form can be
expressed in canonical form as

tp=dp, Adq' a= 1, . . . , ,'n. —

Since the p„q' are a complete set of scalars, the
scalar field H may be expressed functionally as
H(p„q'). dH becomes H

~ dp, +H, ,dq'. The
equations of motion take the customary canonical
form when this is introduced into Eq. (4):

classical Hamiltonian dynamics. The successes
of statistical mechanics, built heuristically on
this classical deterministic foundation, must
surely, however, be due to the choice of a par-
ticular first integral for H, viz. , the energy.
Energy is known at a deeper level to be an invari-
ant scalar by virtue of its connection with the
symmetry group of the background space-time
geometry —it must be this that provides the es-
sentially physical justification for the success of
coarse graining. Similarly, in quantization of a
classical Hamiltonian system, deeper physical
criteria must be invoked as to which first integral
or integrals are to be preferred as Hamiltonian
functions.

If more than one first integral is for some
reason to be distinguished in a generalized Hamil-
tonian structure, it is natural to introduce an
invariant 2-form (or 4-form, etc.). The present
suggestion is to consider the case n = 3m, and
construct the following set of forms as a general-
ized Hamiltonian structure:

dH~dG,

dy'Ady2Ady'+ —dy~AdysAdy~+. . .

+dy" hdy" Ady" ydHP dGPds. (6)

Here againy', y', . . . , y", H, Gare first inte-
grals, the last two arbitrarily distinguished, and
as before the set is completed with s, chosen so
that V~ ds = 1. If n is not divisible by three, this
can as before be arranged with auxiliary variables
and compatible constraints (e.g. , H = 0, G = 0).
Again,

VUg = dHAdG, dg = 0, gg~ = 0 . (7)

which is the posulated set of Nambu. ' In the case
n = 3 he finds a Liouville theorem. Also the vari-
ation of any scalar E along 0 is

&(F,H, G)E= VUdE=Q (10)

Now unfortunately no adequate theory of a can-
onical expression for general closed 3-forms
appears to be known. If we assume, however, that
because of the construction (6) this g may be
written in a complete set of adapted coordinates
as

q = dp "Adq" Adr" A. = 1, . . . , —,'n,

then substituting into the first of Eq. (7) gives

PA —VQ dPA H AG

q" —= VUdq = H, „AG, pA —HppAG&„A&

r'" —= fg dr" = H,»G„~ -H„~G, ~x,
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which looks like a sort of generalized Poisson
bracket of three scalar fields. Nevertheless, we
will see that neither a generalized theory of Poin-
care' s integral invariants, Poisson-bracket
formalism, nor Hamilton- Jacobi theory go through
satisfactorily for n& 3.

III. INTEGRAL INVARIANTS

If the boundary of a p-dimensional subspace is
infinitesimally displaced by mapping points through
eV along the congruence V, (e an infinitesimal
constant), the numerical value of the integral of a
p-form over the subspace is changed precisely by
e times the integral of the Lie derivative of the
p-form. Thus we have immediately from the
vanishing of the Lie derivative in Eq. (3) that the
following integrals are inva, riant when their bound-
aries are mapped along V:

where the last integrand consi. sts of -,'-n factors.
Since Q ls of maximum class, these all exist.
These are Poincare's absolute integral invariants
in their most general form. Other integral
invariants can easily be constructed from P, H,
and dH, and so-called relative integral invariants
follow from the Stokes theorexns. The last of
Eq. (11) is taken over, in statistical mechanics,
as I,iouville's theorem of conservation of,n Pro~i
probability.

In the proposed generalized Hamiltonian me-
chanics, it at firstappearsthat we have, from (7),
the analogous invariant integrals with respect to
po

gA A.

where the la, st integrand consists of —,'n fa,ctors.
Since g is a 3-form, however, only the first of
these is nonvanishing. Only in the case n = 3 does
there seem to be a generalization of the I iouville
theorem.

IV. CANONICAL TRANSFORMATION AND

POISSON BRACKETS

Substitution of new canonical variables which
preserve the canonical form (4) of P is denoted
canonical transformation (CT). The functional
form of H is thereby changed. CT's form an in-
finite continuous group which, as is well known,
can be found from generating potentials. The
infinitesimal canonical transformations near the
identity are generated by vector fields U satisfy-
ing

(13)

An interesting I ie group contained in this is the
symplectic group Sp(—,'. n), restricted by the con-
dition that in at least one canonical coordinate
frame the components of U a,re linear i.n the
coor'dlnates

g p .=g ~p„+ jg~q~, a, b = 1, . . . , 2n
U

gqc CQlJp + jg 6 qb
U

Substituting into (13) imposes —,n(~ —1) conditions
on the n' constants, so one finds m g + 1) inde-
pendent U's.

Equation (13) is the integrability condition for
the association of a scalar field u to the vector U,
accordi. ng to

[U, V] =W.

W is again a CT vector, since

(16)

Also we note that the Jacobi identity is satisfied
by such produc ts. Taking the I,ie derivative of
(15) with respect to V gives

@du = g (U ~ y) = [V, u]~&+ U~ag
V V V

W)f= -d-m.

But the operations d and 8 commute. The scalar
field m associated to W is thus defined, up to a
constant, in terms of u and v by

su= —VUdu = U~dv. (18)
Moreover, in the other order, v and u determine
-ul. The usual and convenient notation for the
relation between these scalar fields u, v, zv is to
write, in analogy with (16)

[u, v] =u). (19)

We then readily prove further relations such as
=u v~zU + vugg% (20)

This is the symbolism of Poisson brackets, show-
ing that in a space with a symplectic structure Q,

UUQ= du;

u is determined up to an additive constant. (15)
may be read as the lowering of a contravariant
index on the vector U to give the covariant gradi-
ent field 4u. The process ls lnver'tlble: Fr'Qm a
du one can find a unique U, as is easily seen using
the maximum-class expression for Q, Eq. (4).

Now any two such CT vector fields, U and V,
define a third, W, by their Lie product (in this
pa, ragraph V is any CT vector)
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there is a natural association of vectors —mapping
operators —to scalar fields.

The given field V is of course also a CT vector,
satisfying Eq. (13), belonging by (3) to the scalar
field -II. Hence for any other scalar field, u, we
have from (18) and (19)

"—= V~du = —so= [u, H] . (21)

It is this particular ease of Poisson bracket that
might be generalized as Eq. (10).

Now the difficulty is that most of this just does
not go through with the generalized Hamiltonian
structure (8), in particular with the 3-form g.
Generalized CT vector fields, say, U can be de-
fined by requiring

8)=0,
U

(22)

V. HAMILTON- JACOBI THEORY

The set of forms dH, /is called a Hamiltonian
structure in even-dimensional n-space. Without

and this is indeed the integrability condition for
associating a 1-form u to U by writing

U~( = du.

However, the u is thereby algebraically quite
specialized, and it is clear that the converse
association cannot work for a general u. Moreover,
this is for 1-forms —not scalar fields as before-
and no expression generalizing Eq. (21) so as to
yield Eq. (10) seems to exist. There appear to be
no clues at all in the generalized formalism for
associating operators to scalar fields.

belaboring details, we record that the Cartan
characters' describing the Cauchy integrations to
find regular integral manifolds of this set are
so 1 sg 1 s( 2)/2 1, and it follows that
the genus g (dimensionality of the maximum-
dimension regular integral manifold) is g = , n—.
The set of —,

' n variables q». . . , q„„are found to be
in involution, which means that they can be varied
independently in these maximum regular integral
manifolds —thus the remaining variables, p„.. .,
p„», become dependent variables. This is the
geometric basis for the existence of the Hamilton-
Jacobi partial differential equation. It implies
further the existence of an associated variational
principle for the characteristics of the Hamiltonian
structure (the trajectories of V), since by a theo-
rem of Cartan these must lie in the maximum
regular integral manifolds.

Hamilton-Jacobi theory is closely connected
with SchrMinger quantization, in which the maxi-
mum regular integral manifolds acquire amplitude
and phase qualities. We must ask if this theory
can be clearly generalized to 3m-dimensional
phase space. The form structure of Eq. (V) is one
possibility (we have discovered no better), and
it fails this test. For n = 6, we find s, = 0, s, = 1,
s, = 1, s, =0, andg= 4. Porn = 9, s, = 0, s, = 1,
s, = 1, s3 2 s4 0, andg= 5. Porn= 12, so 0,
sg 1 s2 1 s3 2 s4 2, s, = 0, andg= 6. This
is not yet sufficient to establish the pattern for
higher dimensionalities, but clearly no certain set
of canonical variables in involution (such as the q„)
are at hand to be adopted as independent, in a
generalized Hamilton- Jacobi theory.

*This paper presents the results of one phase of research
carried out at the Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under Contract No. NAS7-
100, sponsored by the National Aeronautics and Space
Administration

~Yoichiro Nambu, Phys. Bev. D 7, 2405 (1973).
F. B. Estabrook and H. D. Wahlquist, report, 1973,
(unpublished) .

3J. L. Synge, in Encyclopedia of Physics (Springer,

Berlin, 1960), Vol. III/1.
4B. K. Harrison and F. B. Estabrook, J. Math. Phys.

12, 653 (1971).
~C. Godbillon, Geometric Differentielle et Mecanique

Analytique (Hermann, Paris, 1969); B.Abraham,
Foundations of Mechanics. (Benjamin, New York, 1967).

6E. Cartan, Les Systemes Differentiels Exterieurs et
Leurs APplications Geometriques (Hermann, Paris,
1945).


