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Quantization of the Yang-Mills Field in the Null-Plane Frame*
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The massless Yang-Mills field is quantized in the null-frame gauge A' = 0, and Feynman rules are derived.

INTRODUCTION

Because of the current popularity enjoyed by
Yang-Mi. lls fields and light-cone techniques in
particle physics, it might be of some interest to
present here the quantization of such a field in the
null-plane frame. The corresponding formalism
for the case of the electromagnetic field has been
given in Ref. I. Here we shall confine ourselves
to the self-interacting massless Yang-Mills field. '
The coupling to other fields presents no difficul-
ties.

We introduce the standard null coordinates
0x' = —(x'~x'), x = (x', x'),

and the null metric

8'+-=g-+ =1~ 8++ =g-- =0~

g, = —6, . , i, j=1 2.

The invariant inner product takes the form

A„A" =2A,A -A,. A,

I. CANONICAL QUANTIZATION

The Lagrangian for the massless Yang-Mills
field is

2 = —eG""(8 A' —8 A' +gA' A ) + —'G""'G'

where A'„' =- c"'A'„. c'"' are the structure con-
stants of the internal-symmetry group. 8 is in-
variant under

A~ (x) -A'„" (x) =A'„(x) — D'„' (x)u' (x) + O(u—'),

where D'„' is the covariant derivative operator
D'„'(x) = 5„8„+gA'„b(x). We quantize in the null-
plane gauge:

A' =0,
where the field equations are

Equation (4a) is actually a constraint equation that
can be solved for A;:

A' = —(8 ) 'D bG-"'b . t =I 2.
To quantize the classical theory the commutators
must be specified on the null plane. We cannot,
however, adopt the usual canonical commutators
postulated in the case of quantization on spacelike
surfaces because canonically conjugate variables
that are independent in one case may be related in
the other. We may be able to guess the correct
commutators, but we could also start with a for-
malism that can take into account constraint re-
lations. '4 Such a formalism is presented in the
Appendix and its somewhat tedious application to
the Yang-Mills field gives [from Eq. (A8)]

[A;. (x),A',. (y)J„+,+ = —~5, 5.bc(x —y )5'(x —y),

(6a)

[G'* (x),Ab(y)]„. ..=-,'t 0, , 0.,0(x--y-)0'(x-y),

(6h)

[G'" (x), G""(y)]„, , +

= i 5, , 5„8 5(x —y )5'(x —y). (6c)

The corresponding Hamiltonian density is

X=-.'G*"G'. . —-'(8 A-')(8 A-')

—(8 A" )(8.A ' ) +g(8 A'. )A'b A"

Symmetrizations between products will not be in-
dicated explicitly. A lengthy calculation shows
that with the above commutation rules the correct
Heisenberg equations of motion are satisfied.

Further details such as the construction of the
full energy-momentum tensor and the correspond-
ing demonstration of the consistency of the com-
mutation relations are straightforward and com-
pletely analogous to the electromagnetic case. '

To do scattering theory we will need to split II
into a free part and an interaction part. Since A'
contains part of the interaction we set

Dub g +kQ 0k

Dab Glib

k=1, 2, —,
i =1,2.

(4)

(4a)

Ae ge -b Qa

where

2'736



QUANTIZATION OF THE YANG-MILLS FIELD IN THE. . .

8' = —(8 ) bs 9Aa»

ya (S )-2( ~ab S Abi )

(8a)

(6b)

S„F~"(x}=O,

with

We may also define 8"=A", and 8' =-A' =0 and
y~" = aI"8"—e'8"'. Using these definitions and
the constraint equation satisfied by A; we find
after some manipulation of the various terms of
H that

8a =- (8 )-'8 8 8'a

and canonical commutation relations

[8"(x), 8"(y)]„. ..=- ab6„5,, ~(x--y-)6b(x-y).

II =IIo+Hi,

where

(9a)

From the definition of 8', it then follows that

[8-'(x),8"(y)]„. ..= --.'b 6., ~

x- -y-
~

S*6'(x-y).

'xdx-d~4'~ x--] ~(8'„'S8'")(x', t, x)

&& (8'„' S 8")(x',x, x ) . (9b)

H = d'x dx -'gI"""'8"8' +-'g' 8""8" 8"8'
b [If 8ia] S 8ia (14)

From the free-field equations for 8" and the def-
inition (11), it follows that we can write free-field
expansions for 8"' with the null-frame polariza-
tion vectors

Using Eqs. (10)—(13) it is straightforward to veri-
fy that the free part of H generates the correct
equations of motion:

II. INTERACTION PICTURE AND FEYNMAN RULES

We may now pass to the interaction picture. We

denote the interaction representation fields also
by 8'„with 8' =0. They satisfy free-fieM equa-
tions of mi)tion:

~" (P, 1)=—(O, P, o, P'),

~"(P,2) =—(o,o,P,p').

The propagator is then found to be

a& ob(„„)= —Z
& AT, (8"'(x')8"'(x))

i 0)

= —i [&0 ~

8"'(x' )8"' (x)
~ 0) g(x ' —x') + (0 ~

8"'(x)8"' (x' ) ~ 0) e(x"-x")]
d4p e-jp'(x'-x) gyp&+/&pv 2p p p2

(2s)4 P„P"+i&, P P
'

~

~

Equation (9b) is to be used as the interaction
Hamiltonian in the S matrix. The first two terms
of this are the usual three- and four-point vertices
of the Yang-Mills field. The third term repre-
sents an instantaneous "Coulomb"-type interaction.

It is also easy to see that the only vacuum ex-
pectation values additional to Eq. (16) we shall
actually need in applying Wick's theorem to the
expansion of S = T, [exp(-i JdxK, )] are

&o I ~,(&"'(x)8', (y)) I o)

= S*&0
I T,(8*'(x)8,'(y))

I o), (17a)

= &" &" &o I
T,(8*' (x)8"(y)) I O). (1Vb)

Eq. (16) so that we are left with an effective inter-
action Hamiltonian density:

gE""8"8' +--g'(8" 8')(8 "8') (16)

i.e., the two usual vertices, and a propagator

(19)

This can be proved combinatorially by counting
graphs. It is simpler however, to use one of the
several functional techniques available. A con-
venient method' is to start with

We will now show that all graphs representing the
Coulomb term in Eq. (9b) precisely cancel the
contributions from the last term of the propagator

S = r, [exp(-i dx X,)]

and replace 8', (x) in Eq. (20) with

(20)
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Q', (x)+i d'x' a ""(x-x') „, ,-) .
5 8"' (x'

All the contractions between Q', and 5', are then automatically performed' and we have

(21)

+

—l p (tt 'p "")s"'([s"p'") tpp'"ts" tt; ifttt x n'.-,"') (22)

where:: denotes normal ordering, with respect
to Q', only. To save writing we sha11 use a sym-
bo].ic matrix notation and denote the first two
terms in the exponent by X' and —ig+"~8, ',. by
Q e

S =:exp 9C' ——,'iG G+G Q, +i6-
&8,

estJp] = dA exp i S

(dA 6 A

&exp i d'x Z — A'„- J'„A'

(28)

(23)

Differentiating, with respect to Q„we have
5S/5Q, =GS, the solution of which is

S = C: exp(GQ, ): .
To find C we use Eqs. (23) and (24) to obtain

58 . ~ . 6C= (- i s -'G + i ~G)C = —,
&t" ig,=o

9

(24)

C=K exp[- ',i Ge 'G-+-,'iGaGJ . (26)

Choosing the arbitrary K so that S
~ ~, = T, exp X',

we finally obtain

S=:exp(X' - ;i G& 'G+-, i GEG+-GQ, ):.
From Eq. (16) we see that the last term in the
expression —,

' GEG precisely cancels the second
term in the exponent in Eq. (26) so that we are
left with

S =:exp(K' +-, i GDG + GQ, ): .
According to Eqs. (22), (26), and (27) S is then
the S matrix calculated with the Feynman rules
[Eqs. (18) and (19)]. They hold to all orders, and
since they were derived from the canonical for-
malism they yield a unitary S matrix. In particu-
lar, there are no "ghost loops" in our gauge. The
simplicity of the Feynman rules in the null-plane
gauge is, of course, obtained at the cost of lost
manifest covariance. However, we expect the
resulting S matrix to be covariant and gauge in-
variant. This can be verified by deriving the same
rules from the path integral quantization method
of Faddeev and Popov. ' In this formalism, as is
well known, the generating function Z[J'„] of con-
nected Green's functions is given by

= constant. (31)

Since the integral does not depend on A'„we can
set A [A'„] =1.' The generating functional Eq.
(28) then becomes

ez~T&~ dAQ & AQ

x exp i d'x(-,'-G" "'O'„„-J„'A"')

(32)
from which one immediately obtains the Feynman
rules [Eqs. (18) and (19)].

f[A'„] is a gauge term that breaks the invariance
of 2, whereas the gauge-invariant Jacobian it [A'„]
satisfies the condition

n[A'„1 f [ttu] exp(t f tA[;"])=ccnetent. (29)

In a perturbation expansion 6 [A'„] gives rise to
the well-known ghost loops of non-Abelian field
theories. J'„ is an external boson source. The re-
sulting S matrix is independent of the form of the
gauge term.

The path integral method is very well suited for
studying the consequences of gauge invariance, in
particular global Ward- Takahashi identities.

We now write Eq. (28) for the case of quantiza-
tion in the null-plane frame. Our gauge condition
A' =0 can be incorporated in a term of the form

[t(C'] exp(i f A'uC'A')= il(A').

Then from Eq. (29) and the fact that we need the
value of 6[A'„] only in the neighborhood of A' =0,
we get

n [A'„] S(A ")[ttu] = n [A„]fc——S u' [A'u]
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Finally we might mention that, following Kogut
and Hoper, one could use the old-fashioned per-
turbation series as an alternative way of calcu-
lating the 8 matrix in the null-plane frame. HI
of Eg. (Qb), with the Heisenberg operators evalu-
ated at x' =0, is to be taken as the potential. The
proof of the equivalence of the resulting series
with the Feynman. rules is exactly analogous to
that given in Ref. '1, and need not be repeated
here.
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APPENDIX

The constraints encountered in the case where
the momenta are not independent functions of the
velocities are of two kinds. First there are the
constraints associated with the invariance of the
Lagrangian with a certain group of transformation.
The requirement that they are satisfied at all
times may lead to further constraints. All these
relations are, in Dirac's terminology, first-class
constraints. They result in a number of arbitrary
functions in the theory and are usually dealt with
by imposing a set of "gauge conditions" on the
dynamical variables.

The second kind of constraints arise, for exam-
ple, in cases where one treats (time) derivatives
of fields as independent variables or where time
derivatives enter the Lagrangian linearly for
some reason such as the nature of the metric-
ihis is actually the case in the null-plane frame.
It is with these "second class" constraints that
we are essentially concerned below. They may
result in a modification of the elementary canon-
ical commutation rule."

It will be convenient then to write all Lagran-
gians in a form linear in time derivatives:

I- = ,'i (q A q —q A q) -H(q, —t),
where A is an imaginary and antisymmetric ma-
trix and q is the column matrix of the dynamical
variables. If A is nonsingular, the equations of
motion that follow from (Al) can be solved for g
and we can set

[q, q]=m-' (A2)

In most cases of interest, however, A is singu-
lar. In this case we introduce (Ref. 8) a pro-
jection operator P on the zero space of A:

PA=AP=0, P =P

[Pq, qP] =a(PAP) (A6a)

or

[Aq, qA] =RA

are the appropriate commutators.
If the condition does not hold we introduce a new

projection Q onto the zero space of PH„P and the
corresponding Q =I —Q. Differentiating Ec(. (A5)
with respect to time and using Eq. (A4) one can
derive another (secondary) constraint equation:

—i QPEI„P(PAP) 'PH +QPH, =0, (AV)

which is to be solved for QPq, If we assume for
convenience that PH, is linear in QPq the relevant
condition is that the matrix T = QPH„P(PA p)-'
MPH„PQ be nonsingular in the subspace on which
QP projects. If this is the case, one can check
that the appropriate ansatz for the commutators
ls

—[Aq, qA] =A —PH PQT 'QPH P.
If the secondary constraints are not solvable then
differentiation, with respect to time, leads to
tertiary constraints and so on. However (A8) is
sufficient for our purposes.

(A8)

P=I -P =P

The Lagrangian equations decompose into two
sets:

i (PA P)(Pq ) —PH, =. 0,
PII, =0. (A5

H, is the matrix &H/&q. We also use H for
O'H/Bqsq, etc Eq.uation (A5) is actually a con-
straint equation that should be solved for Pq in
terms of Pq. The condition for this is that PH„P
be nonsingular in the subspace on which P pro-
jects. If this condition hoMs it is easy to show
that
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part of the action 1=fd4 x(S f [A~&]—) is invariant under
gauge transformations of the first kind, then from
QI= 0 we can define the Noether current 8&j"' =(M/6A&)
x QA~&~. Here 6A&~ = e'~~Ac& =A& . If we add, say, a
fermion field coupling and the corresponding sources g,
g, we have

8 j&' = A'~ +—iT'y-=iT'y6I " 6I, 6I,

transformation in the fields in Eq. (28). Since the
measure is invariant and a change of variables cannot
change the value of the integral, we can set the variation
with respect to u' (x) equal to zero and finally obtain

1 a — 68——
Bq f [dAq] [d(t] [d()], exp(iS)

g 5A~~

+f [dA'j [dt] [dt(] A~~ +i T g i=-T'g exp(is)
5I™ . 5I' . BI'

f [—dA&] [dg] [dPj (J~~A~&~ + i q T' (i —i gT' P) exp(iS) = 0 .

The first term is equal to zero. Substituting our ex-
pression for 8&(j&' + Pt"'), we obtain the desired Ward
identity:

f [dA'„] [d(tl [d([] ()„(jt" + 8&') exp(iS)

6I' bI'. DI' . 6i lndA~ +—~T'y-= iT'y+
u gy gy gA~& P ~

where I' = I -i lnA[A&]. But since A[A&] is gauge-
im ariant we can always write the last term as a
divergence: B&g&'. A Ward identity for this "total
current" is now easily derived by performing a gauge

f [dA~] [dttj [dy] (JPaA~n + i gT'y

—s gT g) exp(aS) = 0.

~Similarly in the case of the gravitational field there are
no ghost loops in the analogous "gauge" g&3 = 5&3.
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A reasonable generalization of Hamiltonian theory to 3m-dimensional phase space suggests a geometrical

structure giving the proper characteristic vector field, This structure, however, has only a single integral

invariant, and implies no sensible generalization of either Poisson-bracket formalism, or Hamilton-Jacobi

theory. Associated statistical mechanics and quantization are unlikely. The algebraic source of the difficulty

is the lack of understanding of canonical expressions and classes of closed 3-forms.

I. INTRODUCTION

In an imaginative and suggestive paper, Nambu'
has proposed generalization of classical Hamilto-
nian dynamics to 8m-dimensionalphase space. We
have recently restudied Hamiltonian mechanics
from the unifying geometric standpoint of modern
differential geometry, in terms of which several
quite deep insights are achieved. ' We also had
investigated possible generalization to 3m-dimen-
sional phase space, but for several reasons, con-
nected with the insights into the geometrical
structures involved, had been discouraged from
pursuing the matter further. In the following we
summarize the chief features of the geometrical

approach, and then indicate the difficulties that
must be met on generalization.

II. HAMILTONIAN STRUCTURES

We deal at first with structures related to a
given vector field V in an even-dimensional mani-
fold of n dimensions. When a holonomic dynamical
system is said to havem degrees of freedom, its
equations of motion are of second degree inm
dependent variables and one independent variable,
time. If the time variable enters autonomously,
m auxiliary variables can be introduced so as to
write the equations as a set of n = 2m first-order
expressions that, geometrically, are the compo-
nents of a vector field whose trajectories are the


